Способ эксплуатации камеры сгорания при работе в неустановившемся режиме

Изобретение относится к способу эксплуатации камеры сгорания при работе в неустановившемся режиме. В камеру сгорания подают, по меньшей мере, топливо. Неустановившийся режим включает в себя период, имеющий продолжительность, в течение которого топливо подают в количестве меньшем, чем критическое количество топлива. Способ включает в себя задание предельного значения для длительности периода и регулирование подачи топлива так, чтобы длительность периода была меньше или равна предельному значению. Изобретение позволяет нейтрализовать пульсации горения, возникающие во время работы в неустановившемся режиме. 8 з.п. ф-лы, 7 ил.

 

Настоящее изобретение относится к способу эксплуатации камеры сгорания при работе в неустановившемся режиме.

Ниже дана конкретная ссылка на камеры сгорания, являющиеся частью газотурбинной установки, при этом следует учесть, что способ также может быть реализован в камерах сгорания для других приложений.

Газотурбинная установка включает в себя компрессор, камеру сгорания и турбину.

Известно, что камеры сгорания включают в себя корпус с:

- подачей либо жидкого топлива (например, нефтепродукт), либо газообразного топлива (например, природный газ), и

- подачей окислителя (обычно воздуха).

Во время эксплуатации топливо и окислитель вступают в реакцию в камере сгорания и вырабатывают газообразные продукты горения высокой температуры и высокого давления, которые выпускаются в турбину.

Во время работы в неустановившемся режиме, например, когда газотурбинную установку запускают, отключают, во время переключения топлива или также во время других переходных процессов, могут возникнуть проблемы.

Действительно, во время этих переходных процессов внутри камеры сгорания может появиться флуктуирующее давление; это флуктуирующее давление неблагоприятно влияет на впрыск топлива.

На фиг.1 показано влияние флуктуирующего давления в камере сгорания на впрыск топлива. На фиг.1 показан пример, в котором снижается массовый расход топлива; это может быть пример выключения, в любом случае, аналогичные условия имеют место также в начале запуска или в начале и в конце переключения и, в общем, каждый раз, когда массовый расход подаваемого топлива снижается и опускается ниже заданного массового расхода.

На фиг.1 показан массовый расход М топлива, впрыскиваемого через инжектор, как функция времени t. На фиг.1 отмечены, по меньшей мере, следующие фазы:

- до t-t1: устойчивая работа с постоянным, в основном, массовым расходом топлива, проходящего через инжектор (кривая 1),

- между t=t1 и t=t2 (массовый расход топлива остается выше критического количества Мс топлива): уменьшается количество впрыскиваемого топлива, но флуктуирующее давление внутри камеры сгорания не оказывает ощутимого влияния на впрыск топлива (кривая 2),

- после t=t2 (т.е. когда массовый расход топлива падает ниже критического количества Мс топлива): в этих условиях, так как количество топлива низкое, то флуктуирующее давление внутри камеры сгорания поочередно то способствует, то мешает впрыску топлива, что приводит к флуктуации впрыска топлива. В частности, кривая 2 показывает теоретический ход уменьшения массового расхода топлива, а кривая 3 - пример возможного действительного хода уменьшения массового расхода топлива.

Флуктуация подачи топлива в камеру сгорания порождает большие пульсации горения.

Пульсации горения подвергают камеру сгорания и следующую за ней турбину большим механическим и термическим нагрузкам, поэтому необходимо их нейтрализовать.

Таким образом, задачей настоящего описания является создание способа, посредством которого нейтрализуют пульсации горения, возникающие во время работы в неустановившемся режиме.

Поставленная задача решена посредством способа, охарактеризованного признаками пункта 1 формулы изобретения. Предпочтительные варианты выполнения раскрыты в зависимых пунктах формулы изобретения.

Изобретение поясняется чертежами, на которых представлено следующее:

фиг.1 - массовый расход топлива, впрыскиваемого в камеру сгорания, как функция времени t, схематично;

фиг.2 - взаимосвязь между пульсациями (давления) и массовым расходом подаваемого в камеру сгорания топлива, когда массовый расход подаваемого топлива меньше Mc;

фиг.3 - взаимосвязь между пульсациями (давления) и массовым расходом подаваемого в камеру сгорания топлива, когда массовый расход подаваемого топлива превосходит Мс;

фиг.4 и 5 - взаимосвязь между пульсациями (давления), временем и массовым расходом подаваемого в камеру сгорания топлива в разных вариантах выполнения изобретения;

фиг.6 - взаимосвязь между Bo и T/Δβ;

фиг.7 - пример переключения.

Способ эксплуатации камеры сгорания при работе в неустановившемся режиме может быть реализован для камеры сгорания любого типа, например, предназначенной для получения горения предварительно подготовленной смеси, диффузионного горения и т.д.; в камеру сгорания подается один или несколько видов топлива.

На фиг.2 показаны пульсации, получаемые в камере сгорания, когда массовый расход M подаваемого в камеру сгорания топлива увеличивается (от 0 и далее), но меньше, чем критическое количество Mc; в этом случае интенсивность пульсаций увеличивается. Прохождение пульсаций и предельное значение количества топлива представляют собой характеристику каждой камеры сгорания и, по существу, не зависят от изменения условий эксплуатации. Другими словами, критическое количество Mc - это такое количество, при котором начинают появляться существенные пульсации, т.е. пульсации, которые выше эксплуатационных ограничений для непрерывной работы и которые могут угрожать безопасной работе двигателя.

Как показано на фиг.3, когда массовый расход М топлива достигает критического количества Mc топлива, интенсивность пульсаций начинает снижаться до минимума. Критическое количество Mc может быть достигнуто быстрее или медленнее в соответствии с условиями подачи топлива.

Со ссылкой на фиг.4, неустановившийся режим включает в себя период, имеющий продолжительность Г, в течение которого подаваемое количество топлива меньше, чем критическое количество Мс топлива.

Способ включает в себя задание предельного значения L для длительности T периода и регулирование подачи топлива так, чтобы длительность T периода была меньше или равна предельному значению L.

В этом отношении на фиг.4 показан пример, в котором длительность T периода равна L, а на фиг.5 - пример, в котором длительность T периода меньше чем L.

Значение L может быть задано, исходя из максимальной интенсивности пульсаций или максимальной длительности периода пульсаций для пульсаций, которые допустимы в камере сгорания. Например:

- максимальная допустимая интенсивность пульсаций может быть ограничена диапазоном PR пульсаций, и, соответственно, может быть задано предельное значение L (фиг.4), и/или

- может быть задана максимально допустимая длительность PL периода, в течение которого в камере сгорания генерируются пульсации, и, соответственно, может быть задано предельное значение (фиг.5).

Предпочтительно, предоставляют параметр, являющийся функцией длительности T периода и подаваемого топлива, а предельное значение L для длительности T периода задают в качестве предельного значения для этого параметра. В этом случае регулирование подачи топлива включает в себя предотвращение того, чтобы значение параметра превзошло предельное значение для параметра.

В варианте осуществления способа параметр задают следующим образом:

Bo=(αGR·T)/(2π·Δβ),

где

αGR - усредненная линейная скорость роста в течение длительности Т периода (она зависит от характеристик камеры сгорания, условий эксплуатации, топлива, внешних условий), она может быть вычислена следующим образом:

пульсация ~ A·e(aGR·t)

и, таким образом,

log(пульсация) ~ B+αGR·t

в качестве примера αGR показана на фиг.2;

T - длительность периода;

β - энергоемкость топлива (или одного из видов топлива, если осуществляется впрыск более одного вида топлива), разделенная на энергоемкость всего подаваемого топлива (или видов топлива, если осуществляется впрыск более одного вида топлива); энергоемкость топлива - это

энергоемкость топлива=массовый расход · низшая теплота сгорания

Δβ=abs(β2-β1) - это изменение β в течение периода T.

В некоторых случаях может быть сложно вычислить αGR, поэтому αGR можно аппроксимировать следующим образом:

αGR=fosc/(2π)2,

где

fosc - средняя частота колебаний в течение длительности T периода в диапазоне Δβ, при этом

fosc=1/w,

где

w - средний период пульсаций в камере сгорания (фиг.2).

В вариантах осуществления, приведенных выше, предельное значение равно π.

Таким образом, Bo, вычисленный с αGR, которое либо является усредненной линейной скоростью роста, либо аппроксимированной величиной αGR=fosc(2π)2 должен быть меньше, чем предельное значение (такое как π) и, если αGR может быть вычислено в обоих случаях, оба значения αGR должны быть меньше, чем предельное значение (такое как π).

Использование параметра, такого как Bo, являющегося функцией и длительности T периода, и подачи топлива, предпочтительно, так как он позволяет учесть не только длительность T периода, но также и скорость, с которой достигается критический расход Mc. Другими словами Bo обеспечивает минимальную границу для скорости подачи топлива, так что более высокая скорость допустима, а более низкая - нет.

На фиг.6 показана взаимосвязь между Bo (вычисленным в соответствии с любыми из приведенных выше формул) и T/Δβ (показывающее скорость подачи топлива). На фиг.6 кривая 15 относится к предельному значению Bo=π; кривая 15 задает две области, а именно:

- область A, которая относится к значениям Т/Δβ (значениям скорости подачи топлива), которые могут быть допустимыми, и

- область B, которая относится к значениям T/Δβ (значениям скорости подачи топлива), которые не могут быть допустимыми.

В различных примерах работа в неустановившемся режиме может быть запуском камеры сгорания, отключением камеры сгорания или переключением эксплуатации камеры сгорания с первым видом топлива на функционирование со вторым видом топлива. В этом случае первый тип топлива может представлять собой жидкое топливо, а второй тип топлива может представлять собой газообразное топливо, или наоборот.

На фиг.7 показан пример, в котором работа в неустановившемся режиме - это переключение эксплуатации с первым видом топлива на функционирование со вторым видом топлива. На этой фигуре M1 относится к массовому расходу первого вида топлива, a Ml - ко второму виду топлива, а Mc1 и Mc2 - к критическому количеству топлива первого и второго типа.

Из этой фигуры можно увидеть, что перебои в работе могут возникнуть только:

- в начале переключения, когда массовый расход M1 второго вида топлива ниже его критического количества Mc2, и

- в конце переключения, когда массовый расход M1 первого вида топлива опускается ниже его критического количества Mc1.

В этом случае пределы для длительности T периода и/или Bo должны быть обеспечены только в начале и в конце переключения, и соответственно должна регулироваться подача топлива.

В отличие от этого, когда массовый расход первого вида топлива и второго вида топлива больше, чем критическое количество Mc1, Mc2 (т.е. в зоне 16 фиг.7), регулирование можно осуществлять, исходя из различных требований, как, например, регулирование нагрузки (например, чтобы сохранять ее постоянной).

Предпочтительно, чтобы камера сгорания являлась частью газотурбинной установки.

Благодаря ограничению для параметра Bo:

- пиковые значения пульсации могут быть снижены, потому что чем меньше продолжительность работы в неустановившемся режиме, тем меньше пиковые значения пульсации;

- снижается время, в течение которого пульсации подвергают нагрузкам камеру сгорания.

Численный пример запуска

Ниже описан пример запуска газотурбинной установки с расходом газа.

Даны следующие данные:

αGR=1 рад/с

β1 (энергоемкость топлива в начале периода T, разделенная на энергоемкость всего подаваемого топлива): 0

β2 (энергоемкость топлива, подаваемого в конце периода T, разделенная на энергоемкость всего подаваемого топлива, в предположении, что в конце периода T впрыскивают 10% газообразного топлива): 0,1

Δβ=abs(β2-βl)=0,1

период T: 1,5 секунды

при этих значениях Bo=(1·1,5)/(2π-0.1)=2,39

Так как Bo=2,39<π, то скорость впрыска топлива при запуске допустима.

Численный пример переключения

Ниже описан пример переключения газотурбинной установки с эксплуатации на газе на функционирование на нефтепродуктах.

Даны следующие данные:

начало переключения:

αGR=4 рад/с

β1 (энергоемкость топлива (газа) в начале периода T, разделенная на энергоемкость всего подаваемого топлива): 1

β2 (энергоемкость топлива (газа), подаваемого в конце периода T, разделенная на энергоемкость всего подаваемого топлива, в предположении, что в конце периода T впрыскивают 5% нефтепродуктов и 95% газообразного топлива): 0,095 (предполагается, что теплота сгорания нефтепродуктов и газа одинаковы)

Δβ=abs(β2-β1)=0,05

период T: 0,2 секунды

при этих значениях Bo=(4·0,2)/(2π·0,05)=2,55

Так как Bo=2,55<π, то эта скорость впрыска топлива может быть допустимой; и конец переключения:

αGR=8 рад/с.

β1 (энергоемкость топлива (газа), подаваемого в начале периода T, разделенная на энергоемкость всего подаваемого топлива, т.е. нефтепродуктов и газа, в предположении, что в начале периода T 95% топлива составляют нефтепродукты и 5% - газообразное топливо): 0,05

β2 (энергоемкость топлива (газа), подаваемого в конце периода T, разделенная на энергоемкость всего подаваемого топлива, в предположении, что в конце периода T 100% топлива составляют нефтепродукты и 0% - газообразное топливо): 0

Δβ=abs(β2-βl)=0,05

период T: 0,25 секунды

при этих значениях Bo=(8·0,25)/(2π·0,05)=6,37

Так как Bo=6,37>π, то скорость впрыска топлива не может быть допустимой; таким образом, скорость впрыска топлива должна быть увеличена.

Если, например, T уменьшено (т.е. скорость впрыска топлива увеличена или, другими словами, топливо подают с более высокой скоростью) до 0,1 секунды

Во=(8·0,1)/(2π·0,05)=2,55

Так как Bo=2,55<π, то эта скорость впрыска топлива может быть допустимой. Следует учесть, что раскрытые особенности могут быть реализованы независимо друг от друга.

На практике, используемые материалы и размеры могут быть выбраны по желанию в соответствии с требованиями и уровнем развития техники.

1. Способ эксплуатации камеры сгорания при работе в неустановившемся режиме, при котором
в камеру сгорания подают, по меньшей мере, топливо, причем неустановившийся режим включает в себя период, имеющий длительность (T), в течение которого топливо, по меньшей мере, подают в количестве меньшем, чем критическое количество (Мс) топлива, отличающийся тем, что задают предельное значение (L) для длительности (T) периода и регулируют длительность (T) периода подачи топлива для ее удержания меньшей или равной, чем предельное значение (L).

2. Способ по п. 1, отличающийся тем, что устанавливают
параметр (Во), являющийся функцией длительности (T) периода и подаваемого топлива (Δβ), и задают предельное значение (L) для длительности (T) периода в качестве предельного значения для этого параметра.

3. Способ по п. 2, отличающийся тем, что при регулировании длительности (T) периода предотвращают увеличение значения параметра (Во) выше предельного значения.

4. Способ по п. 2, отличающийся тем, что параметр (Во) определяют следующим образом:
Во=(αGR·T)/(2π·Δβ), где
αGR - усредненная линейная скорость роста подачи топлива во время изменения Δβ,
T - длительность периода для переключения Δβ топлива,
β - энергоемкость одного вида топлива, разделенная на энергоемкость всего подаваемого топлива,
Δβ=abs(β2-β1) - это изменение β в течение длительности (T) периода.

5. Способ по п. 2, отличающийся тем, что αGR аппроксимируют следующим образом:
αGR=fosc/(2π)2, где
fosc - средняя частота колебаний в течение периода в диапазоне Δβ.

6. Способ по п. 4, отличающийся тем, что предельное значение равно π.

7. Способ по п. 1, отличающийся тем, что при эксплуатации в неустановившемся режиме выполняют переключение функционирования с первым видом топлива на функционирование со вторым видом топлива.

8. Способ по п. 7, отличающийся тем, что первым видом топлива является жидкое топливо, а вторым видом топлива является это газообразное топливо, или наоборот.

9. Способ по п. 1, отличающийся тем, что камера сгорания является частью газотурбинной установки.



 

Похожие патенты:

Изобретение относится к энергетике. Способ работы устройства горения включает в себя подачу топлива и окислителя в устройство горения и их сжигание.

Изобретение относится к энергетике. Топливное сопло имеет первый топливный канал, проходящий к нижней по потоку области смешивания, первый воздушный канал, проходящий от наружной области сопла к нижней по потоку области смешивания, и второй топливный канал, проходящий в указанный первый воздушный канал выше по потоку от указанной нижней по потоку области смешивания.

Камера сгорания в сборе содержит основной корпус, формируемый подающим коллектором с системой подачи топлива и топливными форсунками, продолжающимися от подающего коллектора и снабжаемыми топливом посредством системы подачи топлива подающего коллектора.

Изобретение относится к области авиации, в частности к конструкциям топливных систем вертолетов. Топливная система вертолета с реактивными двигателями на лопастях несущего винта содержит топливный бак (1) с насосом подкачки (2), топливопровод (3), участки которого расположены внутри вала несущего винта и внутри лопастей.

Изобретение относится к энергетике. Способ работы газотурбинной установки в переходном режиме, при котором регулятор определяет значения управляющей команды для массового расхода входящего воздуха, для массового расхода топлива и для массового расхода воды или пара, если вода и пар используются, причем по меньшей мере, одно командное значение динамически компенсируют, чтобы компенсировать различную динамику систем подачи с целью синхронизации результирующих изменений массовых расходов топлива, воды, пара и воздуха горения, которые поступают в камеру сгорания, таким образом, чтобы состав топливовоздушной смеси оставался в пределах границы воспламенения.

Изобретение может быть использовано в системах подачи топлива для тепловых двигателей. Предложен способ эксплуатации системы подачи топлива для теплового двигателя, причем система подачи топлива состоит, по меньшей мере, из одного топливопровода (1), проходящего к процессу (3) горения, вдоль которого расположен, по меньшей мере, один блок клапанов.

Способ может быть использован в энергетике, а именно в газоперекачивающих агрегатах материальных газопроводов, автономных электростанциях и других энергоустановках, содержащих газотурбинный привод, работающий на природном газе.

Газотурбинная установка содержит газотурбинный двигатель с компрессором, устройство воздухоподготовки газотурбинного двигателя, топливную систему с камерами сгорания, устройством подачи и регулирования топлива, масляную систему узлов трения газотурбинного двигателя и исполнительных агрегатов с теплообменником охлаждения масла, нагнетающим насосом, теплообменником подогрева топлива, выполненными в отдельном регулируемом циркуляционном контуре.

Изобретение относится к области авиационной техники, в частности к способам подачи топлива в газотурбинный двигатель (ГТД), а также к топливным системам ГТД. Способ подачи топлива в газотурбинный двигатель при запуске после длительного пребывания при низких температурах заключается в подогреве топлива перед подачей его в топливный фильтр, причем перед подогревом отделяют от топлива льдообразования, которые подогревают до таяния, после чего воду, полученную при таянии льдообразований, соединяют с подогретым топливом.

Форсуночный блок камеры сгорания ГТД содержит плиту кольцевой формы с установленными на ней в несколько рядов форсуночными модулями и основной топливный коллектор, соединенный с плитой, полость которого соединена топливными каналами с форсуночными модулями.

Изобретение относится к машиностроению, в частности к способам очистки коллектора с форсунками камеры сгорания газотурбинного двигателя от продуктов коксования топлива. Способ очистки коллектора с форсунками камеры сгорания газотурбинного двигателя от продуктов коксования топлива включает очистку коллектора с форсунками подачей нагретого реагента и контроль степени очистки форсунок, отличающийся тем, что реагент подают в сверхкритическом состоянии при температуре и давлении, не превышающих допустимые значения температуры и давления из условия прочности коллектора, а степень очистки форсунок контролируют по величине расхода реагента, проходящего через коллектор, который достигает постоянного нормированного значения. Очистку коллектора с форсунками производят в составе двигателя. В качестве реагента подают органическое или неорганическое вещество. Изобретение позволяет производить очистку коллекторов до получения заданных технических характеристик, параметры которых определяются на испытательном оборудовании прокачкой топливом, используемые реагенты не токсичны и инертны по отношению к материалам коллектора, способ обладает экологической чистотой и дешевизной, не требует дорогостоящих подготовительных операций. 3 з.п. ф-лы, 1 табл., 1 ил.

Пилотная горелка газотурбинного двигателя содержит переднее тело с осевым прохождением вдоль центральной оси пилотной горелки. Центральная ось имеет осевое направление к зоне сгорания газотурбинного двигателя. Переднее тело содержит переднюю поверхность пилотной горелки, которая направлена к зоне сгорания. На переднее тело методом осаждения/напыления нанесен материал с нарастанием в осевом направлении с образованием стойкого к высоким температурам тела в осевом направлении переднего тела и с образованием стойкой к высоким температурам передней поверхности пилотной горелки. Нанесенный материал является стойким к высоким температурам металлом или металлическим сплавом, стойким к температурам свыше 1000°C, в частности к температурам до 1500°C или выше. Изобретение направлено на увеличение длительности срока службы пилотной горелки посредством создания пилотной горелки, стойкой к высоким температурам. 3 н. и 13 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. В системе и способе для утилизации энергии из факельных газов в химических установках и нефтеперерабатывающих заводах используется двигатель для сжигания части газа, отведенного из факельной системы. Двигатель может быть поршневым двигателем или горелкой в системе котлов. Энергия, выработанная при сжигании факельного газа, может быть использована для питания устройства для утилизации энергии. Устройство для утилизации энергии может быть электрическим генератором, компрессором или паровым котлом. Изобретение позволяет получить дополнительную энергию и уменьшить вредное воздействие на окружающую среду. 3 н. и 19 з.п. ф-лы, 7 ил.

Изобретение относится к энергетике. Камера сгорания для газовой турбины, содержащая предкамеру, имеющую центральную ось, и завихритель, который установлен на предкамере. Завихритель охватывает предкамеру в окружном направлении относительно центральной оси. Завихритель содержит поверхность основания, которая образует часть щелевого отверстия, выполненного с возможностью впрыскивать через него в предкамеру смесь окислитель/топливо, причем поверхность основания располагается в плоскости основания. Завихритель дополнительно содержит топливный инжектор, который размещается на поверхности основания таким образом, чтобы обеспечить возможность впрыскивать в щелевое отверстие топливо в направлении впрыскивания топлива, причем первый компонент направления впрыскивания топлива не параллелен нормали плоскости основания. Также представлен способ функционирования камеры сгорания. Изобретение позволяет обеспечить правильный профиль пламени. 2 н. и 8 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. Система для генерирования энергии содержит компрессор, теплообменник и ионопроницаемую мембрану. Компрессор выполнен с возможностью принимать поток воздуха для генерирования сжатого потока. Теплообменник выполнен с возможностью принимать сжатый поток и косвенно нагревать сжатый поток, используя теплоту от потока кислорода от ионопроницаемой мембраны, которая выполнена с возможностью принимать нагретый сжатый поток и при этом генерировать поток кислорода и не прошедший сквозь мембрану поток, причем не прошедший сквозь мембрану поток подают на горелку газовой турбины, а поток кислорода подают на теплообменник. Также представлен способ для генерирования энергии. Изобретение позволяет повысить КПД системы для генерирования энергии. 2 н. и 10 з.п. ф-лы, 2 ил.

Изобретение относится к энергетике. Способ управления работой установки внутреннего сгорания с повышением давления, включающий: нахождение скважности импульсов топливной форсунки и частоты циклов сгорания, которые соответствуют заданной рабочей точке нагрузки и заданному коэффициенту заполнения камеры сгорания установки; определение уставки давления подачи топлива, уставки момента впрыска для топливной форсунки и уставки момента зажигания, которые обеспечивают найденную скважность импульсов топливной форсунки и найденную частоту циклов сгорания; и передачу управляющего сигнала давления подачи топлива, содержащего уставку давления подачи топлива, в устройство обеспечения давления топлива, управляющего сигнала топливной форсунки, содержащего уставку момента впрыска топлива, в топливную форсунку и управляющего сигнала момента зажигания, содержащего уставку момента зажигания, в узел зажигания установки. Также представлены установка внутреннего сгорания с повышением давления и контроллер для данной установки. Изобретение позволяет управлять работой установки внутреннего сгорания с повышением давления. 3 н. и 17 з.п. ф-лы, 5 ил.

Изобретение относится к энергетике. Щелевой инжектор-генератор вихрей, установленный в канале вдоль направления движения высокоэнергетического газового потока. При этом плоский щелевой канал инжектора выполнен с косым срезом на выходе и установлен таким образом, что срез щели образует острый угол с направлением набегающего высокоэнергетического потока. Величину угла среза выбирают из соображений интенсивности перемешивания газовых потоков и равномерности заполнения потока инжектируемым газом. Также представлен способ работы щелевого инжектора. Изобретение позволяет интенсифицировать процессы смешения, воспламенения и горения топливовоздушных смесей в камерах сгорания прямоточных воздушно-реактивных двигателей и в других установках с тепломассоподводом. 2 н.п. ф-лы, 2 ил.

Заявлен способ контроля для контроля фильтра контура питания для питания авиационного двигателя топливом, при этом способ содержит этап определения текущей стадии из множества последовательных стадий полета летательного аппарата, содержащих по меньшей мере стадию, в течение которой забивание фильтра не может быть вызвано льдом, и стадии, в течение которой забивание фильтра может быть вызвано льдом; и в ответ на обнаружение забивания - этап определения типа забивания в зависимости от упомянутой текущей стадии; при этом во время этапа выдачи индикаторного сообщения сообщение, которое выдается, зависит от типа забивания. Технический результат изобретения - повышение надежности обнаружения типа забивания фильтра. 4 н. и 6 з.п. ф-лы, 4 ил.

Изобретение относится к турбомашине, оснащенной камерой сгорания, устройством впрыска топлива в камеру сгорания и средствами подачи топлива в устройство впрыска топлива. Изобретение характеризуется тем, что упомянутая турбомашина дополнительно включает в себя средства определения мгновенного изменения расхода топлива средств подачи и средства регулировки расхода топлива устройства впрыска согласно мгновенному изменению расхода топлива средств подачи, которое определяется с помощью средств определения. Технический результат изобретения – обеспечение безопасности турбомашины. 2н. и 12 з.п. ф-лы, 2 ил.

Турбомашина для летательного аппарата, содержащая вал турбомашины и насосный модуль (100), содержащий конструктивный корпус (9), насосный вал (11), связанный с валом (1) турбомашины, насос (3) питания топливом турбомашины, установленный на упомянутом насосном валу (11) и внутри конструктивного блока (9), и электрическое устройство (5), установленное на упомянутом насосном валу (11) и выполненное с возможностью вращения упомянутого насосного вала (11) для приведения в действие насоса (3) питания или с возможностью быть приведенным во вращение упомянутым насосным валом (11) для электрического питания агрегата (8) турбомашины, при этом электрическое устройство содержит элементы ротора (51), установленные на наружной периферии подвижной части (32) насоса питания, и элементы статора (52), установленные на внутренней периферии конструктивного корпуса. Обеспечивается быстрый и надёжный запуск газотурбинного двигателя, сокращается продолжительность обслуживания для замены топливного фильтра фильтрационного блока. 3 н. и 12 з.п. ф-лы, 15 ил.
Наверх