Легкообрабатываемая конструкционная хромомарганцевоникелевая сталь

Изобретение относится к области черной металлургии, а именно к получению сталей, применяемых в серийном и массовом производстве ответственных деталей машин. Сталь имеет следующий химический состав, мас.%: углерод 0,16-0,21, кремний 0,17-0,37, марганец 0,70-1,10, хром 0,80-1,10, никель 0,80-1,10, висмут 0,08-0,13, кальций 0,002-0,003, алюминий 0,005-0,015, железо - основа. В качестве примесей сталь содержит, мас.%: серу не более 0,025, фосфор не более 0,025, медь не более 0,25. Отношение содержания кальция к содержанию алюминия находится в пределах от 0,20 до 0,40. Повышается обрабатываемость стали резанием при сохранении требуемых механических свойств металла, а также улучшается экологическая обстановка производства за счет снижения агрессивности вредных выбросов в окружающую атмосферу высокотоксичных компонентов. 2 з.п. ф-лы, 2 табл., 1 пр.

 

Изобретение относится к черной металлургии, а именно к получению сталей с особыми технологическими свойствами, применяемых в серийном и массовом производстве ответственных деталей машин.

Из уровня техники известна сталь с улучшенной обрабатываемостью резанием (ГОСТ 1414-75). Прокат из конструкционной стали высокой обрабатываемости резанием. Технические условия (Переиздание, с Изменениями №1, 2, 3, с Поправками), содержащая углерод, кремний, марганец, хром, никель, свинец и железо, при следующем соотношении компонентов, мас. %:

- углерод - 0,16-0,21;

- кремний - 0,17-0,37;

- марганец - 0,70-1,10;

- хром - 0,80-1,10;

- никель - 0,80-1,10;

- свинец - 0,15-0,30;

- железо - основа.

Кроме того, в состав стали могут входить, мас. %:

молибден - не более 0,10;

сера - не более 0,035;

фосфор - не более 0,035;

медь - не более 0,30.

К недостаткам данной стали можно отнести следующее:

- сера и фосфор, способствующие улучшению показателей обрабатываемости стали, в случае ее легирования свинцом не оказывают существенного влияния на процесс механического резания, а увеличение их содержания выше значений, обеспечивающих получение высококачественной стали, нецелесообразно в связи с аккумулятивным негативным воздействием указанных элементов на механические свойства металлопродукции;

- очевидная бесперспективность дальнейшего улучшения обрабатываемости стали путем увеличения содержания свинца больше регламентированных значений, поскольку превышение его предельной растворимости в железе приводит к ухудшению механических характеристик и росту их анизотропии, а также способствует усилению красноломкости поверхностного слоя в процессе горячей обработки металла давлением;

- неравномерное распределение свинца в теле слитка вследствие его большой физической плотности и высокой упругости пара, что затрудняет гарантированное получение требуемых свойств стали от плавки к плавке и обусловливает понижение выхода годного металла, а следовательно, и производительности процесса обработки давлением из-за образования дефектов в местах наибольшего скопления данного элемента;

- во время горячего пластического деформирования стали, содержащей свинец, происходит его диффузия на поверхность заготовки, что приводит к образованию в указанной области капиллярного слоя, ухудшающего условия захвата валками полосы металла вследствие уменьшения коэффициента трения, и снижению производительности прокатного оборудования;

- свинец крайне токсичен и согласно установленным на сегодняшний день гигиеническим нормативам относится к наивысшему 1 классу опасности, поэтому в черной металлургии все отчетливее прослеживается тенденция по отказу от его применения вследствие серьезного ухудшения экологии окружающей среды.

Кроме того известна сталь с высокой обрабатываемостью резанием (патент RU 2128725), содержащая углерод, кремний, марганец, хром, никель, серу, фосфор, висмут и железо при следующем соотношении компонентов, мас. %:

- углерод - 0,13-0,21;

- кремний - 0,17-0,37;

- марганец - 0,70-1,10;

- хром - 0,80-1,10;

- никель - 0,80-1,10;

- сера - 0,008-0,035;

- фосфор - 0,008-0,035;

- висмут - 0,12-0,20;

- железо - основа.

Известная сталь имеет следующие недостатки:

- бесперспективность дальнейшего улучшения обрабатываемости стали путем увеличения содержания висмута больше реальных значений, поскольку превышает его предельную растворимость в железе и увеличивается себестоимость выплавки.

Данная сталь, как наиболее схожая по химическому составу и механическим свойствам, принята за ближайший прототип.

Задачей, на решение которой направлено данное изобретение, является повышение обрабатываемости стали резанием при сохранении требуемых механических характеристик металла, снижение количества агрессивности вредных выбросов в окружающую атмосферу токсичных компонентов.

Техническое решение поставленной задачи достигается за счет того, что предлагаемая сталь в своем составе содержит углерод, кремний, марганец, хром, никель, висмут, кальций, алюминий и железо при следующем соотношении компонентов, мас. %:

- углерод - 0,13-0,21;

- кремний - 0,17-0,37;

- марганец - 0,70-1,10;

- хром - 0,80-1,10;

- никель - 0,80-1,10;

- висмут - 0,08-0,13;

- кальций - 0,002-0,003;

- алюминий - 0,005-0,015;

- железо - основа.

При этом отношение содержания кальция к содержанию алюминия находится в пределах от 0,20 до 0,40.

Кроме того, в качестве примесей сталь дополнительно может содержать, мас. %:

- серу - не более 0,025;

- фосфор - не более 0,025;

- медь - не более 0,25.

Применение висмута, кальция и алюминия для дополнительного легирования и раскисления стали с целью улучшения ее обрабатываемости резанием имеет целый ряд преимуществ.

Во-первых, сокращение количества алюминия, применяемого для раскисления стали будет способствовать снижению в стали неметаллических включений Al2O3.

Во-вторых, кальций является своего рода заменителем алюминия как раскислителя и обеспечивает образование алюминатов кальция в сульфидной оболочке - комплексные оксисульфидных включений, способствует глобуризации сульфидных включений и предупреждает образование микротрещин у остроугольных включений глинозема, оказывающие положительное влияние на обрабатываемость стали.

В-третьих, оптимальное соотношение Ca/Al способствует образованию глобулярных, малодеформируемых неметаллических включений.

В-четвертых, снижение содержания висмута, без снижения показателя обрабатываемости, обеспечивает образование ломкой стружки и расширяет диапазон применения стали (при сверлении, развертывании отверстий, нарезании и фрезеровании) и не ослабляет положительное влияние на результаты процесса со стороны фосфора и включений сульфида марганца. Он менее токсичен, чем свинец и обеспечивает высокий уровень обрабатываемости при содержании его в 1,5…2 раза меньшем, чем свинец.

В-пятых, висмут равномерно распределяется по сечению слитка, что обусловлено его плотностью, сопоставимой с плотностью жидкой стали, и применение висмута способствует решению экологических проблем, имеющих место при производстве автоматных сталей. Это связано с тем, что в отличие от свинца, принадлежащего к 1 классу опасности, содержание висмута в атмосфере цеха ограничено среднесменной предельно допустимой концентрацией (ПДК), равной 0,50 мг/м3.

Сущность изобретения - выявление оптимального содержания висмута, алюминия и кальция, при котором достигается наилучшее сочетание высокой обрабатываемости стали резанием при условии сохранения требуемых значений механических свойств.

В результате проведенных исследований установлено следующее:

- при содержании висмута меньше нижнего предела не удается достигнуть требуемого высокого уровня обрабатываемости стали резанием;

- при условии содержания висмута по верхнему пределу обрабатываемость предлагаемой стали сопоставима с обрабатываемостью металла аналогичной висмутсодержащей марки;

- при содержании висмута, кальция, и алюминия в заявленных пределах уровень обрабатываемости предложенной стали на 13% превышает величину обрабатываемости висмутсодержащего аналога, наряду с этим сталь сохраняет свои высокие механические характеристики, а ее получение характеризуется пониженной загрязненностью воздуха рабочей зоны и более безопасными условиями труда производственного персонала.

Эффективность токарной обработки оценивалась на технической базе ФГБОУ ВПО «Южно-Уральский государственный университет» (НИУ) по изменению стойкости инструментального материала при заданной скорости резания заготовок. В качестве критерия для оценки обрабатываемости стали было установлено значение приведенной стойкости, выраженное величиной износа режущего инструмента по задней поверхности при обработке одной детали.

В качестве базового уровня приняты обрабатываемость резанием среднеуглеродистой хромомарганцевоникелевой стали АВ19ХГН.

Химический состав известной стали марки ΑΒ19ΧΓΉ, принятой за ближайший аналог, и предлагаемой стали приведен в таблице 1.

Прочностные и пластические характеристики сравниваемых сталей в деформированном и термически обработанном состоянии (после закалки и отпуска), а также измеренный уровень механической обрабатываемости представлен в таблице 2.

Пример 1. Известная конструкционная хромомарганцевоникелевая сталь с улучшенной обрабатываемостью резанием АВ19ХГН (RU 2128725). Уровень механической обрабатываемости принят в качестве базовых значений для сравнения.

Пример 2. Содержание серы и фосфора больше заявленных значений. Механические характеристики металла не соответствуют требованиям ГОСТа. Оценка эффективности токарной обработки стали не проводилась.

Пример 3. Содержание никеля больше верхнего предела. Уменьшается производительность горячей обработки металла давлением. Оценка на обрабатываемость не производилась.

Пример 4. Содержание висмута меньше нижнего предела. Уровень обрабатываемости предложенной стали ниже, чем у известного аналога.

Пример 5. Содержание висмута в стали больше верхнего предела. Обрабатываемость предложенной стали резанием сопоставима с механической обрабатываемостью ее аналога.

Пример 6. Содержание серы, фосфора меди находится на уровне верхней границы заявленных диапазонов. Показатели механических свойств металла соответствуют минимальным предельно допустимым значениям, установленным требованиями для висмутсодержащего аналога.

Пример 7. Соотношение между содержанием кальция и алюминия выходит за нижнюю регламентированную границу. Размер зерна ниже регламентируемого. Происходит зарастание стаканчиков на машине непрерывного литья заготовок (МНЛЗ). Уровень обрабатываемости предложенной стали сопоставим с обрабатываемостью известного аналога.

Пример 8. Соотношение между содержанием кальция и алюминия находится на уровне нижнего предела из указанного диапазона. Размер зерна соответствует техническим условиям. Не происходит зарастание стаканчиков МНЛЗ. Уровень обрабатываемости выше известного аналога.

Пример 9. Соотношение между содержанием кальция и алюминия имеет значение, соответствующее верхнему заявленному пределу. Сталь соответствует техническим условиям.

Пример 10. Соотношение между содержанием кальция и алюминия выходит за верхнюю установленную границу. Сталь не соответствует техническим условиям.

Пример 11. Содержание всех элементов находится в заявленных пределах. Комплекс технологических свойств хромомарганцевоникельмолибденовой стали имеет оптимальный характер. Показатель обрабатываемости резанием при сохранении механических характеристик металла на 12% выше, чем у известного аналога.

Вместе с тем существенно уменьшается загрязненность воздуха рабочей зоны.

Таким образом, более высокий уровень обрабатываемости резанием предлагаемой стали с сохранением комплекса требуемых механических свойств металла и улучшением экологии металлургического производства позволяет рекомендовать ее для промышленного применения.

1. Легкообрабатываемая конструкционная хромомарганцевоникелевая сталь, содержащая углерод, кремний, марганец, хром, никель, висмут и железо, отличающаяся тем, что она дополнительно содержит кальций и алюминий при следующем соотношении компонентов, мас.%:

углерод 0,16-0,21
кремний 0,17-0,37
марганец 0,70-1,10
хром 0,80-1,10
никель 0,80-1,10
висмут 0,08-0,13
кальций 0,002-0,003
алюминий 0,005-0,015
железо остальное

2. Сталь по п. 1, отличающаяся тем, что в ней ограничено содержание вредных примесей, мас.%: сера не более 0,025, фосфор не более 0,025, медь не более 0,25.

3. Сталь по п. 2, отличающаяся тем, что отношение содержания кальция к содержанию алюминия находится в пределах от 0,20 до 0,40.



 

Похожие патенты:
Изобретение относится к области металлургии, а именно к трубе из аустенитной нержавеющей стали, используемой в установках по производству электроэнергии. Сталь содержит, мас.%: от 14 до 28 Cr и от 6 до 30 Ni.

Изобретение относится к металлургии, в частности к хромоникелевым литым сталям, предназначенным для изготовления деталей, работающих в агрессивных атмосферах при температурах 1100-1400°C.

Изобретение относится к области металлургии и может быть применено для получения штрипсов с категорией прочности К60 (Х70), используемых при строительстве магистральных нефтегазопроводов.

Изобретение относится к металлургии, более точно к прокатному производству, и может быть использовано при производстве толстолистового проката классов прочности К52-К60, Х52-Х70, L385-L485 для изготовления электросварных труб магистральных трубопроводов.

Изобретение относится к способу производства нетекстурированной электротехнической стали с высокой магнитной индукцией. Способ включает выплавку стали с химическим составом, вес.%: Si 0,1-1, Al 0,005-1,0, C≤0,004, Mn 0,10-1,50, P≤0,2, S≤0,005, N≤0,002, Nb+V+Ti≤0,006, остальное Fe и неустранимые включения, получение отливки в виде стального прутка, нагрев стального прутка до температуры в диапазоне 1150-1200°C, выдержку при этой температуре в течение определенного времени, горячую прокатку с температурой конца прокатки 830-900°C с получением стальной полосы, охлаждение ее до температуры ≥570°C и смотку горячекатаной полосы в рулон, правку горячекатаной полосы путем холодной прокатки с коэффициентом обжатия 2-5%, непрерывную нормализацию холоднокатаной полосы при температуре не ниже 950°C, выдержку при этой температуре в течение 30-180 с, травление нормализованной полосы и последующую холодную прокатку с суммарным коэффициентом обжатия 70-80% до получения листа из холоднокатаной стали конечной толщины, отжиг холоднокатаного листа конечной толщины путем его нагрева со скоростью нагрева не менее 100°C/с до температуры в диапазоне 800-1000°C, выдержки при этой температуре в течение 5-60 с и последующего медленного охлаждения до температуры 600-750°C со скоростью охлаждения 3-15°C/с, что позволяет увеличить магнитную индукцию нетекстурированной электротехнической стали минимум на 200 Гс без увеличения потерь железа.

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении электросварных труб для строительства газопроводов и нефтепроводов в северных районах и сейсмических зонах.

Изобретение относится к области металлургии, а именно к высокопрочной мартенситной стали, используемой для изготовления высоконагруженных изделий криогенной техники.
Изобретение относится к металлургии, в частности к производству высокопрочных градиентных материалов, и может быть использовано в электромашиностроении. Способ производства высокопрочного градиентного сплава на основе Fe-Cr-Ni аустенитно-мартенситного класса с заданной топологией ферро- и парамагнитных областей включает выплавку сплава, перевод сплава из парамагнитного состояния в ферромагнитное путем холодной деформации, нагрев локальных зон сплава для получения в них парамагнитного аустенита.

Изобретение относится к области металлургии, а именно к трубе из аустенитной нержавеющей стали. Труба изготовлена из стали, содержащей, в мас.%: от 14 до 28% Сr и от 6 до 30% Ni.

Изобретение относится к области металлургии, а именно к аустенитной нержавеющей стали, используемой для изготовления труб. Сталь содержит в мас.%: Cr: от 15,0 до 23,0% и Ni: от 6,0 до 20,0%, а ее поверхность покрыта обработанным слоем с высокой плотностью энергии, в котором микроструктура и граница кристаллического зерна не различимы.

Изобретение относится к области черной металлургии, а именно к углеродистым сталям, используемым при изготовлении труб нефтяного сортамента. Сталь содержит, мас.%: 0,46-0,50 углерода, 0,65-0,85 марганца, 0,17-0,37 кремния, ≤0,030 серы, ≤0,030 фосфора, ≤0,30 меди, ≤0,30 никеля, ≤0,30 хрома, 0,01-0,06 алюминия, железо - остальное. Изготавливаемые трубы имеют феррито-перлитную структуру по всему сечению, а для компонентов стали выполняются следующие соотношения: [медь]+[никель]+[хром]=0,25-0,90% и [углерод]+[марганец/6]+[кремний/24]≥0,58%. Обеспечиваются требуемые механические свойства в состоянии после горячей деформации и в состоянии после термической обработки: временное сопротивление не менее 665 МПа, предел текучести 379-552 МПа и относительное удлинение не менее 14,3%. 2 ил., 3 табл.

Изобретение относится к черной металлургии, а именно к получению сталей, применяемых в серийном и массовом производстве ответственных деталей машин. Сталь имеет следующий химический состав, мас.%: углерод 0,09-0,15, кремний 0,17-0,37, марганец 0,30-0,60, хром 0,40-0,70, никель 0,50-0,80, висмут 0,08-0,13, кальций 0,002-0,003, алюминий 0,005-0,015, железо - остальное. В качестве примесей сталь содержит, мас.%: серу не более 0,025, фосфор не более 0,025, медь не более 0,25. Отношение содержания кальция к содержанию алюминия составляет от 0,20 до 0,40. Повышается обрабатываемость стали резанием при сохранении требуемых механических свойств металла, а также улучшается экологическая обстановка производства за счет снижения агрессивности вредных выбросов в окружающую атмосферу ввиду снижения количества вводимых высокотоксичных компонентов. 2 з.п. ф-лы, 2 табл., 11 пр.

Изобретение относится к области металлургии. Для улучшения магнитных свойств стали осуществляют нагрев стального сляба, содержащего, в мас. %: Si 3,0 - 4,0, C 0,020 - 0,10, Ni 0,005 - 1,50, Mn 0,005 - 0,3, растворимый Al 0,01- 0,05, N 0,002 - 0,012, по меньшей мере, один элемент, выбранный из S и Se, в сумме 0,05 или менее, Fe и случайные примеси - остальное, горячую прокатку сляба, отжиг, однократную или многократную холодную прокатку с промежуточным отжигом между ними, первичный рекристаллизационный отжиг и вторичный рекристаллизационный отжиг, причем в процессе черновой прокатки, если температура перехода α-фазы определена, исходя из выражения: Tα[˚C]= 1383,98 -73,29 [%Si] +2426,33 [%C] + 271,68 [%Ni], то первый проход черновой прокатки выполняют при температуре (Tα - 100)°C или выше с обжатием прокатки 30% или более, а в процессе чистовой прокатки горячей прокатки, если температура максимума объемной доли γ-фазы, определена, исходя из выражения: Tγmax [˚C]= 1276,47 - 59,24 [%Si] +919,22 [%C]+149,03 [%Ni] то, по меньшей мере, один проход чистовой прокатки выполняют в диапазоне температур (Tγmax±50)°C с обжатием прокатки 40% или более. 16 з.п. ф-лы, 3 ил.,5 табл., 4 пр.

Изобретение относится к области черной металлургии, в частности к производству нестабилизированной аустенитной коррозионно-стойкой стали с повышенным комплексом служебных свойств. В способе осуществляют расплавление шихтовых материалов в печи с получением легированного хромом и никелем расплава полупродукта, который переливают в ковш и подают в агрегат аргонно-кислородного рафинирования и осуществляют обезуглероживание расплава до содержания углерода не более 0,02% с последующей передачей ковша на установку печь-ковш, где осуществляют раскисление и легирование до получения заданного химического состава стали. Легирование осуществляют последовательно путем введения в расплав стали азота в количестве 0,08÷0,30% от массы расплава и мишметалла количестве 0,05÷0,35% от массы расплава. Изобретение позволяет повысить прочность при сохранении пластичности в используемых коррозионно-стойких низкоуглеродистых хромоникелевых сталях типа 18-10-11, что обеспечивает уменьшение веса сварных конструкций, увеличение надежности работы и срока их службы, а также снизить потери металла при производстве металлопродукции за счет повышения технологической пластичности при горячей деформации. 1 з.п. ф-лы, 2 пр., 3 табл.

Изобретение относится к области металлургии, конкретнее к прокатному производству и может быть использовано при изготовлении толстых листов из низколегированных трубных сталей. Для повышения прочностных свойств листов толщиной 14-20 мм из трубной стали класса прочности К60 при сохранении достаточной пластичности и ударной вязкости получают непрерывно-литой сляб толщиной 300±20 из стали, содержащей, мас.%: углерод 0,06-0,08, кремний 0,25-0,40, марганец 1,60-1,70, сера не более 0,003, фосфор не более 0,013, хром не более 0,08, никель 0,20-0,30, медь 0,10-0,20, алюминий 0,025-0,045, азот не более 0,008, ванадий 0,020-0,035, титан 0,015-0,030, ниобий 0,040-0,055, железо и примеси-остальное, причем углеродный эквивалент составляет Сэкв≤0,43, затем осуществляют нагрев сляба до температуры 1200-1220°С, черновую прокатку при 1040±60°С за 7-10 проходов со степенью обжатия не менее 12% за проход на толщину 95±15 мм, охлаждение промежуточного раската до 860±20°С, чистовую прокатку с суммарной степенью обжатия 75-85%, при этом температуру конца прокатки устанавливают 855±15°С и производят ускоренное охлаждение со скоростью 14-22°С/с до температуры 555±15°С. 3 табл., 1 пр.

Изобретение относится к области металлургии, а именно к аустенитным коррозионно-стойким сталям, применяемым в серийном и массовом производстве деталей, работающих до 600°C. Сталь содержит, в мас.%: углерод не более 0,12, кремний 0,20-0,80, марганец 0,20-2,00, хром 17,00-19,00, никель 9,00-11,00, висмут 0,06-0,13, кальций 0,002-0,003, алюминий 0,02-0,03, сера не более 0,020, фосфор не более 0,035, молибден не более 0,30, медь не более 0,20, титан не более 0,50, ванадий не более 0,20, вольфрам не более 0,20, железо - остальное. Повышается обрабатываемость стали резанием при сохранении требуемых механических свойств металла, свариваемости и коррозионной стойкости, а также улучшается экологическая обстановка производства за счет снижения агрессивности вредных выбросов в окружающую атмосферу. 2 табл.

Изобретение относится к металлургии, а именно к мартенситно-ферритным коррозионно-стойким сталям, применяемым для изготовления рабочих лопаток, дисков, валов, втулок, фланцев, крепежных и других деталей. Сталь содержит, мас.%: углерод 0,11-0,17, кремний 0,20-0,80, марганец 0,20-0,80, хром 16,00-18,00, висмут 0,06-0,13, кальций 0,002-0,003, алюминий 0,02-0,04, сера не более 0,025, фосфор не более 0,030, никель 1,5-2,5, молибден не более 0,30, медь не более 0,30, титан не более 0,20, ванадий не более 0,20, вольфрам не более 0,20, железо - остальное. Повышается обрабатываемость стали резанием при сохранении требуемых механических свойств и коррозионной стойкости металла, а также улучшается экологическая обстановка производства за счет снижения агрессивности вредных выбросов в окружающую атмосферу. 2 табл.

Изобретение относится к области металлургии. Для получения листа текстурированной электротехнической стали со стабильными низкими потерями в железе способ изготовления листа включает горячую прокатку стального сляба, содержащего, мас.%: C 0,001-0,10, Si 1,0-5,0, Mn 0,01-0,5, Al менее 0,0100, каждый из S, Se, O и N не более 0,0050, Fe и неизбежные примеси - остальное, однократную, или двукратную, или многократную холодную прокатку полученного горячекатаного листа, при необходимости промежуточный отжиг между ними до конечной толщины, отжиг первичной рекристаллизации полученного холоднокатаного листа, нанесение отжигового сепаратора и окончательный отжиг, при этом в зоне 550-700°C в процессе нагрева отжига первичной рекристаллизации проводят быстрый нагрев при средней скорости нагрева 40-200°C/с, а в какой либо зоне температур от 250 до 550°C скорость нагрева составляет не более 10°C/с в течение 1-10 секунд. 3 з.п. ф-лы, 3 ил., 3 табл., 3 пр.
Изобретение относится к области металлургии и может быть использовано при выплавке ферросплава, используемого для изготовления нержавеющей стали. Хромитовый концентрат подают совместно с никельсодержащим сырьевым материалом, так что посредством подаваемого количества никельсодержащего сырьевого материала достигают требуемой степени восстановления металлических компонентов ферросплава, при этом по меньшей мере одну часть никельсодержащего сырьевого материала подают в плавильную печь в составе гранул, получаемых из хромитового концентрата, и по меньшей мере одну часть никельсодержащего сырьевого материала предварительно обрабатывают отдельно от гранул хромитового концентрата перед подачей в плавильную печь. Изобретение позволяет повысить степень восстановления металлических компонентов, таких как хром, железо и никель, в хромитовом концентрате. 13 з.п. ф-лы, 1 пр., 3 табл.

Изобретение относится к области металлургии, а именно к самозакаливаемому стальному сплаву, используемому для изготовления элементов защиты от действия ударной волны. Сплав содержит в мас.%: от 0,18 до 0,26 углерода, от 3,50 до 4,00 никеля, от 1,60 до 2,00 хрома, от 0 до 0,50 молибдена, от 0,80 до 1,20 марганца, от 0,25 до 0,45 кремния, от 0 до меньше чем 0,005 титана, от 0 до меньше чем 0,020 фосфора, от 0 вплоть до 0,005 бора, от 0 вплоть до 0,003 серы, остальное - железо и неизбежные примеси. Сплав имеет твердость по Бринеллю в диапазоне от 352 HBW до 460 HBW. Достигается сочетание высокой прочности, средних твердости и ударной вязкости. 3 н. и 18 з.п. ф-лы, 7 ил., 6 табл., 7 пр.
Наверх