Способ получения композиционного плакированного порошка для нанесения покрытий



Владельцы патента RU 2561615:

Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) (RU)

Изобретение относится к получению композиционных порошков для защитных износостойких покрытий. Готовят смесь неметаллической керамической компоненты и металлического порошка при массовом соотношении 1:(1-4). Неметаллическую компоненту используют с размером фракций, составляющим 1/100 размера фракций металлического порошка, и твердостью, превышающей более чем в 1,5 раза твердость металлического порошка. Смесь подвергают сверхскоростному механосинтезу в среде реакционного газа со скоростью вращения роторов дезинтегратора 12000 об/мин с получением композиционного порошка. Обеспечивается получение поверхностно легированного композиционного порошка с упрочняющей пленкой на поверхности частиц при сохранении пластичной сердцевины, что обеспечивает повышение адгезионных и когезионных свойств покрытий. 2 з.п. ф-лы, 1 табл., 2 пр.

 

Изобретение относится к области порошковой металлургии, в частности к созданию композиционных поверхностно легированных порошков, и может быть использовано для получения защитных износостойких покрытий с заданными свойствами.

Известны способы получения легированных порошковых материалов, например способ получения композиционного керамического порошка, на основе нитрида кремния и нитрида титана (патент RU №2382690, опубл. 27.02.2010 г.), в котором готовят экзотермическую смесь смешением измельченных до размера частиц не более 0,1 мм ферросилиция, содержащего 65-95 мас.% кремния, ильменита, содержащего 60-65 мас.% диоксида титана, и предварительно азотированного ферросилиция, при соотношении компонентов в смеси, мас %: ферросилиций - 40-55, ильменит - 20-40, азотированный ферросилиций - 25-40. Полученную смесь воспламеняют при давлении азота 2-20 МПа. Осуществляют доазотирование смеси при давлении азота 0,1-10 МПа в течение 30-40 минут и ее последующее измельчение. Затем измельченный продукт подвергают магнитной сепарации, после чего его обрабатывают 15-30% раствором соляной кислоты.

Также известен способ получения азотосодержащей лигатуры (патент RU №2462526, опубл. 27.09.2012 г.), где для получения лигатуры исходный сплав, содержащий 40-85% ванадия, 2-57% железа и один или несколько элементов, выбранных из ряда: кальций, алюминий, кремний, углерод и марганец в количестве 1,0-21,0% измельчают порошок с размером частиц менее 1,5 мм, порошок помещают в атмосферу азота чистотой не менее 99,0% при давлении свыше 0,1 МПа, инициируют экзотермическую реакцию образования нитридов ванадия путем локального нагрева части поверхностного слоя порошка; осуществляют насыщение порошка азотом в так называемом режиме самораспространяющегося высокотемпературного синтеза (СВС) до получения композиционного сплава на основе нитрида ванадия плотностью 4,0-7,0 г/см3, состоящего из нитрида ванадия в количестве 44-92% и связующего сплава, представляющего собой сплав на основе железа, включающего, по крайней мере, два элемента, выбранных из ряда: кальций, алюминий, кремний, углерод, марганец и ванадий в количестве 1,0-20,0%, и имеющего температуру начала плавления менее 1500°C.

В качестве прототипа выбран способ получения композиционных порошковых материалов с металлической матрицей, армированной тугоплавкими наполнителями методом сверхскоростного механосинтеза (патент RU №2460815, опубл. 10.09.2012 г.).

Порошок металлической матрицы получают путем измельчения порошкового материала дисперсностью не более 100 мкм в высокоскоростном дезинтеграторе с помощью двух роторов с измельчающими элементами, изготовленными из плакирующего материала. Плакированный порошок смешивают с порошком керамического упрочнителя и обрабатывают в высокоскоростном дезинтеграторе с помощью двух роторов при скоростях относительного движения ударных элементов 120-220 м/с и частоте ударов 7000-10000 уд./с. Измельчающие элементы роторов изготовлены из материала твердостью ниже твердости обрабатываемого порошка или смеси. Полученные дисперсно-упрочненные частицы системы металл-керамика имеют степень армирования не менее 60% и обеспечивают высокие эксплуатационные свойства покрытия из них.

Обработка порошкового материала в рабочих камерах известным способом приводит к образованию неметаллической составляющей (нитриды, карбиды, оксиды или их комбинации) во всем объеме каждой частицы. Это снижает пластические свойства порошкового материала, что, в свою очередь, часто делает невозможным получение качественных покрытий с высокими адгезионными и когезионными свойствами.

Техническим результатом изобретения является создание порошковых композиционных материалов, существенной отличительной особенностью которых является наличие упрочняющей пленки (например оксидов, нитридов или карбидов) на поверхности частиц, при сохранении пластичной сердцевины для повышения адгезионных и когезионных свойств покрытий.

Технический результат достигается за счет того, что в способе получения композиционного порошка для нанесения покрытий, включающем приготовление смеси металлического порошка с неметаллической компонентой и сверхскоростной механосинтез в среде реакционного газа, в соответствии с изобретением приготовление смеси металлического порошка с неметаллической компонентой ведут при соблюдении соотношений их масс, соответственно, как (1-4):1; размера фракций, соответственно, как 100:1 и твердости, соответственно, не менее чем 1:1,5, а механосинтез ведут со скоростью 12000 об/мин.

Оптимальное содержание абразивного компонента в порошковой смеси составляет 25-50% с дисперсностью 80-100 нм, что обеспечивает образование ювенильной поверхности. При содержании абразивного компонента менее 25% не достигается достаточного и необходимого уровня освобождения поверхности от окислов и других загрязнений. При содержании абразивного компонента более 50% - излишний абразив остается на поверхности частиц.

Соотношение размера фракций металлического порошка и неметаллической компоненты (как правило, наноразмерной), как показали эксперименты, должно составлять 100:1. При изменении соотношения увеличением размера фракций металлической компоненты или уменьшением размера частиц неметаллической компоненты не удается получить требуемую ювенильную поверхность на обрабатываемых частицах. При изменении соотношения уменьшением размера металлического порошка или увеличением размера неметаллической (абразивной) компоненты наблюдается разрушение (измельчение) частиц металлического порошка при соударении.

Оптимальное соотношение твердости металлического порошка и неметаллической (абразивной) компоненты должно быть не менее чем 1:1,5. При меньшем соотношении на поверхности армируемой металлической частицы количество налипших частиц будет существенно меньше и эффект повышения твердости покрытия будет несущественным.

Вариации параметров режима обработки порошковой смеси (скорости относительного движения ударных элементов и частоты соударений) как в сторону их уменьшения, так и в сторону их увеличения не позволяют синтезировать материал с заданными свойствами. При уменьшении частоты вращения роторов менее 12000 об/мин не происходит полной обработки поверхности. При увеличении частоты вращения роторов более 12000 об/мин происходит облипание частиц металлического компонента частицами абразива.

Образование ювенильной поверхности частиц металлического порошка происходит при их интенсивном столкновении со сверхзвуковыми скоростями. Последующее кратковременное взаимодействие с реакционным газом (азот, кислород или метан) позволяет получить на ювенильной поверхности частицы тонкий (мономолекулярный) упрочняющий слой (нитридов, оксидов или карбидов), сохраняя пластическую сердцевину в каждой частице.

Сверхскоростной механосинтез предварительно полученной порошковой смеси проводят путем совместной обработки в рабочей зоне высокоскоростного универсального дезинтегратора-активатора с помощью двух роторов с рядами измельчающих ударных элементов. Взвешенные количества порошков металлического материала и абразивного компонента загружаются в смеситель, которым снабжена установка, и после смешивания (5-10 минут) порошковая смесь питателем-дозатором с регулируемой производительностью подачи материала равномерно подается в загрузочный канал и поступает в рабочую зону дезинтегратора, где происходит обработка порошковой смеси. Обработку проводят при частоте вращения роторов 12000 об/мин и частоте ударов 8000-10000 уд./с. Частота ударов определяется расчетным путем, исходя из скорости вращения роторов, количества ударных элементов и дозированного поступления материала в рабочую зону дезинтегратора.

Для реализации предложенного способа в качестве металлического порошка предлагается использовать Al, Fe, Cr или их сплавы, которые наряду с требуемой вязкостью, обеспечивающей стойкость к возникновению и развитию трещин в покрытии, в сочетании с высокими характеристиками твердости, являются определяющими для нанесения функциональных покрытий на их основе.

В качестве неметаллической компоненты целесообразно использовать тугоплавкие соединения оксидов, карбидов или нитридов, которые легко получаются в виде микронных или наноразмерных частиц известными методами плазмохимического синтеза, механохимического синтеза, СВС метода, с помощью золь-гель процесса.

Предлагаемый способ опробован на специализированном участке ФГУП «ЦНИИ КМ «Прометей».

Пример №1.

Для получения поверхностно легированного порошкового материала в качестве абразивного компонента отбирали наноразмерный карбид вольфрама дисперсностью 80-100 нм в количестве 100 г, твердостью 3,07 ГПа. В качестве обрабатываемого материала отбирали порошок сплава FeCrAl (ПВ-Х20Ю6И) дисперсностью (в соответствии с заявляемым соотношением) 8-10 мкм, в количестве 400 г и твердостью 1,14 ГПа. Взвешенные порошковые компоненты загружали в смеситель, которым снабжена установка, и производили смешивание в течение 5 минут. Далее порошковую смесь подвергли сверхскоростному механосинтезу путем совместной обработки в высокоскоростном дезинтеграторе за один проход в среде реакционного газа азота. Обрабатываемая порошковая смесь питателем равномерно подавалась в загрузочный канал и поступала в рабочую зону дезинтегратора. Обработку порошковой смеси проводили комплектом роторов с рядами ударных элементов при частоте вращения роторов 12000 об/мин и частоте ударов 8000-10000 уд./с. Частоту удара определяли расчетным путем, исходя из скорости вращения роторов, количества ударных элементов и дозированного поступления материала в рабочую зону дезинтегратора.

Полученный композиционный порошок, пройдя разгрузочный канал и циклон, собирался в специальный приемный контейнер. Таким образом, получили поверхностно легированный порошок оптимальный для устойчивого процесса получения износостойких покрытий газотермическими методами.

Пример №2.

Для получения поверхностно легированного порошкового материала в качестве абразивного компонента отбирали наноразмерный оксид алюминия дисперсностью 80-100 нм в количестве 250 г и твердостью 1,96 ГПа. В качестве обрабатываемого материала отбирали порошок сплава FeCrAl дисперсностью (в соответствии с заявляемым соотношением) 8-10 мкм в количестве 250 г и твердостью 1,14 ГПа. Взвешенные порошковые компоненты загружали в смеситель и производили предварительное смешивание в течение 10 минут. Сверхскоростной механосинтез порошковой смеси проводили по примеру 1.

Фазовое состояние образцов полученных поверхностно легированных порошков определяли рентгеноструктурным анализом на дифрактометре ДРОН-4М. На дифрактограмме с процентным содержанием Al2O3 - 50%, FeCrAl - 50% после дезинтеграторной обработки видны отличия в виде трех дополнительных пиков, идентифицировали эти три пика как FeN, AlN, CrN. Исследование микроструктуры порошков проводили методом сканирующей электронной микроскопии на атомно-силовом микроскопе (АСМ) типа «Nano Scan». Результаты испытаний приведены в таблице.

Таблица
Способ получения Состав порошкового материала Соотношение
масс
Режим обработки Микротвердость (ГПа)
скорость движения ударных эл-ов, м/с частота соударений, уд/с матрица оболочка
Пример 1 (Fe-Cr-Ni-Al-Si-Mn)+карбид вольфрама 4:1 450 8000-10000 8,54 10,52
Пример 2 (Fe-Cr-Ni-Al-Si-Mn)+нанокорунд 1:1 450 8000-10000 8,95 12,08

Полученные композиционные порошки (по примеру 1 и 2) использовались для изготовления покрытий методом ХГДН и микроплазменного напыления и имели хорошую адгезию с подложкой. Проведенные эксперименты показали, что поверхностно легированные порошки могут быть использованы для получения защитных износостойких покрытий с заданными свойствами.

1. Способ получения композиционного порошка для нанесения покрытий, включающий приготовление смеси металлического порошка с неметаллической керамической компонентой и сверхскоростной механосинтез полученной смеси в среде реакционного газа, отличающийся тем, что механосинтез ведут со скоростью вращения роторов дезинтегратора 12000 об/мин, а для приготовления смеси используют неметаллическую керамическую компоненту с размером фракций, составляющим 1/100 размера фракций металлического порошка, и твердостью, превышающей более чем в 1,5 раза твердость металлического порошка, при массовом соотношении неметаллической компоненты и металлического порошка 1:(1-4).

2. Способ по п. 1, отличающийся тем, что в качестве металлического порошка используют металлы из группы, содержащей алюминий, железо, хром или их сплавы.

3. Способ по п. 1, отличающийся тем, что в качестве керамической компоненты используют тугоплавкие соединения оксидов, карбидов или нитридов.



 

Похожие патенты:

Изобретение относится к металлургии, в частности к получению литых композиционных сплавов для отливок ответственного назначения. .
Изобретение относится к области цветной металлургии и может быть использовано для получения изделий литьем, в частности к модифицированию заэвтектических силуминов.
Изобретение относится к области энергетики и экологии и может быть использовано для генерирования водорода. .

Изобретение относится к композиции металлических сплавов, а именно к износо-, эрозионно- и химически стойкому материалу на основе вольфрама, легированному углеродом, причем углерод в пересчете на полный вес материала составляет от 0.01 вес.% до 0.97 вес.%.
Изобретение относится к продуктам из конструкционных металлических материалов, армированных карбидами. .

Изобретение относится к порошковой металлургии, в частности к получению композиционного материала, который можно использовать, например, в полупроводниковых приборах.

Изобретение относится к композитному материалу и, более конкретно, к медному композитному материалу с низким коэффициентом теплового расширения и высокой теплопроводностью, способу его получения и различным вариантам использования, таким, как использование в полупроводниковых приборах, где этот композитный материал применяется.

Изобретение относится к порошковой металлургии, в частности к составам шихты для получения пористого проницаемого материала методом самораспространяющегося высокотемпературного синтеза (СВС), применяемого для изготовления фильтрующих элементов, пламегасителей, аэраторов и др.

Изобретение относится к порошковой металлургии и может быть использовано при изготовлении деталей подшипников качения, работающих в условиях воздействия высоких температур.

Изобретение относится к порошковой металлургии, в частности к составам порошковых материалов для газотермических наплавочных покрытий. .
Изобретение относится к области металлургии, в частности к изготовлению платиновых сплавов для ювелирной промышленности. Сплав содержит, мас.

Изобретение относится к области металлургии, в частности к порошковым сплавам на основе никеля, обладающим повышенным сопротивлением к сульфидной коррозии, и может быть использовано для изготовления деталей газотурбинных двигателей.
Изобретение относится к области металлургии и может быть использовано при переработке цирконийсодержащих оксидных материалов для получения алюминий-циркониевого сплава.

Редкоземельный спеченный магнит состоит по существу из 26-36 вес.% R, 0,5-1,5 вес.% В, 0,1-2,0 вес.% Ni, 0,1-3,0 вес.% Si, 0,05-1,0 вес.% Cu, 0,05-4,0 вес.% M, а остальное - Т и случайные примеси, где R представляет собой редкоземельный элемент, Т представляет собой Fe или Fe и Со, М выбран из Ga, Zr, Nb, Hf, Ta, W, Mo, Al, V, Cr, Ti, Ag, Mn, Ge, Sn, Bi, Pb и Zn.

Изобретение может быть использовано в металлургии. Способ переработки бериллийсодержащих отходов производства медно-бериллиевой лигатуры включает плавление с флюсом, выдержку расплава и последующее разделение продуктов плавки с получением металлической фазы и вторичного шлака.

Изобретение относится к области специальной электрометаллургии, а именно к вакуумно-индукционной выплавке сплава на основе хрома. Для повышения горячей пластичности используют жаропрочный сплав, содержащий, в мас.
Изобретение относится к металлургии алюминиевых сплавов, содержащих металлы, практически не растворяющиеся в твердом алюминии: железо, никель, кобальт, редкоземельные металлы, иттрий, и предназначено для изготовления проводников электрического тока в виде проволоки диаметром 0,1-0,3 мм, работающих при повышенных температурах до 250°C.

Изобретение относится к металлургии. Пористый сплав на основе никелида титана для медицинских имплантатов, полученный самораспространяющимся высокотемпературным синтезом, содержит в качестве легирующей добавки медь, замещающую никель, в концентрации от 3 до 6 атомарных процентов.

Алюминий-медный сплав для литья, содержащий по существу нерастворимые частицы, которые занимают междендритные области сплава, и свободный титан в количестве, достаточном для измельчения зернистой структуры в литейном сплаве.

Изобретение относится к области металлургии, а именно к получению лигатуры никель-редкоземельный металл. В способе расплавляют никель, выдерживают полученный расплав и смешивают его с редкоземельным металлом, производят индукционное перемешивание расплава, его разливку и охлаждение, при этом расплавляют никель в вакууме в инертном тигле индукционной печи, полученный расплав нагревают до температуры 1500-1700°C и выдерживают до его дегазации в плавильной камере под вакуумом, после чего снижают температуру расплава никеля до 1400-1550°C и в вакууме или атмосфере инертного газа порционно добавляют в него редкоземельный металл.

Изобретение относится к порошковой металлургии, в частности к получению порошков агломератов вентильных металлов и субоксидов вентильных металлов для изготовления конденсаторов с твердым электролитом.
Наверх