Реактор с псевдоожиженным слоем и способ для получения олефинов из оксигенатов

Изобретение относится к реактору и способу получения олефинов из оксигенатов. Реактор с псевдоожиженным слоем содержит реакционную зону, расположенную в нижней части реактора и содержащую нижнюю зону плотной фазы и верхний лифт-реактор, при этом зона плотной фазы и лифт-реактор соединены между собой с помощью переходного участка, зону разделения, расположенную в верхней части реактора и содержащую камеру осаждения, устройство для быстрого разделения газа и твердых частиц, циклон и газосборную камеру, при этом лифт-реактор проходит вверх в зону разделения и соединен своим выходом с входом устройства быстрого разделения газа и твердых частиц, выход устройства для быстрого разделения газа и твердых частиц соединен с входом циклона посредством канала для быстрого прохождения газа, причем выход циклона соединен с газосборной камерой, газосборная камера расположена под выходом реактора и соединена с ним, и трубопровод рециркуляции катализатора, предназначенный для возврата катализатора из камеры осаждения в зону плотной фазы, трубопровод отвода катализатора, предназначенный для отвода дезактивированного катализатора из камеры осаждения и/или зоны плотной фазы в устройство для регенерации катализатора, и трубопровод возврата катализатора, предназначенный для возврата регенерированного катализатора. Изобретение обеспечивает эффективное получение олефинов, повышение глубины конверсии исходных веществ и селективность по продуктам конверсии. 2 н. и 19 з.п. ф-лы, 1 ил., 2 пр.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к реактору с псевдоожиженным слоем для получения олефинов из оксигенатов, а также к способу получения олефинов из оксигенатов с использованием упомянутого реактора с псевдоожиженным слоем.

Уровень техники

Известно, что алюмосиликофосфатные (SAPO) молекулярные сита можно использовать в качестве катализатора для превращения низших углеродных оксигенатов, таких как метанол и/или диметиловый эфир, в низшие олефины, такие как этилен, пропилен и бутилен. Ряд SAPO молекулярных сит, таких как SAPO-5, SAPO-11, SAPO-17, SAPO-41, SAPO-34 и SAPO-41 был разработан для использования в качестве катализаторов, например, для превращения оксигенатов в олефины. В частности, хорошо известно, что SAPO-34 при использовании для получения олефинов из метанола и/или диметилового эфира (МТО-процесс) имеет превосходные каталитические свойства благодаря малому диаметру пор и хорошей гидротермальной стабильности.

Получение олефинов из оксигенатов осуществляется, в основном, посредством каталитического крекинга, который обычно является экзотермическим процессом. В частности, в случае получения низших олефинов, таких как этилен, пропилен и т.д., из метанола и/или диметилового эфира, целевыми продуктами являются этилен и пропилен, однако в ходе упомянутого технологического процесса в небольших количествах получаются также бутилен, пентен, гексен и соответствующие им алканы. Причина заключается в том, что при проведении процесса, помимо метанола и/или диметилового эфира, подвергающихся каталитическому крекингу в присутствии катализатора с образованием олефинов, полученные олефины могут дополнительно подвергаться вторичным реакциям, таким как взаимные превращения. Например, этилен и/или пропилен могут дополнительно олигомеризоваться до С4+ олефинов.

Таким образом, для повышения конверсии этилена и пропилена необходимо не только увеличить общую конверсию процесса для возможно большего превращения исходных веществ, но также следует повысить общую селективность по этилену и/или пропилену. Таким образом, в случае определенных SAPO катализаторов исходные вещества должны контактировать с катализатором в достаточной мере для достижения как можно большей степени превращения. Однако газообразные продукты должны контактировать с катализатором как можно меньше для предотвращения или минимизации вторичных реакций, таких как реакции олигомеризации этилена и/или пропилена в высшие олефины.

Для осуществления реакций получения олефинов из оксигенатов, таких как МТО, разработаны некоторые типы реакторов, известные в уровне техники, включая реактор с псевдоожиженным слоем плотной фазы (образованной катализатором) и лифт-реактор. Например, в патентном документе CN1166478A раскрыт способ получения низших олефинов, таких как этилен, пропилен и т.д. из метанола или диметилового эфира, в котором SAPO-34 молекулярное сито используется в качестве катализатора для проведения реакции и непрерывно регенерируется в реакторе, содержащем псевдоожиженный слой с циркуляцией плотной фазы. В патентном документе US 4547616 раскрыт способ непрерывного получения низших олефинов из оксигенатов с использованием турбулентного псевдоожиженного слоя. В этом известном способе турбулентный псевдоожиженный слой одновременно является псевдоожиженным слоем плотной фазы реактора. В патентном документе US 6023005 раскрыт способ превращения оксигенатов в олефины в присутствии молекулярных сит в качестве катализатора, при этом в качестве реактора используется лифт-реактор.

В случае реактора с псевдоожиженным слоем плотной фазы в слое катализатора можно разместить средства отвода тепла для того, чтобы можно было легко контролировать температуру реакции. Однако из-за значительного обратного смешивания газа и твердой фазы в зоне нахождения плотной фазы для обеспечения конверсии исходного сырья необходим большой запас катализатора. В то же время для отделения катализатора от газообразных продуктов необходима камера осаждения больших размеров. При этом существует большая вероятность протекания вторичных реакций, которые неблагоприятны для общей селективности по этилену и пропилену во время проведения процесса.

В случае использования лифт-реактора, из-за одновременного перемещения снизу вверх газа и твердого вещества с меньшим обратным смешиванием запас катализатора может быть уменьшен, однако в лифт-реакторе трудно контролировать температуру реакции. Кроме того, вследствие более низкой скорости реакции превращения оксигенатов в олефины вряд ли в лифт-реакторе можно конвертировать сырье полностью.

В патентном документе US 6166282 описан реактор с «быстрым» псевдоожиженным слоем для проведения процесса МТО, который включает верхнюю зону сепарации и нижнюю реакционную зону, при этом реакционная зона содержит зону плотной фазы и переходную зону, находящуюся над зоной плотной фазы, и исходные реагенты после конверсии в зоне с плотной фазой затем конвертируются полностью. По сравнению с традиционным кипящим слоем, «быстрый» псевдоожиженный слой позволяет уменьшить размеры реактора и запас катализатора и, таким образом, снизить затраты на проведение процесса. Однако проблема обратного смешивания газа и твердого вещества все еще существует, и для входящего в камеру осаждения газа требуется большее время нахождения в реакционной зоне перед поступлением в циклон, и в результате газ еще может подвергаться вторичным реакционным взаимодействиям, которые неблагоприятны для общей селективности по этилену и пропилену.

Таким образом, все еще необходимы дополнительные усовершенствования реактора и способа для получения олефинов из оксигенатов для того, чтобы повысить глубину конверсии исходных веществ, а также селективность по продуктам конверсии.

Сущность изобретения

В соответствии с описанным выше состоянием уровня техники настоящее изобретение обеспечивает реактор с псевдоожиженным слоем для получения олефинов из оксигенатов, а также способ получения олефинов из оксигенатов с использованием упомянутого реактора с псевдоожиженным слоем.

Согласно одному аспекту настоящее изобретение обеспечивает реактор с псевдоожиженным слоем для получения олефинов из оксигенатов, при этом реактор с псевдоожиженным слоем содержит:

реакционную зону, расположенную в нижней части реактора с псевдоожиженным слоем и содержащую нижнюю зону плотной фазы и размещенный выше нее лифт-реактор, при этом зона плотной фазы и лифт-реактор соединены между собой с помощью переходного участка;

зону разделения, расположенную в верхней части реактора с псевдоожиженным слоем, содержащую камеру осаждения, устройство для быстрого разделения газа и твердой фазы, циклон и газосборную камеру, при этом лифт-реактор проходит вверх в зону разделения и соединен своим выходом с входом устройства быстрого разделения газа и твердой фазы, выход устройства для быстрого разделения газа и твердых частиц соединен с входом циклона посредством канала для быстрого прохождения газа, причем выход циклона соединен с газосборной камерой, и указанная газосборная камера расположена ниже выхода реактора и соединена с ним; и

трубопровод рециркулирующего катализатора, предназначенный для возврата катализатора из камеры осаждения в зону плотной фазы, трубопровод отвода катализатора, предназначенный для отвода дезактивированного катализатора из камеры осаждения и/или зоны плотной фазы в устройство для регенерации катализатора, и трубопровод возврата катализатора, предназначенный для возврата регенерированного катализатора из устройства регенерации катализатора в зону плотной фазы.

Согласно другому аспекту настоящее изобретение обеспечивает способ получения олефинов из оксигенатов с использованием описанного выше реактора с псевдоожиженным слоем, включающий следующие стадии:

ввод сырьевого потока, содержащего оксигенат и разбавитель, в слой плотной фазы в нижней части реактора с псевдоожиженным слоем через впускной распределитель сырья, при этом в сырьевом потоке в присутствии катализатора происходит реакция таким образом, что часть сырья превращается в низшие олефины, а часть катализатора дезактивируется из-за отложения на нем кокса;

направление реакционной смеси, состоящей из низших олефинов, непрореагировавшего сырья и катализатора, из зоны плотной фазы снизу вверх в лифт-реактор, в котором в присутствии катализатора происходит дальнейшая почти полная конверсия непрореагировавшего сырья с получением в результате потока выходящего продукта лифт-реактора, содержащего, в основном, низшие олефины и катализатор;

ввод выходящего потока продукта лифт-реактора непосредственно в зону разделения в верхней части реактора с псевдоожиженным слоем, сначала в устройство для быстрого разделения газа и твердой фазы, в котором отделяется большая часть катализатора, затем, через канал для быстрого прохождения газа в циклон, в котором отделяется оставшийся катализатор, после этого газ направляется в камеру сбора газа и затем отводится через выпускной патрубок реактора, при этом весь отделенный катализатор опускается в камеру осаждения в нижней части зоны разделения; и

рециркуляция части катализатора из камеры осаждения обратно в слой плотной фазы через трубопровод рециркуляции катализатора,

отвод части дезактивированного катализатора через трубопровод отвода катализатора из камеры осаждения и/или зоны плотной фазы в устройство регенерации катализатора и осуществление в нем регенерация катализатора, и затем

возвращение части регенерированного катализатора из устройства для регенерации катализатора в зону плотной фазы через трубопровод возврата катализатора.

В соответствии с настоящим изобретением зона плотной фазы в реакторе с псевдоожиженным слоем может дополнительно содержать внутренние элементы конструкции для отвода теплоты реакции и/или предотвращения обратного смешивания газа и твердой фазы, например, внутренние элементы конструкции могут быть элементами для теплообмена, такими как теплообменник или теплообменный змеевик; или внутренние элементы могут быть элементами, предотвращающими обратное смешивание, например, направляющими перегородками для потока или разделительными перегородками; или даже в некоторых случаях для упрощения и достижения высокой эффективности могут быть использованы сочетания этих внутренних элементов, с целью лучшего контроля температуры реакции и/или достижения более высокой степени конверсия сырья.

В соответствии с настоящим изобретением конструкция реактора с псевдоожиженным слоем имеет такие размеры, что зона плотной фазы характеризуется отношением высоты к диаметру в интервале 0,5-10, предпочтительно в интервале 0,6-8, более предпочтительно в интервале 0,8-5; отношение высоты лифт-реактора к его диаметру в интервале 2-20, предпочтительно в интервале 3-15, более предпочтительно в интервале 4-10; а отношение диаметров зоны плотной фазы и лифт-реактора находится в интервале 2-10, предпочтительно в интервале 2,5-8, более предпочтительно в интервале 3-6. При осуществлении способа получения олефинов из оксигенатов с использованием охарактеризованного выше реактора с псевдоожиженным слоем вышеуказанным реактором с псевдоожиженным слоем управляют таким образом, что при прохождении через слой плотной фазы приведенная скорость газового потока находится в интервале 0,1-2 м/сек, предпочтительно в интервале 0,2-1,5 м/сек, более предпочтительно 0,3-1,2 м/сек, при этом продолжительность нахождения газа в указанной зоне (продолжительность контакта) составляет 0,5-20 сек, предпочтительно находится в интервале 1-15 сек, более предпочтительно в интервале 2-10 сек. При прохождении газового потока через лифт-реактор приведенная скорость газового потока находится в интервале 2-20 м/сек, предпочтительно в интервале 4-18 м/сек, более предпочтительно 5-15 м/сек; при этом продолжительность нахождения потока в лифт-реакторе составляет 0,3-5 сек, предпочтительно находится в интервале 0,4-4 сек, более предпочтительно в интервале 0,5-3 сек; в результате загрузка сырья может быть надлежащим образом распределена для достижения заданной конверсии сырья.

В соответствии с настоящим изобретением в реакторе с псевдоожиженным слоем камера осаждения находится в нижней части зоны разделения и служит для сбора катализатора, отделенного в зоне разделения, при этом камера осаждения может содержать: распределитель отпарного газа, предназначенный для ввода отпарного газа с целью отпаривания катализатора, причем отпарным газом может служить азот или водяной пар, предпочтительно водяной пар, и, таким образом, газообразное сырье и/или газообразные продукты, захваченные катализатором, могут быть в дальнейшем отделены с помощью операции отпаривания; кроме того, камера осаждения снабжена в верхней части трубопроводом, транспортирующим отпаренную смесь в циклон для ее разделения.

В соответствии с настоящим изобретением в реакторе с псевдоожиженным слоем в качестве устройства для быстрого разделения газа и твердой фазы может быть использовано любое известное в уровне техники и подходящее устройство для быстрого разделения газа и твердой фазы, например, устройство для быстрого разделения газа и твердой фазы может быть выбрано из группы, включающей устройство вихревого типа для быстрого разделения газа и твердой фазы, устройство с эжекционной камерой для быстрого разделения газа и твердой фазы, устройство для быстрого разделения газа и твердой фазы с конфигурацией в виде перевернутой буквы L, Т-образное устройство для быстрого разделения газа и твердой фазы, устройство для быстрого разделения газа и твердой фазы с многолопаточными закручивателями и устройство с поворотным коленом для быстрого разделения газа и твердой фазы. Таким образом, газовая и твердая фазы, содержащиеся в потоке, выходящем из лифт-реактора, могут быть быстро отделены друг от друга.

В соответствии с настоящим изобретением циклон, размещенный в реакторе с псевдоожиженным слоем, может быть любым подходящим циклоном, известным в уровне техники, и может представлять собой одну или большее число групп циклонов, при этом каждая группа циклонов может содержать один, два или три последовательно соединенных циклона, и, таким образом, твердый катализатор, увлеченный с потоками продуктов, может быть полностью отделен от полученных продуктов.

В соответствии с настоящим изобретением в реакторе с псевдоожиженным слоем устройство для быстрого разделения газа и твердых частиц соединено с циклоном посредством канала для быстрого прохода газа. Указанный канал для быстрого прохода газа выполнен с такими размерами, чтобы нахождение потока в канале было как можно более кратковременным, например, время нахождения потока в этом канале обычно составляет не более 5 сек, предпочтительно не более 4 сек, наиболее предпочтительно не более 3 сек.

В соответствии с настоящим изобретением реактор с псевдоожиженным слоем снабжен трубопроводами, а именно, трубопроводом для отвода катализатора из камеры осаждения, образованной в нижней части зоны разделения, и/или из зоны плотной фазы реакционной зоны к устройству для регенерации катализатора; трубопроводом возврата катализатора из устройства регенерации катализатора в зону плотной фазы; и трубопроводом для рециркуляции катализатора, проходящим от нижней части зоны разделения к зоне нахождения плотной фазы. Все перечисленные трубопроводы могут быть оборудованы подходящими клапанами для регулирования расходов проходящих через них катализаторов, и, регулируя расход катализатора рецикла и/или расход возвращаемого в реактор регенерированного катализатора, можно регулировать запас катализатора в зоне плотной фазы и среднюю величину активности катализатора, при этом соответствующим образом может регулироваться конверсия материалов в зоне плотной фазы и лифт-реакторе.

В соответствии с настоящим изобретением реакционная смесь, выходящая из реактора с псевдоожиженным слоем, может быть введена в технологический аппарат для обработки продукта, в котором осуществляется его разделение и/или очистка с целью получения в качестве конечного продукта олефинов, таких как этилен и/или пропилен. Разделение и/или очистка может проводиться в любом известном в уровне техники подходящем технологическом аппарате, таком как дистилляционная колонна и адсорбционная колонна.

В соответствии с настоящим изобретением конвертируемые оксигенаты могут быть оксигенатами, обычно используемыми в данной области техники: низшими карбоновыми спиртами и/или простыми эфирами, например, оксигенаты могут быть выбраны из группы, состоящей из метанола, этанола, пропанола, диметилового эфира, диэтилового эфира, дипропилового эфира и их смеси, предпочтительно метанола и/или диметилового эфира; низшие олефины могут быть выбраны из группы, состоящей из этилена, пропилена, бутилена и их смеси, предпочтительно этилена и/или пропилена.

Согласно настоящему изобретению добавляемые в сырье разбавители служат для понижения парциальных давлений сырья и получаемого продукта. Разбавителем может быть любой подходящий газ, инертный в реакции превращения оксигенатов в олефины, например, это может водяной пар или азот, предпочтительно водяной пар; при этом разбавитель может быть добавлен в количестве 5-80 мол.%, предпочтительно 10-60 мол.%, более предпочтительно 15-50 мол.%, исходя из общего количества сырьевой смеси.

В соответствии с настоящим изобретением катализатор, используемый для реакции превращения оксигенатов в олефины, обычно представляет собой алюмосиликофосфатные молекулярные сита. Например, катализатор может быть выбран из группы, состоящей из SAPO-5, SAPO-11, SAPO-17, SAPO-41. SAPO-34 и SAPO-41, предпочтительно SAPO-34.

В соответствии с настоящим изобретением реакционную температуру, используемую для реакции оксигенатов в присутствии SAPO катализатора, специалисты в данной области техники могут выбирать в зависимости от специфики оксигенатов; обычно реакционная температура, используемая для реакции превращения оксигенатов в олефины, может находиться в интервале 300-600°C, предпочтительно в интервале 400-550°C.

Согласно настоящему изобретению реакционное давление, используемое для проведения реакции оксигенатов в присутствии SAPO катализатора, специалисты в данной области техники могут выбирать в зависимости от специфики оксигенатов с учетом конструкции реактора с псевдоожиженным слоем и эксплуатационных расходов. Обычно абсолютное реакционное давление, используемое для проведения реакции превращения оксигенатов в олефины, находится в интервале 0,05-1 МПа абс, предпочтительно в интервале 0,1-0,5 МПа абс.

В соответствии с настоящим изобретением при деактивации SAPO катализатора из-за отложения на нем кокса, образовавшегося в процессе реакции оксигенатов, для выжигания кокса с поверхности катализатора с целью его регенерации может быть использован кислородсодержащий газ, например, воздух, воздух, обогащенный кислородом, или чистый кислород, предпочтительно воздух. В настоящем изобретении в устройстве регенерации катализатора температура обычно находится в интервале 500-800°C, предпочтительно в интервале 350-700°C, а абсолютное давление обычно находится в интервале 0,05-1 МПа абс, предпочтительно в интервале 0,15-0,8 МПа абс.

Согласно настоящему изобретению реактор с псевдоожиженным слоем в реакционной зоне содержит зону плотной фазы в сочетании с лифт-реактором, при этом конверсия большей части сырьевого потока происходит в зоне плотной фазы, а конверсия оставшегося сырьевого потока осуществляется затем в лифт-реакторе. Таким образом, при определенной предварительно заданной степени конверсии сырьевого потока включение в конструкцию реактора с псевдоожиженным слоем лифт-реактора приводит к снижению запаса используемого катализатора в зоне плотной фазы. Запас катализатора в зоне плотной фазы и среднее значение каталитической активности могут дополнительно регулироваться с помощью рецикла и регенерации катализатора. Таким образом, можно дополнительно регулировать степень превращения сырьевого потока, и, соответственно, конверсия сырьевого потока может быть оптимизирована.

В соответствии с настоящим изобретением реактор с псевдоожиженным слоем содержит устройство для быстрого разделения газа и твердой фазы в сочетании с циклоном в зоне разделения, в которой большая часть катализатора быстро отделяется посредством устройства для быстрого разделения газа и твердой фазы, а оставшийся катализатор затем отделяется с помощью циклона, при этом устройство для быстрого разделения газа и твердой фазы сообщается с циклоном посредством канала для быстрого прохода газа; и, таким образом, время отделения газа от твердой фазы может быть уменьшено настолько, насколько это возможно, и, соответственно, могут предотвращаться вторичные реакции олефиновых продуктов, и в результате селективность по целевым продуктам повышается.

В соответствии с настоящим изобретением реактор с псевдоожиженным слоем содержит зону плотной фазы в сочетании с лифт-реактором для контроля и оптимизации степени конверсии, и, кроме того, содержит устройство для быстрого разделения газа твердой фазы в сочетании с циклоном для быстрого отделения газа от твердой фазы и подавления вторичных реакций, и тем самым обеспечивается селективность по целевым олефиновым продуктам.

Таким образом, в реакторе с псевдоожиженным слоем в соответствии с настоящим изобретением можно регулировать и/или контролировать общую конверсию и селективность превращения оксигенатов в олефины так, чтобы обеспечить получение наилучших результатов реакции и, посредством этого, достичь цели изобретения.

Краткое описание чертежей

Фиг.1 иллюстрирует конкретный пример реактора с псевдоожиженным слоем в соответствии с настоящим изобретением, в котором зона плотной фазы и лифт-реактор соединены с помощью переходного участка, имеющего форму усеченного конуса; устройство для быстрого разделения газа и твердой фазы представляет собой устройство вихревого типа; циклон выполнен в виде двухступенчатого циклона, содержащего два последовательно соединенных циклона; и некоторая часть дезактивированного катализатора отводится из камеры осаждения в устройство для регенерации катализатора, в котором осуществляется регенерация катализатора.

На фиг.1 ссылочные номера позиций распределены следующим образом: 1 - впускной распределитель сырья; 2 - зона плотной фазы; 3 - внутренние элементы реактора; 4 - лифт-реактор; 5 - устройство для быстрого разделения газа и твердой фазы вихревого типа; 6 - погружная ножка устройства вихревого типа для быстрого разделения газа и твердой фазы; 7 - канал для быстрого прохода газа; 8 - циклон; 9 - опускная труба циклона; 10 - газосборная камера; 11 - выпускной патрубок реактора; 12 - установка для обработки продуктов; 13 - распределитель отпарного газа; 14 - камера осаждения; 15 - направляющий трубопровод для отпаренной смеси; 16 - трубопровод для отвода катализатора; 17 - клапан для регулирования расхода отводимого дезактивированного катализатора; 18 - устройство для регенерации катализатора; 19 - трубопровод возврата катализатора; 20 - клапан для регулирования расхода возвращаемого регенерированного катализатора; 21 - трубопровод для рециркуляции катализатора; 22 - клапан для регулирования расхода катализатора рецикла.

Подробное описание изобретения

Реактор с псевдоожиженным слоем, а также способ получения олефинов из оксигенатов согласно настоящему изобретению далее будут описаны подробно со ссылкой на чертежи.

В соответствии с фиг.1 сырьевой поток, содержащий оксигенат, например, метанол и/или диметиловый эфир, и разбавитель, например, водяной пар, вводят в зону 2 плотной фазы в нижней части реактора с псевдоожиженным слоем через впускной распределитель сырья 1. В упомянутой зоне плотной фазы исходное сырье реагирует в присутствии катализатора при нахождении в слое в течение, например, 4-10 сек, и превращается большей частью в олефины. В то же самое время часть катализатора дезактивируется из-за отложения на нем кокса, а теплота реакции отводится внутренними элементами 3 реактора так, что температура реакции поддерживается в интервале, например, 400-550°C, а реакционное давление поддерживается в интервале 0,1-0,5 МПа абс., при этом обратное смешивание газа и твердой фазы подавляется также указанными внутренними элементами 3.

Реакционную смесь, содержащую низшие олефины, непрореагировавшее сырье и катализатор, направляют из зоны 2 плотной фазы снизу вверх в лифт-реактор 4, в котором происходит дальнейшая почти полная конверсия непрореагировавшего сырья в присутствии катализатора с временем нахождения указанных веществ в лифт-реакторе, например, 1-3 сек. В результате повышается выход потока продуктов из лифт-реактора, который содержит, главным образом, низшие олефины и катализатор.

Поток продуктов, выходящих из лифт-реактора 4, сначала поступает в устройство 5 вихревого типа для быстрого разделения газа и твердой фазы, в котором отделяется большая часть катализатора, затем через канал 7 для быстрого прохода газа с коротким временем пребывания в нем, например, не более 3 сек, поступает в циклон 8, где, помимо всего прочего, отделяется оставшийся катализатор, после этого поступает в газосборную камеру 10, из которой выходит через выпускной патрубок 11 реактора и, наконец, вводится в установку 12 для обработки продуктов, в которой осуществляется разделение с получением конечных продуктов в виде олефинов. Весь отделенный катализатор осаждается в камере 14 осаждения, образованной в нижней части зоны разделения, с прохождением через погружную ножку 6 устройства 5 быстрого разделения газа и твердой фазы вихревого типа и опускную трубу 9 циклона 8.

Часть катализатора возвращают из камеры 14 осаждения обратно в зону 2 плотной фазы через трубопровод 21 рециркуляции катализатора, а другую часть дезактивированного катализатора извлекают из камеры 14 осаждения через трубопровод 16 отвода катализатора и направляют в устройство 18 для регенерации катализатора, производимой путем выжигания кокса при температуре 500-750°C и абсолютном давлении 0,1-0,5 МПа. Затем часть регенерированного катализатора возвращают из устройства 18 регенерации катализатора в зону 2 плотной фазы через трубопровод 19 возврата катализатора. При этом за счет регулирования расхода рециркуляционного потока катализатора, расхода отводимого потока дезактивированного катализатора и расхода возвращаемого катализатора, катализатор в зоне 2 плотной фазы обладает большей активностью для реакции.

В камеру 14 осаждения через распределитель 13 отпарного газа вводят в качестве отпарного газа водяной пар, предназначенный для отпаривания катализатора, и отпаренная смесь газов, поступает в циклон 8 через направляющий трубопровод 15 для отпаренной смеси, находящийся в верхней части камеры 14 осаждения.

Далее настоящее изобретение дополнительно проиллюстрировано приведенным ниже примером и сравнительным примером. Приведенный пример не предназначен для ограничения объема настоящего изобретения.

Примеры

Пример 1

В качестве реактора используется реактор с псевдоожиженным слоем, представленный на фиг.1, а в качестве сырья - смесь метанола и водяного пара, при этом количество пара, который служит разбавителем, составляет 30 мол.% от общего количества смеси. Общий расход сырья составляет 67 кмоль/час. Катализатором является SAPO-34 с загрузкой 0,5 т. Температура реакции составляет 485°C, реакционное давление составляет 0,2 МПа абс. В зоне плотной фазы приведенная скорость газового газа составляет 0,5 м/сек, время нахождения потока в зоне плотной фазы составляет 5 сек. В лифт-реакторе приведенная скорость газового потока составляет 8 м/сек, а время нахождения потока в лифт-реакторе составляет 1,5 сек. Время нахождения потока в канале для быстрого прохода газа составляет 1 сек. В качестве отпарного газа используется водяной пар с расходом 50 кг/ч. Расход рециркулирующего катализатора, направляемого из камеры осаждения в слой плотной фазы, составляет 3 т/ч. Расход дезактивированного катализатора, отводимого из камеры осаждения в устройство регенерации катализатора, составляет 0,5 т/ч, при этом в устройстве регенерации катализатора температура регенерации составляет 650°C, а абсолютное давление регенерации составляет 0,22 МПа. Регенерированный катализатор возвращается в зону плотной фазы с расходом 0,5 т/ч. На выходе из реактора отобрана проба и определена конверсия метанола, составляющая 99,95 мол.%, и общая селективность по этилену и пропилену равна 82,3 мол.% соответственно.

Сравнительный пример 1

Повторяют пример 1, за исключением того, что реактор представляет собой традиционный реактор с барботажным псевдоожиженным слоем, в котором реакционной зоной является зона плотной фазы. Зона разделения образована трехступенчатым циклоном, состоящим из трех последовательно соединенных циклонов. Загрузка катализатора составляет 2 т. В зоне плотной фазы приведенная скорость газового потока составляет 0,3 м/сек, время нахождения газового потока в зоне плотной фазы составляет 8 сек. На выходе из реактора отобрана проба и определена конверсия метанола, составляющая 99,65 мол.%, и общая селективность по этилену и пропилену равна 78,3 мол.% соответственно.

Как видно из приведенных результатов примера 1 и сравнительного примера 1, по сравнению с традиционным реактором с барботажным псевдоожиженным слоем в реакторе с псевдоожиженным слоем в соответствии с настоящим изобретением может быть достигнута более высокая конверсия сырья и более высокая общая селективность по этилену и пропилену с существенно меньшим запасом катализатора. Таким образом, реактор с псевдоожиженным слоем в соответствии с настоящим изобретением обеспечил значительные технические усовершенствования.

1. Реактор с псевдоожиженным слоем для получения олефинов из оксигенатов, содержащий
реакционную зону, расположенную в нижней части реактора с псевдоожиженным слоем и содержащую нижнюю зону плотной фазы и верхний лифт-реактор, при этом зона плотной фазы и лифт-реактор соединены между собой с помощью переходного участка;
зону разделения, расположенную в верхней части реактора с псевдоожиженным слоем, содержащую камеру осаждения, устройство для быстрого разделения газа и твердой фазы, циклон и газосборную камеру, при этом лифт-реактор проходит вверх в зону разделения и соединен своим выходом с входом устройства быстрого разделения газа и твердой фазы, выход устройства для быстрого разделения газа и твердой фазы соединен с входом циклона посредством канала для быстрого прохождения газа, причем выход циклона соединен с газосборной камерой, а указанная газосборная камера расположена ниже выхода реактора и соединена с ним; и
трубопровод рециркуляции катализатора, предназначенный для возврата катализатора из камеры осаждения в зону плотной фазы, трубопровод отвода катализатора, предназначенный для отвода дезактивированного катализатора из камеры осаждения и/или зоны плотной фазы в устройство для регенерации катализатора, и трубопровод возврата катализатора, предназначенный для возврата регенерированного катализатора из устройства регенерации катализатора в зону плотной фазы;
причем лифт-реактор выполнен с такими размерами, что отношение высоты зоны плотной фазы к диаметру зоны плотной фазы находится в интервале 0,5-10, отношение высоты лифт-реактора к диаметру лифт-реактора находится в интервале 2-20, отношение диаметров зоны плотной фазы и лифт-реактора находится в интервале 2-10, а канал для быстрого прохождения газа выполнен таким образом, чтобы время нахождения в нем потока составляло не более 5 сек.

2. Реактор с псевдоожиженным слоем по п. 1, в котором зона плотной фазы дополнительно содержит внутренние элементы для отвода теплоты реакции и/или предотвращения обратного смешивания газа и твердого вещества.

3. Реактор с псевдоожиженным слоем по п. 1 или 2, в котором отношение высоты зоны плотной фазы к диаметру зоны плотной фазы находится в интервале 0,6-8, отношение высоты лифт-реактора к диаметру лифт-реактора находится в интервале 3-15, а отношение диаметров зоны плотной фазы и лифт-реактора находится в интервале 2,5-8.

4. Реактор с псевдоожиженным слоем по п. 3, в котором отношение высоты зоны плотной фазы к диаметру зоны плотной фазы находится в интервале 0,8-5, отношение высоты лифт-реактора к диаметру лифт-реактора находится в интервале 4-10, а отношение диаметров зоны плотной фазы и лифт-реактора находится в интервале 3-6.

5. Реактор с псевдоожиженным слоем по п. 1 или 2, в котором камера осаждения расположена в нижней части зоны разделения и служит для сбора катализатора, отделенного в зоне разделения, при этом в камере осаждения размещены распределитель отпарного газа, предназначенный для ввода отпарного газа с целью отпаривания катализатора, и направляющий трубопровод для отпаренной смеси, размещенный в верхней части камеры осаждения и предназначенный для транспортирования отпаренной смеси в циклон для разделения.

6. Реактор с псевдоожиженным слоем по п. 1 или 2, в котором устройство для быстрого разделения газа и твердой фазы выбрано из группы, включающей устройство для быстрого разделения газа и твердой фазы вихревого типа, устройство для быстрого разделения газа и твердой фазы с эжекционной камерой, устройство для быстрого разделения газа и твердой фазы с конфигурацией в виде перевернутой буквы L, Т-образное устройство для быстрого разделения газа и твердой фазы, устройство для быстрого разделения газа и твердой фазы с многолопаточными закручивателями и устройство с поворотным коленом для быстрого разделения газа и твердой фазы.

7. Реактор с псевдоожиженным слоем по п. 1 или 2, в котором циклон включает в себя одну или несколько групп циклонов, при этом каждая группа циклонов содержит один, два или три циклона, соединенные последовательно.

8. Реактор с псевдоожиженным слоем по п. 1 или 2, в котором канал для быстрого прохода газа выполнен таким образом, чтобы время нахождения в нем потока составляло не более 4 сек.

9. Реактор с псевдоожиженным слоем по п. 8, в котором канал для быстрого прохода газа выполнен таким образом, чтобы время нахождения в нем потока составляло не более 3 сек.

10. Способ получения олефинов из оксигенатов с использованием реактора с псевдоожиженным слоем в соответствии с любым из пп. 1-9, включающий стадии:
ввода сырьевого потока, содержащего оксигенат и разбавитель, в зону плотной фазы в нижней части реактора с псевдоожиженным слоем через впускной распределитель сырья, при этом в сырьевом потоке в присутствии катализатора происходит реакция таким образом, что часть сырья превращается в низшие олефины, а часть катализатора дезактивируется из-за отложения на нем кокса;
направления реакционной смеси, содержащей низшие олефины, непрореагировавшее сырье и катализатор, из зоны плотной фазы снизу вверх в лифт-реактор, в котором в присутствии катализатора происходит дальнейшая почти полная конверсия непрореагировавшего сырья с получением в результате потока выходящего продукта лифт-реактора, содержащего, в основном, низшие олефины и катализатор;
ввода выходящего потока продукта лифт-реактора непосредственно в зону разделения в верхней части реактора с псевдоожиженным слоем, сначала в устройство для быстрого разделения газа и твердой фазы, в котором отделяется большая часть катализатора, затем, через канал для быстрого прохождения газа, в циклон, в котором отделяется оставшийся катализатор, после чего газ направляют в газосборную камеру и затем отводят через выпускной патрубок реактора, при этом весь отделенный катализатор опускается в камеру осаждения в нижней части зоны разделения;
рециркуляции части катализатора из камеры осаждения обратно в слой плотной фазы через трубопровод рециркуляции катализатора;
отвода части дезактивированного катализатора через трубопровод отвода катализатора из камеры осаждения и/или зоны плотной фазы в устройство регенерации катализатора и осуществления в нем регенерации катализатора, и затем
возвращения части регенерированного катализатора из устройства для регенерации катализатора в зону плотной фазы через трубопровод возврата катализатора,
причем при прохождении зоны плотной фазы газовый поток имеет приведенную скоростью потока в интервале 0,1-2 м/сек и время пребывания в зоне плотной фазы в интервале 0,5-20 сек, при прохождении через лифт-реактор газовый поток имеет приведенную скорость потока, находящуюся в интервале 2-20 м/сек, время нахождения газового потока в лифт-реакторе находится в интервале 0,3-5 сек и время нахождения газового потока в канале для быстрого прохождения составляет не более 5 сек.

11. Способ по п. 10, дополнительно включающий отвод теплоты реакции и/или подавления обратного смешивания газа и твердого вещества с помощью внутренних элементов, размещенных в зоне плотной фазы.

12. Способ по п. 10 или 11, в котором при прохождении зоны плотной фазы газовый поток имеет приведенную скорость потока в интервале 0,2-1,5 м/сек, и время пребывания в зоне плотной фазы в интервале 1-15 сек, при прохождении через лифт-реактор газовый поток имеет приведенную скорость потока, находящуюся в интервале 4-18 м/сек, время нахождения газового потока в лифт-реакторе находится в интервале 0,4-4 сек, и время нахождения газового потока в канале для быстрого прохождения составляет не более 4 сек.

13. Способ по п. 12, в котором при прохождении зоны плотной фазы газовый поток имеет приведенную скорость потока в интервале 0,3-1,2 м/сек и время пребывания в зоне плотной фазы в интервале 2-10 сек, при прохождении через лифт-реактор газовый поток имеет приведенную скорость потока, находящуюся в интервале 5-15 м/сек, время нахождения газового потока в лифт-реакторе находится в интервале 0,5-3 сек, и время нахождения газового потока в канале для быстрого прохождения составляет не более 3 сек.

14. Способ по п. 10 или 11, дополнительно включающий ввод отпарного газа через распределитель отпарного газа в камеру осаждения с целью отпаривания катализатора, при этом отпарной газ представляет собой азот или водяной пар, предпочтительно водяной пар, и прохождение отпаренной смеси в циклон через направляющий трубопровод для отпаренной смеси, размещенный в верхней части камеры осаждения.

15. Способ по п. 10 или 11, в котором катализатор выбирают из группы, состоящей из SAPO-5, SAPO-11, SAPO-17, SAPO-41. SAPO-34 и SAPO-41.

16. Способ по п. 15, в котором катализатор представляет собой SAPO-34.

17. Способ по п. 15, в котором в реакторе с псевдоожиженным слоем температура реакции находится в интервале 300-600°C, а реакционное давление находится в интервале 0,05-1 МПа абс.

18. Способ по п. 17, в котором температура реакции находится в интервале 400-550°C, а реакционное давление находится в интервале 0,1-0,5 МПа абс.

19. Способ по п. 10 или 11, в котором оксигенаты выбирают из группы, состоящей из метанола, этанола, пропанола, диметилового эфира, диэтилового эфира, дипропилового эфира и их смеси; разбавителем является азот или водяной пар; и олефины выбирают из группы, состоящей из этилена, пропилена, бутилена и их смеси.

20. Способ по п. 19, в котором огсигенаты представляют собой метанол и/или диметиловый эфир, растворитель представляет собой азот или водяной пар и олефины представляют собой этилен и/или пропилен.

21. Способ по п. 10 или 11, дополнительно включающий ввод реакционной смеси из реактора с псевдоожиженным слоем в аппарат для обработки полученных продуктов с целью их разделения отделения и/или очистки для получения конечных товарных олефинов.



 

Похожие патенты:

Настоящее изобретение относится к способу приготовления олефинового продукта, содержащего этилен и/или пропилен, который содержит следующие этапы: a) выполняют паровой крекинг парафинового сырья, содержащего C2-C5 парафины, в условиях крекинга, включающих температуру в диапазоне от 650 до 1000°C, в зоне крекинга с получением отходящего потока установки крекинга, содержащего олефины; b) превращают оксигенатное сырье в системе конверсии оксигенат-в-олефины, содержащей реакционную зону, в которой оксигенатное сырье контактирует с катализатором превращения оксигената в условиях превращения оксигената, включающих температуру в диапазоне от 200 до 1000°C и давление от 0,1 кПа до 5 МПа, с получением отходящего потока конверсии, содержащего этилен и/или пропилен; c) объединяют, по меньшей мере, часть отходящего потока установки крекинга и, по меньшей мере, часть отходящего потока конверсии с получением объединенного отходящего потока и выделяют поток олефинового продукта, содержащий этилен и/или пропилен, из объединенного отходящего потока, где отходящий поток установки крекинга и/или отходящий поток конверсии содержит C4 фракцию, содержащую ненасыщенные соединения, и где данный способ дополнительно содержит, по меньшей мере, частичное гидрирование, по меньшей мере, части данной C4 фракции с получением, по меньшей мере, частично гидрированного C4 сырья, и возврат, по меньшей мере, части, по меньшей мере, частично гидрированного C4 сырья в качестве возвращаемого сырья рециркуляции на этап a) и/или этап b).

Изобретение относится к новому способу получения содержащего фосфор катализатора, включающему следующие стадии: (a) нанесение содержащего фосфор соединения на цеолит, (b) кальцинирование модифицированного цеолита, (c) обработка кальцинированного цеолита, полученного на стадии (b), водным раствором или водой для удаления части, в частности, по меньшей мере 50 мас.%, предпочтительно по меньшей мере 70 мас.%, особенно предпочтительно от 80 до 95 мас.%, содержащих фосфор компонентов, и необязательное проведение дополнительного кальцинирования, (d) смешивание материала, полученного на стадии (с), со связующим, (e) формование смеси связующее-цеолит, полученной на стадии (d), и (f) кальцинирование формованного материала, полученного на стадии (е), где цеолит имеет соотношение кремний:алюминий в диапазоне от 50 до 250.

Настоящее изобретение относится к способу получения олефинов, включающему: а) паровой крекинг включающего этан сырья в зоне крекинга и в условиях крекинга с получением выходящего из зоны крекинга потока, включающего по меньшей мере олефины и водород; b) конверсию оксигенированного сырья в зоне конверсии оксигената-в-олефины в присутствии катализатора с получением выходящего из зоны оксигената-в-олефины (ОТО) потока по меньшей мере из олефинов и водорода; c) объединение по меньшей мере части выходящего из зоны крекинга потока и части выходящего из зоны ОТО потока с получением объединенного выходящего потока; и d) отделение водорода от объединенного выходящего потока, причем образуется по меньшей мере часть оксигенированного сырья за счет подачи водорода, полученного на стадии d), и сырья, содержащего оксид углерода и/или диоксид углерода, в зону синтеза оксигенатов и получения оксигенатов.

Изобретение относится к технологии нефтехимического синтеза, а именно к способам получения изопрена из изобутилена и формальдегида или веществ, являющихся их источниками, например 4,4-диметил-1,3-диоксана и триметилкарбинола.

Изобретение относится к технологии нефтехимического синтеза, а именно к способам получения изопрена из изобутилена и формальдегида или веществ, являющихся их источниками, например 4,4-диметил-1,3-диоксана и триметилкарбинола.

Изобретение относится к технологии нефтехимического синтеза, а именно к способам получения изопрена из изобутилена и формальдегида или веществ, являющихся их источниками, например 4,4-диметил-1,3-диоксана и триметилкарбинола.
Изобретение относится к способу получения изопрена, включающему конденсацию изобутилена с водным раствором формальдегида в присутствии кислотного катализатора при температуре 80-110°С, давлении 15-25 атм, разделение реакционной массы на масляный и водный слои, упарку водного слоя, добавление к остатку после упарки исходного водного раствора формальдегида и рециркуляцию полученной смеси в зону конденсации, выделение из масляного слоя фракции 4,4-диметил-1,3-диоксана с последующим жидкофазным разложением ее в присутствии третичного бутилового спирта и/или изобутилена в изопрен при повышенной температуре и давлении.

Изобретение относится к способу и установке получения концентрата ароматических углеводородов из легких алифатических углеводородов и их смесей с оксигенатами. При этом согласно способу исходное сырье подают в два последовательно соединенных реакционных блока - первый и второй с цеолитовыми катализаторами на основе группы пентасилов, причем реакционные блоки отличаются условиями конверсии углеводородов в ароматические, разделяют полученную после реакционных блоков смесь на жидкую, и газовую фракции, подают газовую фракцию на вход первого и второго реакционного блока.

Изобретение относится к каталитическому превращению возобновляемого сырья - продуктов ферментации биомассы (этанол, сивушные масла) и их смесей с растительным маслом в алкан-ароматическую фракцию C3-C11+, которая может быть использована для получения компонентов топлив.

Изобретение относится к способу получения катализатора на основе кристаллического алюмосиликата типа пентасил, включающему стадии: (a) обработка гидрата оксида алюминия водным содержащим кислоту средством, (b) смешивание обработанного водным содержащим кислоту средством гидрата оксида алюминия со стадии (a) с H-цеолитом со средним диаметром первичных кристаллитов от 0,01 мкм и меньше 0,1 мкм, (c) формование смеси, полученной на стадии (b), путем экструзии, и (d) кальцинирование полученной на стадии (c) смеси, причем по меньшей мере 95 об.% частиц гидрата оксида алюминия (в пересчете на средний диаметр) меньше или равно 100 мкм.

Изобретение относится к вариантам способа получения низкомолекулярных олефинов путем конверсии сырьевого потока, содержащего монооксид углерода и водород, с применением нанесенного катализатора на основе железа, в котором обеспечивают каталитическую композицию, содержащую железосодержащие частицы, диспергированные на подложке, которая содержит α-оксид алюминия (α-Al2O3), причем указанная подложка содержит по меньшей мере 1 масс.

Изобретение относится к способу получения олефина, который включает в себя стадии: подачи потока сырья, который содержит парафиновый углеводород, в секцию дистилляции; подачи потока, выходящего из секции дистилляции, в реактор и взаимодействие потока, выходящего из секции дистилляции, в реакторе с образованием потока, выходящего из реактора, содержащего олефин; подачи потока сырья отгонной колонны, который сообщается с и находится ниже по ходу потока от потока, выходящего из реактора, в отгонную колонну олефина; подачи потока, выходящего из отгонной колонны, в компрессор теплового насоса; и подачи потока, выходящего из компрессора теплового насоса, в секцию дистилляции и использования тепла из потока, выходящего из компрессора теплового насоса, для подогрева потока секции дистилляции, который содержит непрореагировавший парафиновый углеводород.

Изобретение относится к способу получения линейных α-олефинов путем олигомеризации этилена в реакторе в присутствии органического растворителя и гомогенного жидкого катализатора.

Настоящее изобретение относится к способу получения олефинов, включающему: а) паровой крекинг включающего этан сырья в зоне крекинга и в условиях крекинга с получением выходящего из зоны крекинга потока, включающего по меньшей мере олефины и водород; b) конверсию оксигенированного сырья в зоне конверсии оксигената-в-олефины в присутствии катализатора с получением выходящего из зоны оксигената-в-олефины (ОТО) потока по меньшей мере из олефинов и водорода; c) объединение по меньшей мере части выходящего из зоны крекинга потока и части выходящего из зоны ОТО потока с получением объединенного выходящего потока; и d) отделение водорода от объединенного выходящего потока, причем образуется по меньшей мере часть оксигенированного сырья за счет подачи водорода, полученного на стадии d), и сырья, содержащего оксид углерода и/или диоксид углерода, в зону синтеза оксигенатов и получения оксигенатов.

Изобретение относится к способу получения олефинов C2-C4 из диметилового эфира при повышенной температуре в присутствии катализатора. При этом катализатор предварительно измельчают механически, затем суспендируют в углеводородах, выкипающих при температуре выше 320°C, и диспергируют полученную суспензию ультразвуком до получения частиц катализатора размером не более 1 мкм, затем катализатор восстанавливают в токе гелия при температуре до 400°С и проводят синтез олефинов в условиях протока сырья, содержащего до 100 мас.% диметилового эфира, через реактор типа сларри.

Изобретение относится к способу получения высокооктановых углеводородных смесей, содержащих димеры нормальных бутиленов, из углеводородных смесей, содержащих нормальные бутилены, при повышенной температуре и давлении, обеспечивающем протекание процесса в жидкой фазе, в присутствии мелкозернистого термостойкого сульфокатионита в две стадии с последующей ректификацией непрореагировавших углеводородов из реакционной смеси от продуктов реакции.

Изобретение относится к способу быстрого охлаждения потока, выходящего из реактора для превращения метанола в олефины. Способ включает подачу указанного выходящего потока в колонну быстрого охлаждения; подачу потока циркулирующей воды в колонну быстрого охлаждения и стекание потока вода в колонне каскадами вниз; распыление второго потока воды для образования факела распыла из капель воды, причем указанный факел распыла направляют в каналы для пара, через которые проходят выходящие из реактора потоки, при этом факел распыла распыляется непосредственно над отверстиями тарелок, расположенных в колонне быстрого охлаждения; и контактирование выходящего из реактора потока с потоком воды и факелом распыла из водяных капель для удаления частиц катализатора из выходящего потока, при этом образуются быстро охлажденный выходящий из реактора поток и отводимый из колонны поток воды и твердых частиц.

Изобретение относится к устройству для получения непредельных углеводородов из углеводородного сырья. Устройство состоит из генератора горячих газов, патрубков подачи окислителя и горючего, узла зажигания, реакционной камеры, снабженной узлом подачи углеводородного сырья, закалочной камеры, снабженной патрубками подачи закалочного компонента.

Изобретение относится к способу производства компонента топлива из биоизопреновой композиции. Способ включает в себя химическое преобразование изопрена в биоизопреновой композиции до неизопреновых соединений посредством: (a) нагревания биоизопреновой композиции или воздействия на нее каталитическими условиями, подходящими для димеризации изопрена с образованием димера изопрена с последующей каталитической гидрогенизацией этого димера изопрена с образованием С10-насыщенного компонента топлива; или (b) (i) частичной гидрогенизации биоизопреновой композиции для производства изоамилена, (ii) димеризации изоамилена с моноолефином, выбранным из группы, состоящей из изоамилена, пропилена и изобутена, с образованием двойного соединения и (iii) полной гидрогенизации этого двойного соединения с получением компонента топлива.

Изобретение относится к способу проведения реакций дегидрирования с последующей абсорбционной очисткой газов, при этом за абсорбционной очисткой газов следует стадия снятия давления в резервуаре мгновенного испарения при высоком давлении, который снабжен массообменными элементами, причем эту стадию проводят при использовании горючего газа, протекающего через массообменные элементы навстречу направлению силы тяжести, который проходит через резервуар мгновенного испарения при высоком давлении противотоком по отношению к растворителю, подвергнутому снятию давления, так что абсорбированные углеводороды поглощаются горючим газом.

Изобретение относится к каталитическому крекингу углеводородов. Способ включает стадию реакции крекинга в реакторе с восходящим потоком с псевдоожиженным слоем, стадию разделения крекированных углеводородов и закоксованного катализатора, стадию фракционирования крекированных углеводородов и стадию регенерирования указанного закоксованного катализатора, где исходные материалы углеводородов вводят в реактор с восходящим потоком на катализатор, частично дезактивированный посредством предварительного закоксовывания по меньшей мере его части в том же самом реакторе с восходящим потоком, так что температура реакции у эффлюентов, покидающих указанный реактор, изменяется от 470 до 600°С, причем данное предварительное закоксовывание может осуществляться посредством введения по меньшей мере одного углеводородного соединения, имеющего температуру кипения равную или более высокую чем 350°С, на по меньшей мере часть регенерированного катализатора, ограниченную по меньшей мере одной зоной, определяемой посредством внутреннего устройства, расположенного в нижней части реактора с восходящим потоком, при этом исходные углеводородные материалы для переработки вводят ниже по потоку после верхнего конца внутреннего устройства в указанном реакторе относительно направления течения катализатора внутри реактора.
Наверх