Интерполирующий преобразователь интервала времени в цифровой код

Изобретение относится к измерительной технике и может быть использовано для прецизионного измерения однократных интервалов времени. Устройство содержит кольцевой генератор импульсов, один из выходов которого присоединен к первому входу счетчика импульсов, первый и второй регистры с объединенными информационными входами, выходами связанные через соответственно первый и второй шифраторы с соответствующими входами блока вычитания, а также триггер, один вход которого соединен с зажимом сигнала «Старт», а второй - с зажимом сигнала «Стоп» и тактовым входом третьего регистра, у которого информационные входы подключены к выходам счетчика импульсов, вторым входом присоединенного к выходу триггера. Также дополнительно введены арифметический блок, четвертый регистр, информационные входы которого соединены с соответствующими выходами кольцевого генератора импульсов, а выходы - с соответствующими объединенными информационными входами первого и второго регистров, вентиль ИЛИ, посредством которого тактовый вход четвертого регистра связан с зажимами сигналов «Старт» и «Стоп», и блок контроля периода кольцевого генератора импульсов, вход которого объединен с первым входом счетчика импульсов. При этом тактовые входы первого и второго регистров подключены к зажимам сигналов соответственно «Старт» и «Стоп» через ответствующие первый и второй элементы задержки, а выходы блока вычитания, третьего регистра и блока контроля периода кольцевого генератора импульсов присоединены к соответствующим цифровым входам арифметического блока. Технический результат заключается в повышении точности преобразования интервала времени в цифровой код. 1 з.п. ф-лы, 2 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к технике измерения интервалов времени, в частности к устройствам для преобразования длительности однократных импульсов в цифровой код.

Уровень техники

Для измерения однократных интервалов времени применяются преобразователи время-код (ПВК) на основе счетчика импульсов, который заполняется импульсами генератора эталонной частоты в течение времени между стартовым и стоповым импульсами [1]. Недостаток устройств подобного типа заключается в ограниченной точности, поскольку методическая погрешность равна периоду эталонных импульсов.

Известны также устройства, реализующие тем или иным способом интерполяцию эталонного периода и позволяющие за счет этого повысить точность преобразования интервала времени в цифровой код. Это, прежде всего, нониусные преобразователи и преобразователи, использующие метод фазовой интерполяции.

Типовым представителем преобразователей первого типа является устройство, описанное в литературе [2], включающее пару автогенераторов с близкими периодами колебаний, один из которых работает непрерывно, а второй, работающий в старт-стопном режиме, запускается в моменты начала и окончания преобразуемого интервала. После этого подсчитывается число периодов генераторов до совпадения их импульсов во времени. Такой преобразователь отличается высокой точностью, однако имеет значительное «мертвое» время, в течение которого невозможно производить новый цикл преобразования.

Тот же недостаток свойствен и другой разновидности нониусных преобразователей - описанному в [3] дифференциальному интерполятору времени, в котором осуществляется пространственная развертка нониусного процесса. Устройство включает пару секционированных линий задержки, по которым распространяются подлежащие измерению сигналы, и множество триггеров, подключенных разноименными входами к соответствующим промежуточным отводам соответствующих линий задержки. Выходы всех триггеров соединены с входами постоянного запоминающего устройства, выполняющего преобразование зафиксированного триггерами термометрического кода в двоичный код.

Работающие на принципе фазовой интерполяции преобразователи формируют дополнительные точки отсчета внутри эталонного периода с помощью мультифазного кольцевого генератора (МКГ). Эти точки образуют субшкалу отсчета, по которой фиксируются временные позиции начала и окончания интервала внутри эталонного периода.

Известен цифровой интерполирующий измеритель интервала времени [4], который содержит эталонный генератор импульсов, выход которого присоединен через вентиль И к входу счетчика импульсов, при этом оставшийся вход вентиля И подключен к выходу триггера, входы которого служат входами сигналов пуска и останова устройства. Кроме того, имеется подключенная к выходу эталонного генератора последовательная цепь множества элементов задержки, выход каждого из которых соединен с входом сброса соответствующего дополнительного триггера, число которых равно числу элементов задержки. Выходы всех дополнительных триггеров присоединены к входам шифратора. Процесс измерения начинается после сброса счетчика импульсов и триггеров импульсом пуска, а завершается импульсом останова. Старшие разряды результата измерения образуются на выходах счетчика импульсов и отображают целое число эталонных периодов, укладывающихся в измеряемый интервал, а младшие разряды результата образуются на выходах шифратора и отображают дробную часть эталонного периода - остаток от деления интервала на эталонный период в единицах времени задержки элемента задержки. Недостаток данного аналога заключается в низкой точности измерения интервала времени, связанной с рассогласованием совокупной задержки всех элементов задержки и периода эталонного генератора.

Известен также цифровой преобразователь интервала времени на основе кольцевого генератора импульсов, множеством своих выходов присоединенного к входам измерительного модуля [5]. В данном устройстве не возникает проблемы рассогласования, поскольку сам кольцевой генератор и образован интерполирующими элементами задержки. Однако в этом аналоге приходится решать проблему стабилизации периода колебаний кольцевого генератора, выступающего в роли эталонного периода, что существенно усложняет устройство.

Среди известных аналогов наиболее близким по технической сущности к настоящему изобретению является устройство для измерения интервала времени по патенту РФ №2260830 [6]. Устройство-прототип содержит многофазный кольцевой генератор импульсов, один из выходов которого присоединен к первому входу счетчика импульсов, первый и второй регистры с объединенными информационными входами, выходами связанные через соответственно первый и второй шифраторы с соответствующими входами блока вычитания. Имеется также триггер, один вход которого соединен с зажимом сигнала «Старт», а второй - с зажимом сигнала «Стоп» и тактовым входом третьего регистра, у которого информационные входы подключены к выходам счетчика импульсов, вторым входом присоединенного к выходу триггера.

Недостатки устройства-прототипа связаны с нестабильностью периода кольцевого генератора импульсов и различием задержек переключения первого и второго регистров, что ограничивает его точность. Кроме того, структура устройства-прототипа не допускает его построения на основе универсальной программируемой вентильной матрицы, в которой нет средств стабилизации периода кольцевого генератора импульсов.

Раскрытие изобретения

Задачей изобретения является повышение точности цифрового преобразования однократных интервалов времени и упрощение структуры устройства, обеспечивающее его реализацию на основе программируемой вентильной матрицы.

Это достигается тем, что в отличие от известного технического решения в него дополнительно введены арифметический блок, четвертый регистр, информационные входы которого соединены с соответствующими выходами кольцевого генератора импульсов, а выходы - с соответствующими объединенными информационными входами первого и второго регистров, вентиль ИЛИ, посредством которого тактовый вход четвертого регистра связан с зажимами сигналов «Старт» и «Стоп», и блок контроля периода кольцевого генератора импульсов. Вход блока контроля периода кольцевого генератора импульсов объединен с первым входом счетчика импульсов, при этом тактовые входы первого и второго регистров подключены к зажимам сигналов соответственно «Старт» и «Стоп» через соответствующие первый и второй элементы задержки. Выходы блока вычитания, третьего регистра и блока контроля периода кольцевого генератора импульсов присоединены к соответствующим цифровым входам арифметического блока.

Такое усовершенствование устройства позволяет устранить необходимость в стабилизации периода кольцевого генератора импульсов, который вместо этого непрерывно измеряется, а результат измерения используется для последующего вычисления значения преобразуемого интервала времени. Введение четвертого регистра, триггерные разряды которого в условиях программируемой вентильной матрицы размещаются в тех же ячейках, что и каскады кольцевого генератора импульсов, повышает точность фиксации состояния кольцевого генератора импульсов в моменты поступления сигналов «Старт» и «Стоп».

Описание чертежей

На фиг. 1 представлена функциональная электрическая схема интерполирующего преобразователя интервала времени в цифровой код. Линии связи, отмеченные косой чертой, представляют собой многоразрядные цифровые шины.

На фиг. 2 приведены временные диаграммы сигналов в характерных узлах схемы, показанной на фиг. 1.

Осуществление изобретения

Устройство содержит первый 1, второй 2, третий 3 и четвертый 4 регистры, кольцевой генератор 5 импульсов, счетчик 6 импульсов, первый 7 и второй 8 шифраторы, блок 9 вычитания, триггер 10, вентиль 11 ИЛИ, элементы 12 и 13 задержки, зажимы 14 и 15 сигналов соответственно «Старт» и «Стоп», блок 16 контроля периода кольцевого генератора импульсов и арифметический блок 17.

Блок 16 контроля периода кольцевого генератора импульсов в предпочтительном варианте осуществления может включать счетчик 18 импульсов, опорный генератор 19, регистр 20 и делитель 21 частоты. При этом вход делителя 21 частоты служит входом блока 16 контроля периода кольцевого генератора импульсов, а его выходами являются выходы регистра 20.

Преобразованию подлежит интервал TX времени между не перекрывающимися во времени сигналами «Старт» и «Стоп», поступающими на зажимы соответственно 14 и 15. Устройство работает следующим образом.

Кольцевой генератор 5 импульсов непрерывно вырабатывает на своих N выходах последовательности импульсов формы «меандр» (фиг. 2 - диаграмма 5), смещенных друг относительно друга на время задержки его каскада tD, период импульсов составляет

Импульсы с одного из выходов этого генератора поступают на вход блока 16 контроля периода кольцевого генератора импульсов, где их период делителем 21 частоты умножится в D раз (D - модуль делителя 21 частоты). В результате на входе сброса R счетчика 18 импульсов образуются импульсы с длительностью TR=DTG/2, равной паузе между ними. В течение этого времени счетчик 18 импульсов заполняется импульсами опорного генератора 19, достигая значения

где To - период импульсов опорного генератора 19. Таким образом выполняется непрерывный контроль периода колебаний кольцевого генератора 5 импульсов, который определяется выражением

Очевидно, что время задержки одного каскада кольцевого генератора 5 импульсов, которое определяет размер субкванта в устройстве, будет равно

По фронтам сигналов «Старт» и «Стоп» (фиг. 2 - диаграммы 14, 15) текущие состояния множества выходов кольцевого генератора 5 импульсов в виде термометрических кодов записываются в регистр 4, после чего с задержкой элементов 12 и, соответственно, 13 переписываются из регистра 4 в регистры соответственно 1 и 2. Шифраторы 7 и 8 преобразуют термометрические коды регистров 1 и 2 в двоичные числа, отражающие позиции фронтов сигналов «Старт» и «Стоп» внутри периода кольцевого генератора 5 импульсов. Эти числа равны количествам субквантов tD, укладывающихся на интервале от начала периода генератора 5 до фронта соответствующего сигнала. За начало периода генератора 5 принимается фронт импульса на его первом выходе. Если обозначить зафиксированные таким образом позиции сигналов «Старт» и «Стоп» через n1 и n2, то установленный за шифраторами 7, 8 блок 9 вычитания образует их разность (n2 - n1), которая может быть как положительной, так и отрицательной.

Одновременно осуществляется подсчет числа импульсов кольцевого генератора 5 импульсов, которые успевают выработаться за время между сигналами «Старт» и «Стоп». Подсчет производится счетчиком 6 импульсов, работа которого разрешается сигналом триггера 10 (фиг. 2 - диаграмма 10), продолжительность которого равна преобразуемому интервалу времени. Результат подсчета (фиг. 2 - диаграмма 6), фиксируемый в регистре 3 в момент поступления сигнала «Стоп», составляет

Число K либо равно, либо на единицу больше полного числа периодов TG, укладывающихся на преобразуемом интервале TX.

Таким образом, на входах арифметического узла 17 после окончания преобразуемого интервала оказываются числа: М - с выхода блока 16 контроля периода кольцевого генератора импульсов; K - с выхода регистра 3; (n2-n1) - с выхода блока 9 вычитания. Арифметический блок 17 выполняет далее расчет интервала времени TX по формуле, отражающей разность моментов поступления сигналов «Стоп» и «Старт» (фиг. 2):

Литература

1. Хоровиц П., Хилл У. Искусство схемотехники: В 2-х т.Т. 2. Пер. с англ. - Изд. 3-е, стереотип.- М.: Мир, 1986. - 590 с.- с. 372, рис. 14.29.

2. Ратхор Т.С. Цифровые измерения. АЦП / ЦАП. - М.: Техносфера, 2006. - 392 с. - с. 25, рис. 2.4.

3. Differential time interpolator. - Патент США №4433919, МПК G04F 8/00. Опубл. 28.02.1984.

4. Шляпдин В.М. Цифровые измерительные устройства: Учебник для вузов. - М.: Высшая школа, 1981, с. 166, рис. 3.27.

5. Gated ring oscillator for a time-to-digital converter with shaped quantization noise. -Патент США №8138843, МПК H03K 3/03, G01R 23/175, G04F 10/04. Опубл. 20.03.2012.

6. Устройство для измерения интервала времени. - Патент РФ №2260830, МПК G04F 10/04. Опубл. 20.09.2005 (прототип).

1. Интерполирующий преобразователь интервала времени в цифровой код, содержащий кольцевой генератор импульсов, один из множества выходов которого присоединен к первому входу счетчика импульсов, первый и второй регистры с объединенными информационными входами, выходами связанные через соответственно первый и второй шифраторы с соответствующими входами блока вычитания, а также триггер, один вход которого соединен с зажимом сигнала «Старт», а второй - с зажимом сигнала «Стоп» и тактовым входом третьего регистра, у которого информационные входы подключены к выходам счетчика импульсов, вторым входом присоединенного к выходу триггера, отличающийся тем, что в него дополнительно введены арифметический блок, четвертый регистр, информационные входы которого соединены с соответствующими выходами кольцевого генератора импульсов, а выходы - с соответствующими объединенными информационными входами первого и второго регистров, вентиль ИЛИ, посредством которого тактовый вход четвертого регистра связан с зажимами сигналов «Старт» и «Стоп», и блок контроля периода кольцевого генератора импульсов, вход которого объединен с первым входом счетчика импульсов, при этом тактовые входы первого и второго регистров подключены к зажимам сигналов соответственно «Старт» и «Стоп» через соответствующие первый и второй элементы задержки, а выходы блока вычитания, третьего регистра и блока контроля периода кольцевого генератора импульсов присоединены к соответствующим цифровым входам арифметического блока.

2. Интерполирующий преобразователь интервала времени в цифровой код по п. 1, отличающийся тем, что блок контроля периода кольцевого генератора импульсов выполнен в виде счетчика импульсов, первым входом присоединенного к выходу опорного генератора, а вторым входом совместно с тактовым входом регистра - к выходу делителя частоты, причем вход делителя частоты служит входом блока контроля периода кольцевого генератора импульсов, выходами которого являются выходы регистра, информационные входы которого присоединены к соответствующим выходам счетчика импульсов.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для измерения времени задержки распространения сигнала цифровых интегральных микросхем.

Изобретение относится к измерительной технике. Преобразователь состоит из рециркулятора старт-импульса, рециркулятора стоп-импульса, первого и второго счетчиков импульсов, а также RS-триггера.

Изобретение относится к измерительной технике и может быть использовано в информационных, управляющих и навигационных системах для преобразования длительности коротких одиночных временных интервалов, заданных старт- и стоповым импульсами, в цифровой код с нано- и субнаносекундной дискретностью преобразования.

Изобретение относится к информационно-измерительной технике и может быть использовано для преобразования однократных временных интервалов наносекундной длительности в цифровой код в системах радиолокации и радионавигации.
Изобретение относится к информационно-измерительной технике и может быть использовано для цифрового преобразования однократных временных интервалов наносекундной длительности, заданных старт- и стоп-импульсами, с нано- и субнаносекундной дискретностью преобразования в системах навигации, управления, определения параметров интегральных схем, изучения различных физических и технологических процессов.

Изобретение относится к информационно-измерительной технике и может быть использовано в системах навигации, управления, позиционирования для преобразования в цифровой код длительности коротких одиночных(моно) импульсов с нано- и субнаносекундной дискретностью преобразования.
Изобретение относится к области измерительной техники и может быть использовано для цифрового преобразования однократных временных интервалов наносекундной длительности, заданных старт- и стоп-импульсами, с нано- и субнаносекундной дискретностью преобразования в системах навигации, управления, определении параметров интегральных схем, исследовании различных физических и технологических процессов.

Изобретение относится к области измерительной техники и может быть использовано в устройствах, в которых необходимо преобразование в цифровой код одиночных коротких временных интервалов, в диапазоне длительностей от несколько единиц наносекунд до несколько сотен наносекунд, с дискретностью преобразования менее одной наносекунды, например в системах радиолокации и радионавигации, лазерной дальнометрии.

Изобретение относится к области измерительной техники и может быть использовано для преобразования одиночных временных интервалов наносекундного диапазона длительностей в цифровой код в системах импульсной радиолокации и радионавигации.

Изобретение относится к информационно-измерительной технике и может быть использовано для преобразования однократных временных интервалов наносекундной длительности в цифровой код в системах радиолокации и радионавигации.

Изобретение относится к технике измерения интервалов времени, в частности к устройствам для преобразования длительности однократных импульсов в цифровой код. Устройство содержит кольцевой генератор импульсов, множеством своих выходов связанный с информационными входами первого регистра, одним из выходов - с первым входом счетчика импульсов, выходы которого подключены к соответствующим информационным входам второго регистра. Цифровые выходы первого и второго регистров соединены с соответствующими цифровыми входами арифметического блока. Причем выход первого регистра присоединен через шифратор, а второго регистра - непосредственно; триггер, выходом присоединенный к второму входу счетчика импульсов, и входные зажимы сигналов «Старт» и «Стоп». Дополнительно введен блок контроля периода кольцевого генератора импульсов, цифровым выходом присоединенный к соответствующему цифровому входу арифметического блока, а сам кольцевой генератор импульсов снабжен входом блокировки, подключенным к первому входу триггера и через первый формирователь импульсов - к входному зажиму сигнала «Старт». При этом входной зажим сигнала «Стоп» через второй формирователь импульсов подключен к тактовым входам обоих регистров и второму входу триггера, а первый и второй входы блока контроля периода кольцевого генератора импульсов соединены соответственно с одним из выходов кольцевого генератора импульсов и с выходом триггера. Технический результат заключается в повышении точности преобразования интервала времени в цифровой код и упрощении структуры. 1 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике и может быть использовано для построения цифровых преобразователей однократных наносекундных временных интервалов. Преобразователь имеет рециркулятор старт-импульса и рециркулятор стоп-импульса, выполненный на элементе ИЛИ, первый вход которого соединен с шиной «стоп-импульс» преобразователя, второй вход - с выходом линии задержки стоп-импульса, а выход - с первым входом элемента И, выход которого подключен к входу линии задержки стоп-импульса и к счетному входу счетчика импульсов, а рециркулятор старт-импульса содержит элемент ИЛИ, первый вход которого соединен с шиной «старт-импульс» преобразователя, второй вход - с выходом линии задержки старт-импульса, а выход - с первым входом (m+1)-входового элемента ИЛИ и со входом m-отводной линии задержки, m-выходов которой подключены к D-входам соответствующих из m D-триггеров и к соответствующим входам (m+1)-входовые элементы ИЛИ, выход которой подключен к С-входу дополнительного D-триггера и к первому входу элемента И, выход которого соединен со входом линии задержки старт-импульса, а второй вход - со вторым входом элемента И рециркулятора стоп-импульса и с инверсным выходом дополнительного D-триггера, D-вход которого подключен к счетному входу счетчика импульсов рециркулятора стоп-импульсов, а прямой выход - к С-входам m D-триггеров, R-входы которых соединены с управляющим входом счетчика импульсов рециркулятора стоп-импульса, с R-входом дополнительного D-триггера и с шиной «начальная установка» преобразователя. При этом линия задержки стоп-импульса рециркулятора стоп-импульса имеет время задержки, равное времени задержки линии задержки старт-импульса рециркулятора старт-импульса. Технический результат заключается в повышении быстродействия преобразования в m раз. 2 ил.

Изобретение относится к области радиоизмерений и может быть использовано при построении цифровых измерителей временных параметров периодических последовательностей импульсов. Технический результат, достигаемый при использовании настоящего изобретения, состоит, главным образом, в расширении функциональных возможностей способа и соответственно устройств его реализующих, за счет снижения погрешности измерений в условиях, когда усреднение классическим способом к повышению точности не приводит. Технический результат достигается, главным образом, за счет периодического изменения фазы счетных импульсов, заполняющих исследуемый временной интервал из последовательности повторяющихся временных интервалов, и усреднения единичных значений, каждое из которых получено при отличающейся фазе счетных импульсов. Основу устройств, реализующих способ, составляют управляемая линия задержки, счетный и арифметический блоки, а также счетчик, в упрощенном варианте - триггер, управляющий линией задержки. 4 н. и 12 з.п. ф-лы, 8 ил.

Изобретение относится к области измерительной и вычислительной техники и может использоваться, например, в многолучевых лазерных дальномерах и лазерных локаторах для измерения времени распространения лазерного излучения. Устройство включает канал измерения, состоящий из двух триггеров фиксации границ временного интервала, подключенных соответственно к управляющим входам двух мультивибраторов, выходы которых подключены к входам счетчиков импульсов и к входу фазового детектора, выход которого соединен со входом сброса триггеров фиксации границ временного интервала. Также в устройство введены генератор секундных импульсов, генератор опорной частоты, блок измерения опорной частоты, ко входам которого подключены выходы генератора секундных импульсов и генератора опорной частоты, контроллер, ко входам которого подключены выход блока измерения опорной частоты, выход фазового детектора и выходы счетчиков. Первый выход контроллера подключен ко вторым входам мультивибраторов для включения режима принудительной генерации, а второй выход контроллера является выходом измерителя временных интервалов, блок измерения частоты мультивибраторов, ко входам которого подключены выходы мультивибраторов и выход генератора опорной частоты, а выход блока измерения частоты мультивибраторов подключен к входу контроллера, который производит вычисление измеренного временного интервала. Технический результат заключается в упрощении устройства. 1 з.п. ф-лы, 3 ил.

Изобретение относится к импульсной технике и может быть использовано в устройствах тестирования цифровых линий связи и распределенных систем контроля с микромощными датчиками. Техническим результатом является повышение точности и достоверности результатов при сокращении сложности измерений. Такой технический результат достигается измерением времени прохождения импульса по линии связи до несогласованной нагрузки и обратно по длительности выходного импульса формирователя, установленного на входе линии связи. При этом резистор на входе линии связи замыкается на время заряда распределенной емкости линии связи и размыкается для приема сигнала, отраженного от конца линии связи при замыкании ее нагрузки. 2 ил.
Наверх