Способ производства железоокисных пигментов и сульфата калиевых удобрений

Изобретение может быть использовано в химической промышленности. Для получения железоокисных пигментов готовят суспензию зародышей. На стадии окисления металлического лома в кислой среде для нейтрализации кислоты и регулирования pH используют 20% водный раствор гидроксида калия. Осуществляют многократную промывку пигмента. Стоки при концентрации сульфата калия 5-10% направляют в вакуумную кристаллизационную установку выпарки растворов. Загрязненную солями сульфата калия технологическую воду методом выпаривания и конденсации преобразуют в чистую воду с концентрацией солей 150 г/м3. Воду используют в производстве железоокисных пигментов. Полученный при выпаривании сульфат калия используют в качестве калиевого удобрения. Изобретение позволяет исключить образование загрязненных сточных вод, твердых отходов и выбросов паров аммиака, получить сульфат калия в качестве дополнительного продукта. 1 ил.

 

Изобретение относится к химической промышленности и может быть использовано при производстве железоокисных пигментов и удобрения сульфата калия.

В настоящее время производитель железоокисных пигментов зародышевым способом по малоотходной технологии в России один - ОАО «Ярославский пигмент» г. Ярославль. Недостатком данного производства является большое количество загрязненных технологических стоков солями сернокислого аммония, 196,5 м3 в сутки, и твердых отходов производства. Очистка тех. жидкости с промывки пигмента производится в рамном пресс-фильтре, что не дает требуемой очистки от химических загрязнении. Так как для окончательной промывки готового пигмента требуется только чистая вода, большая часть тех. жидкости 150 м3 в сутки, загрязненная солями сернокислого аммония, сбрасывается в коллектор очистных сооружений, чистую воду приходится покупать, а полученные твердые отходы, загрязненные сернокислым аммонием, после фильтр-пресса направляются на полигон твердых бытовых отходов. Также при производстве пары аммиака (NH3) попадают в атмосферу.

Известен патент на изобретение UA 75224, в котором описан способ получения красного железоокисного пигмента, для которого на стадии синтеза получают сначала желтый пигмент, потом пигмент смешанного типа (желтый и черный), который после прожаривания при температурах 750-800°C имеет яркий красный цвет с хорошими пигментными свойствами: кроющей способностью - 4,6 г/м3, маслоемкостью - 20,6 г/100 г пигмента и диспергированностью - 43 мкм.

Недостатком патента является: большое количество загрязненных технологических сточных вод, образующихся при промывке пигмента, которые в виду загрязненности солями сернокислого аммония не могут быть использованы обратно в тех. процессе, так как для финишной отмывки требуется только чистая вода; множество твердых производственных отходов, образующихся при фильтрации сточных вод перед сбросом их в коллектор канализации; большое количество выбросов паров аммиака в атмосферу.

Наиболее близким решением является патент на изобретение UA 19949, в котором описан способ получения желтого железоокисного пигмента, включающий приготовление суспензии зародышей путем смешивания водного раствора сульфата двухвалентного железа и щелочи, окисление кислородосодержащим воздухом полученного гидрата закиси железа с последующим синтезом, фильтрацией, сушкой, разломом и упаковкой. Недостатком патента является: большое количество загрязненных технологических сточных вод, образующихся при промывке пигмента, которые в виду загрязненности солями сернокислого аммония не могут быть использованы обратно в тех. процессе, так как для финишной отмывки требуется только чистая вода; множество твердых производственных отходов, образующихся при фильтрации сточных вод перед сбросом их в коллектор канализации; большое количество выбросов паров аммиака в атмосферу.

Задачей, на решение которой направлен заявляемый проект, является создание экологически чистого производства, исключение загрязненных сбросов технологических вод 17.5 м3/т солью сернокислого аммония (141.5 кг/т), исключение парообразных выбросов аммиака 0.5 кг/т и получение из твердых производственных отходов товарного продукта, удобрения сульфата калия (K2SO4).

Техническим результатом изобретения является экологический и экономический фактор при производстве железоокисных пигментов зародышевым способом окислением кислородом воздуха металлического железа в присутствии специально приготовленных затравочных кристаллов (зародышей) (см. Ермилов П.И., Индейкин Е.А., Толмачев И.А. Пигменты и пигментированные материалы. Химия 1987, с. 97-100). Способ производства железоокисных пигментов и удобрения сульфата калия с использованием водного раствора гидроксида калия отличается тем, что синтез железоокисных пигментов осуществляется в определенных параметрах pH от 2.5 до 8. Для процесса окисления железа подается сжатый воздух, это приводит к уменьшению pH, для восстановления требуемых параметров pH на каждой стадии окисления в реактор подается 20% раствор (КОН). Подача сжатого воздуха и (КОН) подается автоматически в соответствии заданной программы. При завершении синтеза осуществляют многократную промывку пигмента, а стоки при концентрации сульфата калия 5-10% направляют в вакуумную кристаллизационную установку выпарки растворов, где загрязненную солью сульфата калия технологическую воду методом выпаривания и конденсации преобразуют в чистую воду, которую далее используют в производстве железоокисных пигментов, а некоторое количество воды с концентрацией соли 150 г/м3 используют для приготовления раствора КОН, полученный при выпаривании сульфат калия используют в качестве калиевого удобрения как дополнительный товарный продукт.

Осуществление изобретения

Способ исключения загрязненных технологических сточных вод, твердых технологических отходов, выбросов паров аммиака в атмосферу, производство товарного продукта из твердых технологических отходов происходит путем определенных изменений в технологическом процессе производства железоокисных пигментов. Замена аммиака (NH3) на калия гидроксид (КОН) и внедрение вакуумной выпарной кристаллизационной установки, исключающей сбросы технологических стоков в коллектор канализации и восстановление соли сульфата калия. Этим добиваемся требуемой экологичности и экономичности данного производства.

Действующее производство железоокисных пигментов, в частности ОАО «Ярославский пигмент», использует в больших количествах аммиачную воду, для синтеза, приготовления зародышей и доосаждения, 268 кг/т продукции, (NH4OH) - 25%, что несет ряд трудностей в хранении, доставке и в экологичности производства. При использовании аммиачной воды технологические стоки получаются с солями сернокислого аммония, 17.5 м3/т продукции, 2FeSO4+4NH4OH=>2Fe(OH)2+2(NH4)2SO4 (см. Ермилов П.И., Индейкин Е.А., Толмачев И.А. Пигменты и пигментированные материалы. Химия 1987), которые в дальнейшем сливаются в коллектор.

Для решения этой проблемы меняем 25% аммиачную воду (NH4OH), применяемую в досаждении, в синтезе в приготовлении зародышей на калия гидроксид (КОН), в пропорции 268 кг/т 25% аммиачной воды (NH4OH) на 95 кг/т твердого калия гидроксида (КОН), (2KOH+H2SO4=K2SO4+2H2O). Тем самым уходим от выбросов паров аммиака в атмосферу, от перевозки в ж/д цистернах 25% аммиачной воды в больших количествах, 30 тонн в сутки, или содержания станции концентрированного аммиака, требуемой регистрации Росстехнадзора, в этом случае технологические стоки получаются с солью сульфата калия, при этом основной продукт железоокисный пигмент не меняет своих свойств и соответствует ГОСТ 18172-80 и техническим характеристикам железоокисных пигментов марки Ж-0; Ж-1.

Вместо рамного вакуумного пресс-фильтра, устанавливающегося перед сбросом технологических вод, для фильтрации остатков пигмента, устанавливают вакуумную выпарную кристаллизационную установку (ВВКУ). Вся загрязненная солью сульфата калия (K2SO4) технологическая вода, проходя через ВВКУ, методом выпаривания и конденсации, преобразуется в чистую воду, которую используют в производстве железоокисных пигментов, а некоторое количество воды с концентрацией солей 150 г/м3 используют для получения раствора КОН.

Выпаренная чистая оборотная вода поступает обратно в тех. процесс при температуре 50-60°C и используется для приготовления рабочих растворов, приготовления зародышей, синтезе, для промывки пигментной пасты на участке фильтрации. Так как оборотная вода поступает с температурой 50-60°C, это существенно экономит энергоресурсы для нагрева реакционной массы.

При выпаривании тех. вод с концентрацией (K2SO4) 10% из выпаренной соли получается дополнительный товарный продукт, сульфат калия (K2SO4), использующийся как удобрения в сельском хозяйстве.

Экологический фактор

A. При замене аммиачной воды (NH4OH) на калия гидроксид (КОН) исчезают вредные пары аммиака 0.5 кг/т продукции, выделяющиеся при изготовлении пигментов.

Б. Все технологические загрязненные стоки 17.5 м3/т продукции преобразуются в чистую воду, методом выпаривания, далее использующуюся в производстве железоокисных пигментов.

B. Из выпаренной соли получается товарный продукт, удобрения сульфата калия (K2SO4).

Технологический фактор

A. Исчезает потребность в перевозке в ж/д цистернах 25%-й аммиачной воды 30 т/сутки, или обслуживание аммиачной станции, поднадзорной Росстехнадзору для хранения концентрированного аммиака.

Б. Исчезает потребность в пополнении чистой технической воды для производства пигментов 525 м3 в сутки.

B. Исчезает потребность в утилизации твердых бытовых отходов после очистки тех. жидкости.

Г. Для нагрева реакторов до температуры 65°C требуется меньше энергоресурсов.

Д. Получается дополнительный товарный продукт - удобрения сульфата калия.

Способ может быть реализован с использованием вакуумной выпарной кристаллизационной установки (см. чертеж, где показана двухкорпусная ВВКУ упарки растворов K2SO4 с парокомпрессором и поверхностным конденсатором).

Исходный раствор сульфата калия с массовой концентрацией 5-10% из бака 1 насосом 2 прокачивается через пластинчатый конденсатор 3 - подогреватель, где нагревается вторичным паром выпарного аппарата от 20 до 75°C, и смешанный с упаренным циркулирующим в аппарате раствором поступает в форсунку, размещенную в верхней части аппарата. Форсунка обеспечивает распределение раствора по трубкам, создавая на их внутренней поверхности нисходящую пленку. Пластинчатый подогреватель 3 для нагрева исходного раствора обладает высоким коэффициентом теплопередачи, малой металлоемкостью, возможностью очистки поверхностей пластин от отложений, но имеет повышенное сопротивление протоку сред и требует высокой квалификации обслуживания.

В межтрубное пространство греющей камеры выпарного аппарата 4 подается рабочий пар, при конденсации которого выделяется тепло для выпаривания воды из циркулирующего раствора. Требуемая плотность орошения трубок выпарного аппарата обеспечивается циркуляцией упаренного раствора насосом 5. Упаренный до 16,7 масс. % при 80°C раствор передается во второй корпус - кристаллизатор 9, в греющую камеру которого поступает часть вторичного пара выпарного аппарата.

Принятое распределение раствора по поверхности теплообменных труб с помощью форсунки и рециркуляции раствора обеспечивают эксплуатационную надежность работы выпарного аппарата, оптимальный режим концентрирования раствора, снижают накипеобразование на греющих трубках и забивку распределительных устройств формирования пленки.

Эти технические решения проверены в работе выпарных аппаратов промышленного масштаба в установках глиноземного производства.

Для уменьшения расхода греющего рабочего пара в технологической схеме предусмотрен парокомпрессор 6, обеспечивающий повторное использование части вторичного пара (~800 кг/ч).

Во втором корпусе под более глубоким вакуумом происходит практически полное удаление воды из раствора при температуре 58-60°C. Раствор из выпарного аппарата смешивается с осветленным маточным раствором, подогревается в греющей камере кристаллизатора 8, куда подается циркуляционным насосом 7, прокипает и охлаждается в кристаллизаторе с выделением кристаллов. Суспензия из кристаллизатора насосом 10 откачивается в сгуститель 11.

Сгущенная суспензия из сгустителя самотеком поступает на фильтрующую центрифугу 12, откуда кристаллы направляются потребителю или на сушильную установку для дальнейшего обезвоживания.

Осветленный маточный раствор из сгустителя 11 и фугат из центрифуги 12 собираются в баке 13 и насосом 18 возвращаются на всас циркуляционного насоса 7, где смешиваются с упаренным и циркулирующим в кристаллизаторе 8 маточным раствором.

Вторичный пар из выпарного вакуум-кристаллизатора конденсируется в поверхностном конденсаторе 17 оборотной или речной охлаждающей водой. Расход воды зависит от назначенной температуры после конденсатора. Конденсат вторичного пара кристаллизатора собирается вместе с конденсатом вторичного пара выпарного аппарата 4, подогревателя 3 и рабочего пара в баке 14 и насосом 15 откачивается в технологию. Массовая концентрация солей в конденсате не превышает 160 г/м3.

Вакуум в установке создается конденсацией вторичного пара выпарных аппаратов и водокольцевым вакуум-насосом 16.

В предлагаемой схеме применены только центробежные насосы вместо традиционных для "выпарки на кристалл" энерго- и металлоемких осевых насосов, но остается неиспользованным около 800 кг/ч 80-ти градусного вторичного пара выпарного аппарата, который можно использовать в технологии.

Выпарной аппарат падающей пленкой обеспечивает концентрирование раствора, выпаривая из него основную массу воды. Выпарные аппараты применяемой конструкции отличаются надежностью и эффективностью работы, имеют высокий коэффициент теплопередачи, малую металлоемкость и объем раствора, а также отличается применением для создания требуемой плотности орошения серийных центробежных насосов. Чтобы обеспечить плотность орошения и надежность работы, предусмотрена рециркуляция раствора. Принятая конструкция удовлетворяет следующим требованиям для переработки растворов:

- снижение интенсивности накипеобразования в теплообменных трубках созданием пленки упариваемого раствора на теплообменной поверхности;

- снижение уноса капель раствора со вторичным паром;

- получение конденсата вторичного пара с солесодержанием не более 150 г/м3;

- снижение зарастания теплообменных труб солями;

- возможность очистки теплообменных труб промывкой, механическим способом или гидравлическим способом.

Способ производства железоокисных пигментов и калиевых удобрений с использованием водного раствора гидроксида калия, отличающийся тем, что готовят суспензию зародышей, на стадии окисления металлического лома в кислой среде для нейтрализации кислоты и регулирования pH используют 20% водный раствор гидроксида калия, осуществляют многократную промывку пигмента, а стоки при концентрации сульфата калия 5-10% направляют в вакуумную кристаллизационную установку выпарки растворов, где загрязненную солями сульфата калия технологическую воду методом выпаривания и конденсации преобразуют в чистую воду с концентрацией солей 150 г/м3, которую далее используют в производстве железоокисных пигментов, а полученный при выпаривании сульфат калия используют в качестве калиевого удобрения как дополнительный товарный продукт.



 

Похожие патенты:
Изобретение может быть использовано в лакокрасочной промышленности, в производстве строительных материалов. Для получения коричневого железоокисного пигмента прокаливают красный шлам - отход глиноземного производства.
Изобретение может быть использовано в химической промышленности. Железооксидный пигмент содержит оксид железа(III) α-модификации с пластинчатой формой кристаллов.

Изобретение может быть использовано в производстве декоративных строительных материалов. Способ получения железоокисных пигментов включает отделение фракции крупностью до 10 мм из шлама газоочистки мелкодисперсной пыли металлургического производства, ее обезвоживание путем сушки и последующее измельчение.
Изобретение может быть использовано в химической промышленности. Способ получения магнетита включает окисление железа при проведении электролиза.

Изобретение может быть использовано при получении железооксидных пигментов. Способ комплексной переработки мартит-гидрогематитовой руды включает грохочение руды, магнитную сепарацию с получением магнитной и немагнитной фракций, измельчение, гидравлическую классификацию, сгущение и сушку.
Изобретение относится к области защиты металлов от коррозии лакокрасочными покрытиями. Противокоррозионный пигмент получают на основе отхода электропечей литейного производства - аспирационной пыли, содержащей, мас.%: Fe2O3 63,9-70,0, FeO 7,0-11,32, SiO2 8,9-16, Al2O3 1,45-3,12.

Изобретение относится к получению биосовместимых магнитных наночастиц и может быть использовано для терапевтических целей, в частности для борьбы с раком. Способ получения наночастиц, включающих оксид железа и кремнийсодержащую оболочку и имеющих значение удельного коэффициента поглощения (SAR) 10-40 Вт на г Fe при напряженности поля 4 кА/м и частоте переменного магнитного поля 100 кГц, содержит следующие стадии: А1) приготовление композиции по меньшей мере одного железосодержащего соединения в по меньшей мере одном органическом растворителе; В1) нагрев композиции до температуры в диапазоне от 50°C до температуры на 50°C ниже температуры реакции железосодержащего соединения согласно стадии С1 в течение минимального периода 10 минут; С1) нагрев композиции до температуры между 200°C и 400°C; D1) очистку полученных частиц; Е1) суспендирование очищенных наночастиц в воде или водном растворе кислоты; F1) добавление поверхностно-активного соединения в водный раствор, полученный согласно стадии E1); G1) обработку водного раствора согласно стадии F1) ультразвуком; H1) очистку водной дисперсии частиц, полученных согласно стадии G1); I1) получение дисперсии частиц согласно стадии H1) в смеси растворителя из воды и растворителя, смешивающегося с водой; J1) добавление алкоксисилана в дисперсию частиц в смеси растворителя согласно стадии I1); и К1) очистку частиц.

Изобретение относится к способу получения природных (несинтетических) железоокисных пигментов, которые могут использоваться в специальных антикоррозионных грунтовках, применяемых в том числе и для нужд кораблестроения с одновременным получением сырья для металлургической промышленности в виде брикетов.

Изобретение относится к области получения неорганических, в частности железооксидных, пигментов, применяемых для производства красок, которые могут найти применение в промышленности строительных материалов (для получения цветных бетонов, тротуарной плитки, грунтовок, эмалей, красок), а также к области утилизации отходов станций водоподготовки - шламов, выделенных из железистых подземных вод при их очистке для производственных и хозяйственно-бытовых нужд населения.

Изобретение относится к получению антикоррозионных пигментов, которые могут быть использованы для приготовления консервационных смазок. .
Изобретение относится к технологии получения сложного NPK-удобрения для сахарной свеклы и может быть использовано в сельском хозяйстве. .

Изобретение относится к способу получения бесхлорного калийного удобрения. .
Изобретение относится к технологии переработки сильвинитов флотационным и галургическим способами. .
Изобретение относится к технике производства минеральных удобрений и может быть использовано в технологии получения сульфата калия из хлорида калия и сульфата аммония в водной среде с переработкой избыточных растворов на комплексные удобрения.
Изобретение относится к способу получения гранулированного сульфата калия, применяемого в химической промышленности для производства минеральных удобрений и в сельском хозяйстве в качестве бесхлорного калийсодержащего удобрения.

Изобретение относится к области получения удобрений, в частности хлористого калия с характерной отличительной окраской. .

Изобретение относится к области получения минеральных удобрений, в частности к технологии производства калийных удобрений с обеспечением для них отличительной окраски.

Изобретение относится к технологии переработки сильвинитов флотационным способом и способом растворения-кристаллизации. .

Изобретение относится к технологии производства калийных минеральных удобрений, а именно ионообменной технологии производства бесхлорных калийных удобрений, и может быть использовано в агрохимической промышленности и сельском хозяйстве.
Изобретение относится к составам азотно-калийных удобрений, включающих карбамид и калийсодержащий компонент, и способам их получения, и может быть использовано в сельском хозяйстве и химической промышленности.

Изобретение может быть использовано химической промышленности. Способ получения двойного сульфата и раствора хлористого водорода включает приготовление раствора из хлорида, содержащего один из катионов двойного сульфата, и гидросульфата, содержащего второй из катионов двойного сульфата, и осаждение из раствора двойного сульфата.
Наверх