Устройство для регистрации фотонов и ионизирующих частиц с одновременным определением, для каждого фотона или ионизирующей частицы, направления движения в канале, заполненном текучей средой

Изобретение относится к детектирующему устройству для фотонов или ионизирующих частиц. Детектирующее устройство для фотонов или ионизирующих частиц содержит детектирующую систему с несколькими детектирующими блоками, каждый из которых включает сцинтиллятор, соединенный со считывающей поверхностью считывателя электрического заряда, при этом сцинтиллятор выполнен с возможностью генерации ячейковых зарядов на считывающей поверхности при улавливании фотонов или ионизирующих частиц; коллиматор, присоединенный к сцинтиллятору напротив считывателя электрического заряда, выполненный с возможностью пропускания фотонов или ионизирующих частиц, имеющих направление движения, совпадающее с продольной осью коллиматора, и остановки фотонов или ионизирующих частиц (Р'), имеющих направление движения, отличающееся от направления продольной оси коллиматора; и несколько детектирующих систем, равномерно отстоящих друг от друга вокруг центральной оси детектирующей сборки, при этом детектирующее устройство сформировано в виде стопки из нескольких детектирующих сборок, каждая из которых повернута на угол вокруг центральной оси детектирующей сборки относительно соседней детектирующей сборки или соседних детектирующих сборок. Технический результат - повышение эффективности улавливания и детектирования фотонов. 9 з.п. ф-лы, 5 ил.

 

Область техники, к которой относится изобретение.

Изобретение относится к детектирующему устройству для фотонов или ионизирующих частиц, в котором имеется детектирующая система с несколькими детектирующими блоками, каждый из которых включает сцинтиллятор, соединенный со считывающей поверхностью считывателя электрического заряда, при этом сцинтиллятор предназначен для генерации ячейковых зарядов на этой считывающей поверхности при улавливании фотонов или ионизирующих частиц, а напротив считывателя электрического заряда к сцинтиллятору присоединен коллиматор, предназначенный для пропускания фотонов или ионизирующих частиц, имеющих направление движения, совпадающее с продольной осью коллиматора, и остановки фотонов или ионизирующих частиц, имеющих направление движения, отличающееся от направления продольной оси коллиматора.

Уровень техники.

В области каротажа скважин и сбора данных о скважинах уровень техники основан, в значительной степени, на использовании фотоэлектронных умножителей или фотодиодов, соединенных с кристаллами сцинтиллятора, такого как йодид калия или йодид цезия.

Когда сборка из соединенных кристалла сцинтиллятора и фотоэлектронного умножителя подвергается воздействию ионизирующего излучения (такого как рентгеновское излучение, гамма-излучение или излучение частиц), падающее излучение будет преобразовываться в неионизирующие «оптические» фотоны в кристалле сцинтиллятора за счет процесса, который включает рассеяние, отдачу ядра и/или флуоресценцию. Оптические фотоны затем детектируются, или, иначе говоря, подсчитываются с помощью фотоэлектронного умножителя, который соединен с кристаллом сцинтиллятора. Как упоминалось выше, вместо фотоэлектронного умножителя для той же цели может быть использован фотодиод.

Типовым применением таких сборок в скважине является каротаж скважины. В таких сборках является желательным, чтобы ионизирующее излучение было настолько обильным, насколько это возможно, с тем чтобы сбор фотонов был настолько обильным, насколько это возможно, для уточнения статистического анализа собираемых данных и тем самым уменьшения ошибок в показаниях. По этой причине и ввиду цилиндрической формы, которую имеет большинство инструментов для использования в скважинах, такой детектор обычно сформирован в виде цилиндрического сцинтиллятора с фотоэлектронным умножителем или фотодиодом, присоединенным к одному его концу. Концепция состоит в доведении до максимума сбора в единице объема фотонов, движущихся радиально внутрь к инструменту в направлении, перпендикулярном продольной оси скважины. Даже несмотря на то, что сцинтилляторы находятся во всеобщем использовании, сцинтиллятор имеет физические свойства, которые не делают его хорошо подходящим для максимального сбора входящих фотонов. Когда входящая ионизирующая частица или входящий ионизирующий фотон взаимодействует с материалом сцинтиллятора, результатом является выход генерируемых сцинтиллятором фотонов с меньшей энергией и с результирующим направлением, статистически распределенным вокруг точки взаимодействия, или, иначе говоря, направление выходящего оптического фотона обычно отличается от направления падающего фотона и зависит от конкретного взаимодействия между фотоном/частицей и атомами в сцинтилляторе. На основании этого является очевидным, что статистически генерируемые сцинтиллятором или оптические фотоны выходят из сцинтиллятора во всех направлениях независимо от направления падающих фотонов или ионизирующих частиц. Поскольку фотоэлектронный умножитель или фотодиод прикреплен к одному концу сцинтиллятора, максимальная детектирующая способность устройства ограничена частью оптических фотонов, входящих в фотоэлектронный умножитель или фотодиод. На основании того факта, что площадь поверхности цилиндра составляет 2πr2+2πrh, где r - радиус цилиндра, a h - его высота, доля оптических фотонов, достигающих фотоэлектронного умножителя или фотодиода, выражается как πr2/(2πr2+2πrh), что дает в результате 33%-ую детекцию для сцинтилляторного цилиндра, в котором h=r, 25%-ую детекцию для сцинтилляторного цилиндра, в котором h=2r, и 14%-ую детекцию для сцинтилляторного цилиндра, в котором h=3r. Доля детекции достигает 100%, лишь когда высота цилиндра равна нулю. Очевидным решением этой проблемы является помещение фотоэлектронного умножителя или фотодиода на обоих концах сцинтилляторного цилиндра. Даже несмотря на то, что это дает в результате удвоение эффективности, эффективность сбора будет оставаться ниже 100%.

Раскрытие изобретения.

Задачей изобретения является устранение или уменьшение по меньшей мере одного из недостатков уровня техники или, по меньшей мере, создание эффективной альтернативы уровню техники.

Задача решена с помощью признаков, которые раскрыты в нижеприведенном описании и следующей за ним формуле изобретения.

В дальнейшем описании термин «фотон» используется как собирательное понятие для фотонов и других ионизирующих частиц.

Изобретением предлагается устройство, которое значительно повышает эффективность улавливания и детекции фотонов, тем самым предоставляя пользователю такого оборудования увеличенную гибкость: операцию можно выполнять быстрее без снижения статистического качества, или операцию можно выполнять за то же время, что и раньше, но со значительным увеличением сбора данных для повышения точности результатов измерений. За счет дополнительного обеспечения возможности определения направления к месту происхождения падающего излучения в скважине пользователь получает возможность создавать истинную 360-градусную картину ствола скважины и окружающих горных пород.

В нефтегазовой промышленности, особенно в каротаже плотностей, каротаже в процессе бурения, скважинных измерениях в процессе бурения и в каротаже скважины было бы очень выгодно иметь возможность повышения эффективности детекции для фотонов, а также иметь возможность определять направление их вхождения.

Предлагается детектирующее устройство, имеющее большую эффективность в сборе и регистрации фотонов, которые движутся внутри цилиндрического объема, и, в то же время, обеспечивающее определение направления к месту происхождения фотонов. Фотоны используются в качестве детекторов для каротажа скважины.

Предлагается цилиндрообразное тело с многоугольной периферийной поверхностью. Каждый сегмент периферийной поверхности содержит сцинтиллятор некоторого объема, который используется для улавливания ионизирующих фотонов и создания под их действием оптических фотонов, которые могут регистрироваться детектором, например, считывателем электрического заряда. Посредством коллиматоров сегменты периферийной поверхности заслонены от падающих фотонов, которые имеют направление движения, отклоненное от перпендикуляра к поверхности указанного сегмента периферийной поверхности. Тем самым предоставляется информация, касающаяся направления к месту происхождения падающих фотонов.

Детектирующее устройство содержит следующие основные компоненты.

а. Модульный набор детектирующих сборок, выполненных в форме многогранников, причем активные поверхности детектирующих сборок проходят вокруг вписанной окружности и по касательной к ней и смонтированы на крепежных стержнях, расположенных радиально. Детектирующие сборки соединены с подходящей системой обработки сигналов.

b. Система элементов выборочного пропускания, которая расположена снаружи каждой детектирующей сборки и выполнена таким образом, что каждый детектирующий элемент принимает лишь падающее излучение или падающие частицы с направлением, перпендикулярным детектирующей сборке.

с. Крепежные стержни, которые используются в качестве проводящих тепло средств, для отведения тепла от детектирующих сборок, если это необходимо ввиду неблагоприятных температур окружающей среды.

Изобретение относится, в частности, к детектирующему устройству для фотонов или ионизирующих частиц, в котором имеется детектирующая система с несколькими детектирующими блоками, каждый из которых включает сцинтиллятор, соединенный со считывающей поверхностью считывателя электрического заряда, при этом сцинтиллятор предназначен для генерации ячейковых зарядов на считывающей поверхности при улавливании фотонов или ионизирующих частиц. Устройство имеет присоединенный к сцинтиллятору напротив считывателя электрического заряда коллиматор, который предназначен для пропускания фотонов или ионизирующих частиц, имеющих направление движения, совпадающее с продольной осью коллиматора, и остановки фотонов или ионизирующих частиц, имеющих направление движения, отличающееся от направления продольной оси коллиматора, и несколько детектирующих систем, расположенных на равных расстояниях друг от друга вокруг центральной оси детектирующей сборки.

Детектирующие блоки, формирующие одну детектирующую систему, могут иметь одинаковые направления продольных осей всех коллиматоров.

Несколько детектирующих систем могут равномерно отстоять друг от друга по вписанной окружности и быть ориентированы касательно к ней.

Детектирующие системы могут быть соединены со средствами для отведения тепла от детектирующих систем к проводнику тепла. Предпочтительно, детектирующие системы расположены на каркасе, посредством которого проводник тепла образует поддерживающую конструкцию.

Детектирующее устройство может быть образовано стопкой, сформированной из нескольких детектирующих сборок, при этом каждая детектирующая сборка повернута относительно соседней детектирующей сборки или соседних детектирующих сборок.

Разность в угле поворота двух соседних детектирующих сборок может быть одинаковой для всех детектирующих сборок устройства.

Считыватель электрического заряда может представлять собой точку на формирователе сигнала изображения.

Формирователь сигнала изображения может быть выбран из группы, состоящей из формирователей сигналов изображения CCD-, LDC- и CMOS-типов.

Детектирующие сборки могут быть расположены в непроницаемой для текучей среды емкости, представляющей собой тело вращения, которая формирует радиопрозрачный барьер относительно окружающей среды.

Устройство может включать источник излучения, расположенный на расстоянии от детектирующих сборок и отделенный в осевом направлении детектирующего устройства от детектирующих сборок задерживающим излучение экраном.

Краткое описание чертежей.

Далее приведено описание примера предпочтительного варианта осуществления, который изображен на прилагаемых чертежах, на которых

фигура 1а показывает цилиндрическое тело со сцинтиллятором и с фотоэлектронным умножителем или фотодиодом согласно уровню техники;

падающие фотоны взаимодействуют с атомами в сцинтилляторе так, что имеется рассеяние оптических фотонов,

фигура 1b показывает разобранный детектирующий блок, включающий коллиматор, в котором падающие фотоны блокируются, если они не имеют направление, которое соответствует направлению оси коллиматора,

фигура 2 показывает в перспективе стопку из нескольких одинаковых детектирующих сборок, в которой каждая детектирующая сборка повернута относительно соседней детектирующей сборки/соседних детектирующих сборок; коллиматоры удалены для большей наглядности,

фигура 3 показывает поперечное сечение детектирующей сборки, выполненной из шести детектирующих систем, расположенных в форме шестиугольника вокруг центрального проводника тепла,

фигура 4 показывает вид с конца детектирующего устройства согласно изобретению, и

фигура 5 показывает внутреннюю часть емкости, которая вмещает детектирующее устройство вместе с источником излучения, отделенным от детектирующего устройства задерживающим излучение экраном, и которая расположена в стволе скважины.

Осуществление изобретения.

На фигуре 1а схематично показан сцинтиллятор S, в котором, согласно уровню техники, падающие фотоны Р, имеющие случайные направления движения (показанные большими стрелками), воздействуют на атомы сцинтиллятора S так, что формируется большое количество оптических фотонов ОР со случайными направлениями движения (показанными малыми стрелками). Некоторые оптические фотоны ОР достигают принимающей поверхности фотодиода или фотоэлектронного умножителя PD и генерируют регистрацию, в то время как другие оптические фотоны ОР теряются в окружающем пространстве.

На фигуре 1b схематично показан в разобранном виде детектирующий блок На, снабженный считывателем 111 электрического заряда, сцинтиллятором 112 и коллиматором 113, позволяющим проходить лишь тем фотонам Р, которые имеют направление движения, совпадающее с направлением продольной оси А коллиматора 113. Фотоны Р', которые были пропущены коллиматором, воздействуют на материал сцинтиллятора 112, например, теллурид кадмия, через который было установлено электрическое поле (не показано), и множество оптических фотонов ОР формируется по принципу прямого преобразования, причем оптические фотоны ОР движутся в направлении поля и улавливаются на считывающей поверхности 111 а считывателя 111 электрического заряда. Считыватель 111 электрического заряда может представлять собой формирователь сигнала изображения CCD-, LDC- или CMOS-типа, соединенный со сцинтиллятором 112. В предпочтительном варианте осуществления детектирующая система 11 выполнена из множества таких детектирующих блоков На, тем самым образуя многопиксельный блок. В дальнейшем описании термин «детектирующая система 11, 111-116» описывает многопиксельный блок.

Детектирующая сборка 1 (см., в частности, фигуру 3) включает многоугольный каркас 12, в данном случае показанный шестиугольным, в котором от проводника 123 тепла, расположенного в центре, отходят в радиальном направлении несколько крепежных стержней 122, на наружных концевых частях которых прикреплены имеющие форму пластин основания 121. На каждом из оснований 121 смонтирована детектирующая система 111, …, 116. Помимо формирования опоры для детектирующих систем 111, …, 116, каркас 12 функционирует в качестве проводника тепла для детектирующих систем 111, …, 116. Каждая из детектирующих систем 11 имеет детектирующий коридор 13. Проводник 123 тепла расположен на продольной оси В детектирующего устройства D и как можно дальше от областей детектирующего устройства D, которые имеют наивысшую температуру, обусловленную контактом с текучей средой 62 скважины. Проводник 123 тепла может охлаждаться любыми существующими средствами, например, элементом Пельтье (не показан), для обеспечения наилучшего возможного охлаждения детектирующих систем 111, …, 116.

На фигуре 2 показано детектирующее устройство D, снабженное четырьмя детектирующими сборками 11-14, соединенными в стопку, при этом каждая из детектирующих сборок 11-14 повернута относительно соседней детектирующей сборки/соседних детектирующих сборок 11-14. Из соображений наглядности коллиматоры 113 не показаны на этой фигуре.

На фигуре 4 показана суммарная область покрытия детектирующего устройства D, когда оно включает четыре детектирующие сборки 11-14.

В одном варианте осуществления (см. фигуру 5) детектирующее устройство D расположено симметрично вокруг продольной оси В в емкости 2, формирующей радиопрозрачный барьер против текучей среды 62 скважины в стволе 6 скважины, в котором детектирующее устройство D с его емкостью 2 было спозиционировано для каротажа. Ствол 6 скважины определен по существу известным способом в подземных породах 7 с помощью обсадной колонны 61. Емкость 2 соответствующим образом включает искусственный источник 3 излучения. Кроме того, между источником 3 излучения и детектирующим устройством D расположен задерживающий излучение экран 4, а передающий сигнал кабель 5 соединяет детектирующее устройство D и наземное оборудование (не показано).

Когда ионизирующие фотоны Р отражаются от обсадной колонны 61, текучей среды 62 скважины или подземных пород 7 и проходят сквозь радиопрозрачную емкость 2, они проходят через коллиматор 113 или останавливаются им, в зависимости от направления движения этих ионизирующих фотонов Р. Если направление совпадает с продольной осью А коллиматора 113, фотон Р пройдет, в противном случае он будет остановлен процессом рассеяний структурой коллиматора 113, который сформирован в предпочтительном варианте осуществления из вольфрама либо иного материала или сочетания материалов с высоким атомным числом.

Неостановленные падающие (коллимированные) фотоны Р' воздействуют на сцинтиллятор 112, к которому приложено электрическое поле. В предпочтительном варианте осуществления в качестве сцинтиллятора используется теллурид кадмия, поскольку он обладает свойством переноса оптических фотонов от одного конца структуры к другому, когда к ней приложено электрическое поле. Таким образом, образуется «поток» оптических фотонов от одного конца сцинтиллятора к его другому концу. Когда падающий ионизирующий фотон Р' встречается со сцинтиллятором 112, выбивается большое количество оптических фотонов, движущихся к «дефицитной стороне», где они осаждаются на считывающую поверхность 111 а считывателя 111 электрического заряда, которая находится в тесном контакте со сцинтиллятором 112. Хотя в примере предпочтительного варианта осуществления используется теллурид кадмия, может быть использовано любое вещество, которое способно обеспечивать перенос оптических фотонов и улавливание падающих фотонов. Поскольку величина ячейкового заряда, который образуется на считывающей поверхности 111 а считывателя 111 электрического заряда, зависит от начальной энергии падающего фотона Р', возможно определить уровень энергии каждого уловленного фотона Р', чтобы с помощью этого выполнить спектрографическое измерение путем суммирования данных от нескольких падающих фотонов Р'.

Считыватель 111 электрического заряда, который в предпочтительном варианте осуществления относится к CMOS-типу, но может также относиться к CCD- или LDC-типу, активируется электронно много раз в секунду по мере того, как электроны, которые аккумулировались на считывающей поверхности 111 а вследствие улавливания фотонов, оттягиваются от этой поверхности. Результирующее показание записывается местно в набор данных регистрационной записи для соответствующего периода времени на носитель информации (не показан), который формирует часть системы обработки сигналов (не показана), по существу, известного типа для идентификации каждого блока и каждого показания.

Каждый детектирующий блок На, который образован совокупностью считывателя 111 электрического заряда, сцинтиллятора 112 и коллиматора 113, представляет один пиксель в двумерном массиве множества таких пикселей, который (массив) образует детектирующую систему 111, …, 116.

За счет объединения в стопку детектирующих сборок 11-14 в продольном направлении детектирующего устройства D и их поворота относительно друг друга вокруг продольной оси обеспечивается угол взаимного поворота Δr между детектирующими сборками 11-14. Тем самым обеспечивается большая суммарная зона детекции, внутри которой детекция фотонов и частиц, имеющих радиальное направление, которое не параллельно оси одного из коллиматоров 113, предотвращена, и тем самым определяется радиальное направление к месту происхождения падающих коллимированных фотонов Р'.

1. Детектирующее устройство (D) для фотонов или ионизирующих частиц (Р), содержащее детектирующую систему (11) с несколькими детектирующими блоками (11а), каждый из которых включает сцинтиллятор (112), соединенный со считывающей поверхностью (111а) считывателя (111) электрического заряда, при этом сцинтиллятор (112) выполнен с возможностью генерации ячейковых зарядов на считывающей поверхности (111а) при улавливании фотонов или ионизирующих частиц (Р); коллиматор (113), присоединенный к сцинтиллятору (112) напротив считывателя (111) электрического заряда, выполненный с возможностью пропускания фотонов или ионизирующих частиц (Р'), имеющих направление движения, совпадающее с продольной осью (А) коллиматора (113), и остановки фотонов или ионизирующих частиц (Р'), имеющих направление движения, отличающееся от направления продольной оси (А) коллиматора (113); и несколько детектирующих систем (111-116), равномерно отстоящих друг от друга вокруг центральной оси (В) детектирующей сборки (1), отличающееся тем, что детектирующее устройство (D) сформировано в виде стопки из нескольких детектирующих сборок (11-14), каждая из которых повернута на угол (Δr) вокруг центральной оси (В) детектирующей сборки (1) относительно соседней детектирующей сборки или соседних детектирующих сборок (11-14).

2. Устройство по п.1, отличающееся тем, что детектирующие блоки (11а), формирующие детектирующую систему (11), имеют одинаковые направления продольных осей (А) всех коллиматоров (113).

3. Устройство по п.2, отличающееся тем, что детектирующие системы (111-116) равномерно отстоят друг от друга по вписанной окружности и ориентированы касательно к ней.

4. Устройство по п.1, отличающееся тем, что детектирующие системы (111-116) соединены со средствами (122) для отведения тепла от детектирующих систем (111-116) к теплопроводной структуре (123).

5. Устройство по п.1, отличающееся тем, что детектирующие системы (111-116) расположены на каркасе (12), посредством которого теплопроводная структура (123) образует поддерживающую конструкцию.

6. Устройство по п.5, отличающееся тем, что разность в угле (Δr) поворота двух соседних детектирующих сборок (11-14) одинакова для всех детектирующих сборок (11-14) в детектирующем устройстве (D).

7. Устройство по п.1, отличающееся тем, что считыватель (111) электрического заряда представляет собой точку на формирователе сигнала изображения.

8. Устройство по п.7, отличающееся тем, что формирователь сигнала изображения выбран из группы, состоящей из формирователей сигнала изображения CCD-, LDC- и CMOS-типов.

9. Устройство по п.1, отличающееся тем, что детектирующие сборки (11-14) расположены в непроницаемой для текучей среды емкости (2), представляющей собой тело вращения, которая формирует радиопрозрачный барьер относительно окружающей среды (62).

10. Устройство по п.1, отличающееся тем, что включает источник (3) излучения, расположенный на расстоянии от детектирующих сборок (11-14) и отделенный в осевом направлении детектирующего устройства (D) от детектирующих сборок (11-14) задерживающим излучение экраном (4).



 

Похожие патенты:

Изобретение может быть использовано в детекторах ионизирующего излучения в виде электромагнитных волн низких энергий, гамма-, рентгеновского излучения, космических лучей и частиц.

Изобретение относится к детекторам рентгеновского излучения. Сущность изобретения заключается в том, что детектор (1) рентгеновского излучения содержит: устройство (3) обнаружения света для обнаружения света (R), падающего на его поверхность (12) обнаружения; сцинтилляционный слой (5) для преобразования падающих рентгеновских лучей (Х) в свет; отражательный слой (9) для отражения света (В), формируемого в пределах сцинтилляционного слоя, по направлению к устройству обнаружения света; светоизлучающий слой (7), заключенный между сцинтилляционным слоем и отражательным слоем, причем расстояние (d) между сцинтилляционным слоем и отражательным слоем меньше 50 мкм, и при этом светоизлучающий слой содержит ОСИД (8).

Изобретение относится к системам формирования изображения на основе излученной энергии. Система детектирования для детектирования электромагнитного излучения содержит корпус двухэкранного детектора, имеющий три смежные боковые стенки, которые образуют область передней стороны, область второй стороны и область третьей стороны, стенки трех сторон соединены одна с другой под углом, так что заключают в себе объем, имеющий форму треугольной призмы, и каждая боковая стенка имеет внутреннюю поверхность; подложку, расположенную на каждой из упомянутых внутренних поверхностей первой и второй боковых стенок, причем каждая подложка дополнительно содержит активную область для приема и преобразования электромагнитного излучения в свет, образуя тем самым экраны детектора; и фотодетектор, расположенный в непосредственной близости к третьей боковой стороне, при этом упомянутый фотодетектор имеет чувствительную к свету активную область.

Изобретение относится к технологии получения сцинтилляционных монокристаллов и может быть использовано при изготовлении чувствительных элементов детекторов гамма- и рентгеновского излучения Сцинтилляционные монокристаллы La(1-m-n)HfnCemBr(3+n), где m - мольная доля замещения La церием (0,0005≤m≤0,3), n - мольная доля замещения La гафнием (0≤n≤0,015), получают из смеси бромидов металлов.

Изобретение относится к области ядерного приборостроения и может быть использовано при создании аппаратуры радиационного контроля для определения спектрометрических, радиометрических и дозиметрических параметров загрязненной среды при одновременной регистрации альфа-, бета- и гамма-излучений.

Изобретение относится к области регистрации широких атмосферных ливней (ШАЛ) на поверхности Земли и может быть использовано для исследования первичных космических лучей.

Изобретение относится к области измерения ядерных излучений, а именно к подсчету количества гамма квантов от различных источников излучения в диапазоне энергий от сотен кэВ до единиц МэВ с загрузкой до 109 имп./мин и может быть использовано для точной регистрации интенсивных потоков гамма излучения.

Изобретение относится к системе измерения данных, пригодной для КТ (компьютерной томографии) и других способов формирования изображения. Система формирования изображения содержит источник излучения, который поворачивается вокруг центральной z-оси системы формирования изображения для выполнения формирующих изображения сканирований; и матрицу неорганических фотодетекторов, включающую в себя несколько дискретных неорганических фотодетекторов, расположенных на изогнутой подложке таким образом, что каждый ряд неорганических фотодетекторов ориентирован вдоль кривой изгиба изогнутой подложки, и каждый столбец неорганических фотодетекторов ориентирован параллельно центральной z-оси системы формирования изображения, причем изогнутая подложка содержит гибкий лист и токопроводящие пути, оперативно соединяющие каждый из неорганических фотодетекторов, по меньшей мере, с одним активным электронным компонентом, расположенным на изогнутой подложке, причем токопроводящие пути расположены на дистальной поверхности изогнутой подложки, которая, по существу, противоположна поверхности подложки, на которой расположены неорганические фотодетекторы, при этом система дополнительно содержит отверстия в подложке, заполненные проводящим материалом для электрического соединения токопроводящих путей с неорганическими фотодетекторами.

Изобретение относится к устройствам для регистрации гамма-излучения, предназначено для определения положения бурового инструмента относительно кровли и подошвы разбуриваемого пласта и может быть использовано в скважинных приборах телеметрических систем.

Изобретение относится к сбору данных и находит конкретное применение в компьютерной томографии (СТ). Сущность изобретения заключается в том, что детектор формирования изображения содержит матрицу (202) сцинтилляторов; матрицу (204) фотодатчиков, оптически сопряженную с матрицей (202) сцинтилляторов; преобразователь (314) тока в частоту (I/F), содержащий интегратор (302) и компаратор (310), который преобразует, во время текущего периода интегрирования, заряд, выведенный матрицей (204) фотодатчиков, в цифровой сигнал, имеющий частоту, указывающую на заряд; логику (312), которая устанавливает усиление интегратора (302) для следующего периода интегрирования на основе цифрового сигнала для текущего периода интегрирования, и переключатель (308) сброса, который сбрасывает интегратор (302) на основе усиления, установленного логикой (312), причем переключатель (308) сброса содержит, по меньшей мере, первый конденсатор (402) сброса с первой емкостью и второй конденсатор (406) сброса с второй отличающейся емкостью.

Способ по изобретению заключается в создании прочных тонких, механических поддерживающих структур для электромагнитного калориметра. Такими структурами являются ячеистые структуры из пропитанной эпоксидным связующим ткани из углеродного волокна. Техническим результатом, достигаемым при использовании способа по изобретению, является возможность изготовления механической структуры из углеродного волокна с высокой прочностью и точностью по толщине тонких стенок 20 мкм и плоскостности. Технический результат обеспечивается тем, что в отсутствии внешнего давления и автоклавов, для формирования нужных поверхностей и толщины стенок используются внешние формообразующие пластины и бруски сложной формы из высоколегированной стали, собранные в единую конструкцию высокопрочными винтами. Требуемые толщины и точность ячеистой структуры достигаются созданием при изготовлении формообразующих пластин и брусков гарантированных зазоров, задающих толщины стенки готового изделия с точностью 20 мкм, и качеством обработанной поверхности. Для осуществления способа по изобретению используется устройство, которое включает в себя детали формирования высокоточной внутренней и внешней геометрии тонкостенных сотовых структур, а также комплект дополнительных деталей, необходимых для сборки и перемещения устройства, и датчики системы контроля температуры оснастки в процессе изготовления ячеистых структур. Точность размеров изготавливаемых сотовых структур обеспечивается, прежде всего, за счет прецизионного позиционирования этих деталей относительно друг друга во время сборки пресс-формы, а также высокоточной обработки деталей оснастки. Для успешного создания требуемого образца в дальнейшем необходимо выполнить ряд стандартных операций, не относящихся к использованию данного устройства, а именно производится обрезка технологических и конструктивных элементов по краям альвеолы. Результатом создания устройства является возможность изготовления опорных ячеистых структур с толщиной стенки 200 мкм, точностью изготовления каждой ячейки 20 мкм и плоскостностью от 10 мкм. 1 з.п. ф-лы, 4 ил.

Изобретение относится к пикселированному детектору. Пикселированное детекторное устройство содержит матрицу детекторов, имеющую множество детекторных пикселей; и матрицу кристаллов, имеющую множество сцинтилляторных кристаллов и расположенную в геометрическом соответствии с матрицей детекторов; при этом упомянутые детекторные пиксели и упомянутые сцинтилляторные кристаллы сдвинуты в по меньшей мере одном измерении по отношению друг к другу на, по существу, половину размера сцинтилляторных кристаллов. Технический результат - уменьшение перекрестных помех между пикселями, повышение эффективности улавливания света. 2 н. и 7 з.п. ф-лы, 6 ил.

Изобретение относится к области регистрации ионизирующих излучений. Спектрометрический позиционно-чувствительный детектор содержит сцинтиллятор, состоящий из трех вложенных друг в друга наборов сцинтиллирующих элементов, расположенных параллельно оси устройства, внешний и средний наборы образованы сцинтиллирующими волокнами из материала, обеспечивающего регистрацию тепловых нейтронов, а сцинтиллирующие элементы внутреннего набора образуют цилиндр и выполнены в форме одинаковых по размеру угловых секторов и обеспечивают регистрацию гамма-излучения, количество угловых секторов составляет два и более, каждый угловой сектор снабжен спектросмещающим волокном, проходящим через центр углового сектора параллельно оси устройства, сцинтиллирующие элементы среднего набора помещены внутрь нейтронного замедлителя трубчатой формы, заполняющего пространство между внешним и внутренним наборами, на внешней поверхности нейтронного замедлителя расположен экран, поглощающий тепловые нейтроны, сцинтиллирующие элементы всех наборов и спектросмещающие волокна внутреннего набора снабжены светоотражающими оболочками, на поверхность сцинтиллирующих элементов нанесено светонепроницаемое покрытие, противоположные торцы каждого сцинтиллирующего элемента внешнего и среднего наборов, а также противоположные торцы каждого спектросмещающего волокна внутреннего набора соединены посредством оптических соединителей с двумя волоконными световодами, находящимися с противоположной стороны в оптическом контакте с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа сцинтиллирующих элементов. Технический результат - одновременная регистрация тепловых, эпитепловых нейтронов, а также гамма-излучения в одном месте на оси скважинного устройства. 1 ил.

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано при создании радиационных детекторов, применяемых в геофизической аппаратуре нейтрон-гамма и гамма-гамма каротажа. Сущность изобретения заключается в том, что спектрозональный позиционно-чувствительный детектор гамма-излучения содержит сцинтиллятор, находящийся в оптическом контакте с фотоприемником, при этом сцинтиллятор состоит из двух или более вложенных друг в друга цилиндрических наборов волоконных сцинтиллирующих элементов, разделенных цилиндрическими фильтрами рентгеновского или гамма-излучения, в каждом цилиндрическом наборе волоконные сцинтиллирующие элементы расположены параллельно оси устройства, снабжены светоотражающими оболочками и светонепроницаемыми покрытиями, противоположные торцы волоконных сцинтиллирующих элементов соединены посредством оптических соединителей с двумя волоконными световодами, находящимися с противоположной стороны в оптическом контакте с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа волоконных сцинтиллирующих элементов. Технический результат - повышение углового разрешения при определении азимутального распределения гамма-излучения в плоскости, перпендикулярной оси корпуса устройства. 1 ил.

Изобретение относится к области детектирования частиц ионизирующего излучения. Сцинтилляционный радиационно-стойкий детектор представляет собой рабочий объем с зеркально или диффузно отражающими стенками, внутри которого плотно к стенкам размещен полистирольный сцинтиллятор в виде пластины с канавками на фронтальной поверхности или отверстиями в пластине, через которые проходят спектросмещающие волокна, один или оба торца которых пристыкованы к фоточувствительным поверхностям фотоприемников, расположенных внутри или вне рабочего объема, при этом сцинтиллятор и спектросмещающие волокна, размещенные в рабочем объеме детектора, содержат соответственно сцинтилляционные и спектросмещающие добавки, высвечивающие в области длин волн более 550 нм. Технический результат - упрощение технологии изготовления сцинтилляционных детекторов при одновременном улучшении их характеристик. 1 з.п. ф-лы, 3 ил.

Изобретение может быть использовано в медицине и технике при изготовлении рентгеновских устройств с энергией излучения более 20 кэВ для диагностики и дефектоскопии. Рентгенолюминофор имеет химическую формулу (Gd1-x-yTbxHfy)2O2-z(ΣHal)zS, где ΣHal=F1- и Cll-, F1- и Br1- или F1- и J1-, 0,01<х≤0,2; 0,001<у<0,1; 0,001<z≤0,1. Пикселированный экран имеет многоэлементное покрытие из элементов квадратной формы со стороной не более 55 мкм и высотой не более 30 мкм на основе указанного рентгенолюминофора. В качестве разделительного слоя экран содержит сетку из оксида гадолиния со свободным сечением свыше 60%, которая соприкасается с многоэлементным покрытием. Указанные элементы сформированы на зеркальном покрытии несущей пластины из поликарбоната толщиной 1,5 мм. На поверхности пикселированного слоя в оптическом контакте с каждым его элементом закреплена матрица кремниевых фотодиодов. Рентгенолюминофор негигроскопичен, устойчив к воздействию атмосферы, имеет высокую спектральную яркость и переменную длительность послесвечения. 2 н. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к области ядерного приборостроения и может быть использовано при радиационном мониторинге в качестве носимого средства поиска источника гамма-излучения. Устройство для определения направления на источник гамма-излучения по двум координатам в телесном угле 2π стерадиан содержит видеокамеру, корпус, защитный экран, детекторную сборку из четырех сцинтилляционных счетчиков, преобразователь высоковольтный, контроллер, дисплей, модуль согласования и блок аккумуляторный. Выходы четырехканального преобразователя высоковольтного, обеспечивающего электропитание сцинтилляционных счетчиков, подключены к четырем входам детекторной сборки. Четыре выхода детекторной сборки подключены к аналоговым входам четырехканального контроллера. Четыре аналоговых выхода контроллера подключены к входам преобразователя высоковольтного для установки его выходных напряжений. Выход контроллера подключен к входу модуля согласования для передачи накопленной счетчиками информации. Модуль согласования подключен к входу дисплея и выходу видеокамеры и управляет их работой. Питание устройства осуществляется от блока аккумуляторного, выходы которого подключены к входу модуля согласования и входу преобразователя высоковольтного. Все компоненты устройства размещены в одном корпусе. Технический результат - увеличение диапазона измерения направления на источник излучения по двум координатам до телесного угла 2π стерадиан (вся передняя полусфера) и уменьшение веса устройства. 5 ил.

Изобретение относится к детектору излучения для детектирования фотонов высокой энергии. Детектор излучения для детектирования излучения высокой энергии содержит: сцинтилляторную группу с двумя сцинтилляторными элементами для преобразования первичных фотонов падающего излучения во вторичные фотоны согласно характеристическому спектру испускания, причем верхний из сцинтилляторных элементов расположен наверху, а нижний из сцинтилляторных элементов расположен внизу детектора излучения; два органических фотодетектора для преобразования упомянутых вторичных фотонов в электрические сигналы, причем упомянутые фотодетекторы обладают различными спектрами поглощения без перекрытия и могут быть считаны по отдельности, при этом упомянутые фотодетекторы расположены под верхним сцинтилляторным элементом и над нижним сцинтилляторным элементом соответственно. Технический результат - повышение пространственного разрешения детектора излучения. 2 н. и 10 з.п. ф-лы, 2 ил.

Изобретение относится к области детекторов заряженных частиц на основе твердотельных органических сцинтилляторов. Детектор заряженных частиц с тонким сцинтиллятором в виде пластины содержит полупроводниковый фотосенсор в качестве преобразователя инициированных заряженными частицами световых вспышек в электрические импульсы, при этом сколь угодно тонкая полностью отполированная пластина сцинтиллятора выполнена в виде равностороннего многоугольника с числом углов не менее четырех оптически и механически соединена с прозрачной для сцинтилляций полностью отполированной подложкой, имеющей форму и коэффициент преломления света такие же, как у сцинтиллятора, а суммарная толщина сэндвича, образованного из сцинтиллятора и подложки, равна поперечнику чувствительной поверхности полупроводникового фотосенсора, оптически и механически присоединенного к сэндвичу в одном из его углов, который выполнен сточенным и отполированным для получения контактной площадки с размерами чувствительной области полупроводникового фотосенсора, при этом все поверхности сэндвича, кроме тыльной и с прикрепленным полупроводниковым фотосенсором, покрыты зеркальным отражателем, а тыльная поверхность покрыта диффузным отражателем. Технический результат - повышение эффективности сбора света на чувствительной поверхности фотосенсора. 1 з.п. ф-лы, 4 ил.

Изобретение относится к формированию спектрального изображения. Способ изготовления устройства формирования изображений содержит этапы, на которых осуществляют получение подложки фотодатчиков, имеющей две противоположные основные поверхности, при этом одна из двух противоположных основных поверхностей, которая перпендикулярна поступающему излучению, включает в себя множество рядов фотодатчиков из множества фоточувствительных элементов, причем электронные схемы обработки данных смонтированы на подложку фотодатчиков и полученная подложка фотодатчиков имеет толщину, равную или большую чем сто микрон; оптическое соединение матрицы сцинтилляторов с подложкой фотодатчиков, причем матрица сцинтилляторов включает в себя множество дополнительных рядов сцинтилляторов из множества дополнительных сцинтилляционных элементов, и каждый дополнительный ряд сцинтилляторов оптически соединен с одним из рядов фотодатчиков, и, по меньшей мере, один дополнительный сцинтилляционный элемент оптически соединен с одним из фоточувствительных элементов, при этом матрица сцинтилляторов включает в себя первую поверхность с углублением и вторую поверхность в углублении для электронных схем обработки данных и уменьшение толщины подложки фотодатчиков, которая оптически соединена со сцинтиллятором, производя уменьшенную по толщине подложку фотодатчиков, которая оптически соединена со сцинтиллятором и которая имеет толщину порядка менее ста микрон. Технический результат - повышение разрешающей способности устройства формирования изображений. 2 н. и 13 з.п. ф-лы, 13 ил.
Наверх