Микроконтроллерный измерительный преобразователь с управляемым питанием резистивных измерительных цепей методом широтно-импульсной модуляции

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения неэлектрических величин резистивными датчиками. Микроконтроллерный измерительный преобразователь с управляемым питанием резистивных измерительных цепей методом широтно-импульсной модуляции содержит микроконтроллер, первый RC-фильтр, первый, второй, третий и четвертый резисторы, причем первый вывод первого резистора подключен к выходу первого широтно-импульсного модулятора микроконтроллера, вторые выводы первого и второго резисторов подключены ко входу первого RC-фильтра, выход которого подключен к первому входу аналогового компаратора микроконтроллера, причем в преобразователь введен второй RC-фильтр, первые выводы второго, третьего и четвертого резисторов подключены к выходам соответственно второго, третьего и четвертого широтно-импульсных модуляторов микроконтроллера, вторые выводы третьего и четвертого резисторов подключены ко входу второго RC-фильтра, выход которого подключен ко второму входу аналогового компаратора микроконтроллера. Техническим результатом является повышение точности преобразования. 1 з.п. ф-лы, 1 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения неэлектрических величин резистивными датчиками.

Уровень техники

Известно устройство для измерения неэлектрических величин конденсаторными датчиками, содержащее первый и второй генераторы, микроконтроллер и цифровой индикатор, во времязадающие цепи генераторов включены конденсаторы и резисторы, один из выводов микроконтроллера подключен к входам разрешения генерирования обоих генераторов, цифровой индикатор подключен к микроконтроллеру. На выходе устройства формируется код, который зависит от изменения емкости и/или сопротивления времязадающих цепей генераторов (см. пат. РФ №2214610, кл. G01R 27/26).

Недостаток известного решения - низкая точность, обусловленная погрешностью, вносимой генераторами, параметры которых зависят от внешних факторов.

Известно устройство - мостовая схема (мост Уитстона), предназначенное для измерения сопротивления резистивных датчиков, содержащая два резистивных делителя, крайние выводы которых подключены к источнику питания, между средними выводами резистивных делителей включен измерительный прибор (см. Яковлев В. Структура измерительной системы на базе пассивных датчиков. / В. Яковлев // Современные технологии автоматизации. - 2002, №1).

Недостаток известного решения - низкая точность, обусловленная нелинейностью характеристики преобразования.

Наиболее близким по технической сущности к заявляемому техническому решению и принятым авторами за прототип является микроконтроллерный измерительный преобразователь для резистивного датчика, содержащий микроконтроллер, интегрирующее звено (RC-фильтр), первый, второй третий и четвертый резисторы, причем первые выводы второго и третьего резисторов подключены к минусовой клемме источника питания микроконтроллера, первый вывод первого резистора подключен выходу широтно-импульсного модулятора (ШИМ) микроконтроллера, первый вывод третьего резистора подключен к плюсовой клемме источника питания микроконтроллера, вторые выводы первого и второго резисторов подключены ко входу RC-фильтра, выход которого подключен к первому входу аналогового компаратора (АК) микроконтроллера, ко второму входу АК микроконтроллера подключены вторые выводы третьего и четвертого резисторов, в качестве второго резистора включен резистивный датчик (см. пат. РФ №2449299, кл. G01R 27/26).

Недостаток известного решения - низкая точность, обусловленная влиянием температуры на выходное сопротивление широтно-импульсного модулятора микроконтроллера.

Раскрытие изобретения

Технический результат, который может быть достигнут с помощью предлагаемого изобретения, сводится к повышению точности преобразования.

Технический результат достигается тем, что в микроконтроллерный измерительный преобразователь с управляемым питанием резистивных измерительных цепей методом широтно-импульсной модуляции, содержащий микроконтроллер, первый RC-фильтр, первый, второй третий и четвертый резисторы, причем первый вывод первого резистора подключен к выходу первого широтно-импульсного модулятора микроконтроллера, вторые выводы первого и второго резисторов подключены ко входу первого RC-фильтра, выход которого подключен к первому входу аналогового компаратора микроконтроллера, введен второй RC-фильтр, причем первые выводы второго, третьего и четвертого резисторов подключены к выходам соответственно второго, третьего и четвертого широтно-импульсных модуляторов микроконтроллера, вторые выводы третьего и четвертого резисторов подключены ко входу второго RC-фильтра, выход которого подключен ко второму входу аналогового компаратора микроконтроллера, в качестве одного из четырех резисторов включен резистивный датчик.

Краткое описание чертежей

На чертеже представлена структурная схема микроконтроллерного измерительного преобразователя с управляемым питанием резистивных измерительных цепей методом широтно-импульсной модуляции.

Осуществление изобретения

Микроконтроллерный измерительный преобразователь с управляемым питанием резистивных измерительных цепей методом широтно-импульсной модуляции содержит (чертеж) первый резистор 1, второй резистор 2 (он же резистивный датчик), третий резистор 3, четвертый резистор 4, первый RC-фильтр 5, второй RC-фильтр 6 и микроконтроллер 7.

Резисторы 1 и 2 первыми выводами подключены ко входу RC-фильтра 5, выход которого подключен к первому входу АК микроконтроллера 7 (АК микроконтроллера 7 на чертеже не показан), резисторы 3 и 4 первыми выводами подключены ко входу RC-фильтра 6, выход которого подключен ко второму входу АК микроконтроллера 7, вторые выводы резисторов 1, 2, 3 и 4 подключены к выходам соответственно первого, второго, третьего и четвертого ШИМов микроконтроллера 7 (ШИМы микроконтроллера 7 на чертеже не показаны).

Микроконтроллерный измерительный преобразователь с управляемым питанием резистивных измерительных цепей методом широтно-импульсной модуляции работает следующим образом.

Микроконтроллер 7 формирует на выходе четвертого ШИМ низкий логический уровень напряжения (лог.0), а на выходе третьего ШИМ формирует широтно-импульсно модулированный сигнал (ШИМ-сигнал), коэффициент заполнения которого подобран таким образом, что среднее значение напряжения U1 в точке соединения первых выводов резисторов 3 и 4 равно U1=0,5Uи, где Uи - напряжение источника питания микроконтроллера 1. Напряжение U1 сглаживается RC-фильтром 6 и подается на второй вход АК микроконтроллера 7.

На выходе второго ШИМ сформирован лог.0, а на выходе первого ШИМ действует ШИМ-сигнал, коэффициент заполнения k1 которого зависит от сопротивления резистора 2 (т.е. от резистивного датчика). На резисторе 2 формируется напряжение U2=Uи·k1, которое сглаживается RC-фильтром 5 и подается на первый вход АК микроконтроллера 7. Микроконтроллер 7 непрерывно сравнивает значения напряжений U1 и U2, и изменяет коэффициент заполнения k1 так, чтобы U2=U1.

Допустим сопротивление резистора 2 (платинового датчика) возросло, при этом в соответствии с известными зависимостями возрастет напряжение U2, снимаемое с резистора 2. Если U2 превысит значение U1, то на выходе АК микроконтроллера 7 поменяется на противоположный логический уровень и микроконтроллер 7 начнет уменьшать значение коэффициента заполнения k1 до тех пор, пока U2 не станет меньше U1, при котором логический уровень на выходе АК изменится на противоположный. Коэффициент заполнения k1 является функционально зависимой величиной от U2, которое в свою очередь зависит от сопротивления резистора 2.

Таким образом, микроконтроллер 7 следит за рассогласованием напряжений U2 и U1 и путем изменения коэффициент заполнения k1 уравновешивает резистивный мост, образуемый резисторами 1, 2, 3 и 4. Благодаря уравновешиванию достигается высокая точность преобразования.

Дальнейшее повышение точности может быть достигнуто путем изменения алгоритма преобразования, например первый ШИМ формирует на своем выходе лог.0, а второй ШИМ формирует ШИМ-сигнал и процесс преобразования реализуется по вышеприведенному алгоритму. Результаты преобразований, выполненные по обоим алгоритмам, усредняются путем деления их суммы на два. Благодаря изменению логических уровней первого и второго ШИМ, а также третьего и четвертого ШИМ на противоположные удается избежать дополнительных погрешностей, вносимых, например, разностью потенциалов, возникающей в местах контакта аппаратных элементов измерительных цепей.

Предлагаемое изобретение по сравнению с прототипом и другими известными решениями имеет преимущество: повышена точность преобразования за счет усовершенствования аппаратного и программного обеспечения.

1. Микроконтроллерный измерительный преобразователь с управляемым питанием резистивных измерительных цепей методом широтно-импульсной модуляции, содержащий микроконтроллер, первый RC-фильтр, первый, второй, третий и четвертый резисторы, причем первый вывод первого резистора подключен к выходу первого широтно-импульсного модулятора микроконтроллера, вторые выводы первого и второго резисторов подключены ко входу первого RC-фильтра, выход которого подключен к первому входу аналогового компаратора микроконтроллера, отличающийся тем, что в него введен второй RC-фильтр, причем первые выводы второго, третьего и четвертого резисторов подключены к выходам соответственно второго, третьего и четвертого широтно-импульсных модуляторов микроконтроллера, вторые выводы третьего и четвертого резисторов подключены ко входу второго RC-фильтра, выход которого подключен ко второму входу аналогового компаратора микроконтроллера.

2. Микроконтроллерный измерительный преобразователь с управляемым питанием резистивных измерительных цепей методом широтно-импульсной модуляции по п. 1, отличающийся тем, что в качестве одного из четырех резисторов включен резистивный датчик.



 

Похожие патенты:

Изобретение относится к технике измерений относительной электрической проводимости и солености жидкостей (например, морской воды) и может быть использовано в метрологии в качестве образцовых средств, а также для измерения активных проводимостей и сопротивлений. Технический результат - повышение точности измерения и расширение функциональных возможностей.

Изобретение относится к контрольно-измерительной технике, автоматике, управлению и промышленной электронике. Измеритель параметров двухполюсников содержит последовательно соединенные генератор питающих импульсов, четырехполюсник с двухполюсником объекта измерения и двухполюсником с уравновешивающими элементами, неинвертирующий повторитель напряжения, инвертирующей первый усилитель с коэффициентом усиления, равным двум, первый двухвходовой аналоговый сумматор, на один из входов которого подается сигнал с выхода генератора импульсов, а на другой вход - с выхода первого инвертирующего усилителя, с выхода сумматора сигнал усиливается вторым усилителем и подается на входы двух схем выборки и хранения, сигналы с выхода каждой из двух схем выборки и хранения поступают соответственно на два входа второго двухвходового аналогового сумматора, сигнал со второго сумматора усиливается третьим усилителем и через разделительный конденсатор подается на нуль-индикатор.

Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества.

Изобретение относится к области энергетики, а именно к измерению параметров обмоток трансформаторов. Сущность заявляемого изобретения состоит в том, что измерение параметров трехфазных двухобмоточных трансформаторов при коротком замыкании производится вначале при схеме соединения первичной обмотки в треугольник, а затем - в звезду.

Изобретение относится к метрологии. Измеритель содержит генератор, мост, нуль-детектор.

Изобретение относится к электроизмерительной технике, в частности к измерениям внутреннего сопротивления аккумуляторной батареи. Устройство измерения внутреннего сопротивления для пакетированной батареи включает в себя компонент источника питания переменного тока для подачи переменного тока на батарею, состоящую из множества пакетированных элементов генерирования энергии, посредством подключения к объекту измерения.

Изобретение относится к измерительной технике и, в частности, к контролю выходного напряжения и сопротивления изоляции аккумуляторных батарей. Устройство контроля аккумуляторной батареи содержит аккумуляторную батарею, преобразователь постоянного напряжения, выполненный по схеме автогенератора с трансформаторной обратной связью, источник тока, сдвоенный транзисторный оптрон, операционный усилитель, два резистора и дополнительный индикатор, причем величина сопротивления R первого резистора установлена равной R=E/2J, где E - номинальное напряжение аккумуляторной батареи J - величина тока, вырабатываемого источником тока.

Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов.

Способ определения первичных параметров однородного участка трехпроводной линии электропередачи относится к области функционального контроля и диагностики трехфазных линий электропередачи трехпроводного исполнения на основе ее Г-образной схемы замещения полнофазного исполнения.

Способ определения первичных и обобщенных вторичных параметров однородного участка трехпроводной линии электропередачи методом восьмиполюсника относится к области контроля и диагностики трехфазных линий электропередачи трехпроводного исполнения на основании многополюсников.

Изобретение относится к промышленной электронике, автоматике, информационно-измерительной технике и может быть использовано для контроля и определения параметров двухполюсников. Мостовой измеритель параметров двухполюсников содержит последовательно соединенные генератор питающих импульсов, четырехплечую мостовую цепь и нуль-индикатор. В мостовой измеритель параметров двухполюсников дополнительно введены три резистора, катушка индуктивности, а также две клеммы для подключения объекта измерения перенесены из первой ветви во вторую ветвь моста. Техническим результатом является уменьшение погрешности измерения за счет исключения составляющей погрешности от паразитной емкости относительно «земли» незаземленного многоэлементного двухполюсника. 1 ил.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах и транспортных средствах. Техническим результатом является повышение точности измерения, которое достигается путем измерения параметров кабельной линии связи и учета измеренных параметров кабельной сети при определении параметров двухполюсника с помощью схемы замещения. Способ определения параметров двухполюсника заключается в воздействии на двухполюсник, подключенный через линию связи, и эталон синусоидальным напряжением на n заданных частотах, где n - число элементов двухполюсника. Далее производится последовательное измерение значений токов через двухполюсник и эталон на каждой из n заданных частот с последующей фиксацией результатов измерений. Параметры двухполюсника определятся по фиксированным результатам измерений в соответствии со схемой его замещения. Отличительной особенностью способа является то, что осуществляют отключение двухполюсника от линии связи и после формирования синусоидального напряжения на n заданных частотах производят измерение токов через комплексное сопротивление линии связи и эталон на каждой из n заданных частотах. Полученные результаты фиксируют и по ним определяют значения параметров комплексного сопротивления линии связи, используя схему замещения, после чего по значениям параметров комплексного сопротивления линии связи судят о ее состоянии, а также учитывают их при определении параметров двухполюсника. 2 ил.

Изобретение относится к измерительной технике. Особенностью заявленного цифрового способа измерения параметров пьезоэлектрических элементов является то, что импульсный сигнал возбуждения имеет длительность T1=Т0-τ, где τ - длительность паузы между окончанием сигнала с линейной частотной модуляцией и моментом окончания регистрации цифровых сигналов, при этом время регистрации цифровых сигналов равно Т0, определяют частоту резонанса ƒr, частоту антирезонанса ƒa и добротность Q пьезоэлемента, а также значение параллельной емкости С0 из полученного множества значений комплексной проводимости путем его дробно-рациональной аппроксимации частотной зависимостью комплексной проводимости канонической эквивалентной схемы в резонансном промежутке частот. Техническим результатом является повышение точности измерения комплексной проводимости пьезоэлектрического элемента. 1 з.п. ф-лы, 10 ил.

Изобретение относится к электроизмерительной технике и может быть, в частности, использовано для измерения приращения сопротивлений удаленных тензорезисторов или терморезисторов в многоканальных измерительных системах, работающих в условиях действия интенсивных промышленных помех. Многоканальный преобразователь приращения сопротивления резистивных датчиков в напряжение содержит «n» резистивных датчиков, «n» первых, «n» вторых, «n» третьих и «n» четвертых проводов, четыре группы ключевых элементов по «n» ключевых элементов в каждой, источник опорного напряжения, два равных по величине опорных резистора, три операционных усилителя и сумматор. Технический результат заключается в повышении помехозащищенности многоканального преобразователя и преобразовании приращения сопротивления резистивных датчиков в напряжение. 1 ил.

Изобретение относится к электроизмерительной технике, а именно к измерению электрических параметров двухполюсников. Устройство содержит первый блок задания схемы замещения, преобразователь ток-напряжение, масштабный усилитель, аналогово-цифровой преобразователь, блок управления измерением, определитель параметров двухполюсников, эталона, генератор синусоидального напряжения, блок управления по частоте, блок управления режимами, блок коммутации, 4n измерительные клеммы, экранированную кабельную линию связи, блок переключения, блок сравнения, учитывающий блок и ключ. Технический результат заключается в повышении точности измерения. 5 ил.

Изобретение относится к измерению и контролю составляющих полного сопротивления и может быть использовано для измерения напряжения на контактах полюсов и измерения внутреннего сопротивления гальванических элементов, аккумуляторов различных типов и батарей на их основе. Способ осуществляется с помощью устройства, содержащего микроконтроллер (1), генератор (2), фильтр нижних частот (элемент защиты от помех) (3), управляемый источник тока (4), первый умножитель (5), фильтр нижних частот (элемент защиты от помех) (6), измерительную схему (7), второй умножитель (8), фильтр нижних частот (9), измеритель тока (10), анализируемый ЭХИП (11). Генератор (2) имеет два выхода, первый из которых является выходом первого синусоидального напряжения, измерительную схему (7), подключенную к анализируемому ЭХИП (11). К выходу измерительной схемы подключен фильтр (6), выход которого подключен к первому входу первого умножителя (5). Ко второму выходу генератора (2) подключен третий вход первого (5) и второго (8) умножителей, выходы которых подключены к измерительным входам микроконтроллера (1). Кроме того, ко второму выходу генератора (2) подключен фильтр (3), выход которого подключен к управляемому источнику тока (4), который задает величину тока, протекающего через анализируемый ЭХИП (11). Второй выход анализируемого ЭХИП (11) подключен к измерителю тока (10) выход которого через фильтр (9), подключен ко второму умножителю (8). С помощью данного устройства определяют активную и реактивную составляющие сигнала, подают их на измерительные входы микроконтроллера, который по четырем сигналам производит вычисление активной и реактивной составляющей полного сопротивления анализируемого ЭХИП. Технический результат заключается в повышении точности измерения составляющих полного сопротивления ЭХИП, что повышает достоверность определения дефектов ЭХИП. 2 н.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике и, в частности, к технике измерения параметров объектов в виде пассивных двухполюсников с сосредоточенными параметрами, имеющих многоэлементную схему замещения. Устройство содержит генератор тестовых импульсов напряжения, имеющих форму функции n-й степени, дифференциальный преобразователь «ток-напряжение», (n + 1) регулируемый резистор, один из выводов первого регулируемого резистора соединен с выходом генератора импульсов, а другой – со вторым входом преобразователя «ток-напряжение», n аналоговых коммутаторов, входы которых подключены к выводам второго, третьего и т. д., …, (n+1)-го регулируемого резистора, выходы коммутаторов соединены с входами дифференциального преобразователя «ток-напряжение», n-каскадный дифференциатор на дифференцирующих RC-звеньях, вход первого звена подключен к выходу преобразователя «ток-напряжение»; (n+1) нуль-индикатор, входы первого, второго и т. д.,… n-го нуль-индикатора соединены соответственно с выходами n-го, (n-1)-го, и т. д., …, первого RC-звена дифференциатора, вход (n+1)-го нуль-индикатора соединен с выходом дифференциального преобразователя «ток-напряжение»; дополнительно введен второй дифференциатор на n последовательно соединенных дифференцирующих RC-звеньях и n повторителей напряжения, причем все дифференцирующие RC-звенья второго дифференциатора имеют равные постоянные времени RC, но различные значения сопротивления резистора и емкости конденсатора, вход первого звена второго дифференциатора подключен к выходу генератора тестовых импульсов, входы повторителей напряжения соединены с выходами RC-звеньев второго дифференциатора, а к выходам повторителей напряжения подключены свободные выводы второго, третьего и т.д., …, (n+1)-го регулируемого резистора. Технический результат заключается в повышении устойчивости работы устройства формирования образцовых сигналов и устранение погрешностей уравновешивания из-за задержек различных составляющих компенсационного тока. 2 ил.

Изобретение относится к области термометрии и может быть использовано для контроля технологических параметров в производственных процессах. Передатчик (12) температуры процесса выполнен по меньшей мере с одним датчиком (32) температуры, имеющим множество проводов. Передатчик (12) температуры включает в себя схему (26) измерения, выполненную с возможностью соединения по меньшей мере с одним датчиком (32) температуры для обеспечения индикации электрического параметра по меньшей мере одного датчика (32) температуры. Контроллер (30) соединен со схемой (26) измерения для получения индикации и подачи выходного сигнала температуры процесса. Источник (28) тока подает тестовый ток в множество проводов одновременно. Схема (70) диагностики измеряет отклик напряжения на каждом проводе для того, чтобы обеспечить диагностическую индикацию датчика температуры. Технический результат – повышение точности и достоверности диагностики датчиков температуры. 3 н. и 17 з.п. ф-лы, 8 ил.

Изобретение относится к устройствам измерительной техники, в частности к первичным преобразователям, и может быть использовано в калориметрии, тензометрии, датчиках силы и давления. Сущность его заключается в том, что преобразователь приращения сопротивления в напряжение содержит мост, состоящий из сопротивлений R1, R2, R3, R4 и сопротивления R5, два источника питания, два операционных усилителя, при этом инвертирующий вход первого операционного усилителя «заземлен», неинвертирующий вход подключен к точке соединения сопротивлений R3, R4, а его выход - к сопротивлению R5, другой конец сопротивления R5 вместе с точкой соединения сопротивлений R1, R2 подключены к инвертирующему входу второго операционного усилителя, неинвертирующий вход которого «заземлен» вместе с «заземлениями» обоих источников питания. Заявленное изобретение обеспечивает при реализации технический результат, заключенный в повышении точность преобразования приращения сопротивления в напряжение посредством обеспечения строгой линейной зависимости между ∆ R4 и UВых. 1 ил.

Изобретение относится к измерительной технике и заключается в получении численных значений модуля z и фазового угла ϕ комплексного сопротивления линейного пассивного двухполюсника. Для достижения необходимого результата при относительно простом алгоритме решения задачи в способе по изобретению используют операцию деления мгновенных значений соответствующим образом формируемых двух одночастотных синусоидальных электрических величин с периодом повторении Т, при этом делимым является первый вспомогательный синусоидальный сигнал, у которого согласно способу амплитуда линейно связана с амплитудой приложенного к линейному пассивному двухполюснику синусоидального напряжения, в то время как в аргумент функции синуса первого вспомогательного синусоидального сигнала, как и в известном способе [RU №2534376], вводят изменяемый по величине фазовый угол θ, причем в качестве делителя используют синусоидальный сигнал с идентичными протекающему через линейный пассивный двухполюсник синусоидальному току параметрами, при этом в результате деления формируют второй вспомогательный сигнал, который является несинусоидальной периодической функций времени с разрывами в моменты времени, когда мгновенное значение сигнала делителя пересекает ось времени, причем во втором вспомогательном сигнале наблюдают двуполярные выбросы, форма которых в местах разрывов второго вспомогательного сигнала и при малой разности вводимого в вычислительный процесс фазового угла θ и фазового угла ϕ комплексного сопротивления приближается к форме «иглообразных» двуполярных импульсов малой длительностью, причем по мере стремления разности углов θ и ϕ к нулю их амплитуда начинает уменьшаться. При уменьшении амплитуд «иглообразных» двуполярных выбросов ниже предписанного значения или их исчезновении, что имеет место при равенстве текущего значения вводимого в вычислительный процесс изменяемого фазового угла θ и фазового угла ϕ комплексного сопротивления , изменение фазового угла θ прекращают и его численное значение принимают за фазовый угол ϕ комплексного сопротивления , причем после прекращения изменения значения фазового угла θ на интервале времени, равном периоду Т, для второго вспомогательного сигнала вычисляют среднее значение и результат это действия считают численным значением модуля z комплексного сопротивления линейного пассивного двухполюсника. Способ может быть использован как при создании измерительного прибора, обеспечивающего получение информации о величине модуля z и фазового угла ϕ комплексного сопротивления линейного пассивного двухполюсника, так и при создании измерительного органа релейной защиты и автоматики с двумя подводимыми электрическими величинами, например с функцией определения места повреждения (ОМП) на линии электропередачи. Технический результат, который достигается при реализации заявленного технического решения , заключается в повышении технического уровня и возможностей измерительного устройства, его упрощении за счет того, что согласно заявленному способу в его программируемом измерительно-вычислительном блоке осуществляется деление двух одночастотных синусоидальных сигналов. 4 ил.
Наверх