Способ термической обработки режущего инструмента из быстрорежущей стали

Изобретение относится к области металлургии и главным образом к способам термообработки быстрорежущей стали для упрочнения режущего инструмента, и который изготовлен преимущественно из прокованной или порошковой быстрорежущей стали. Для повышения эксплуатационной стойкости инструмента, предназначенного для резания труднообрабатываемых сплавов, инструмент из быстрорежущей стали термоциклируют в интервале между температурой начала мартенситных превращений и температурой плавления, ступенчато закаливают от температуры, превышающей температуру полиморфного превращения, нагрев под которую совмещен с последним нагревом при термоциклировании, и отпускают. Причем закалочное охлаждение инструмента осуществляют в два этапа: сначала охлаждают в соляной ванне, имеющей температуру 630-650°C, выдерживают там 0,5-1,5 мин, а затем охлаждают в масле. В результате термообработки быстрорежущей стали происходит более полное измельчение структуры, увеличение количества износостойких карбидов типа МеС и степени легированности мартенсита, формирование мозаично-дискретной и функционально-градиентной структур, что повышает работоспособность инструмента при резании труднообрабатываемых сплавов. 1 з.п. ф-лы, 1 табл.

 

Область техники

Настоящее изобретение относится к области металлургии и главным образом - к способам термообработки быстрорежущей стали для упрочнения инструментов, предназначенных для резания труднообрабатываемых сплавов; такие инструменты изготовлены преимущественно из нелитой быстрорежущей стали.

Предшествующий уровень техники

Известен способ термообработки заэвтектоидной стали, содержащей менее 10% легирующих элементов (US, А, 3922181), который включает высокотемпературную аустенизацию, изотермическую закалку с выдержкой при температуре 480…720°C до полного превращения аустенита в перлит, повторный нагрев до температуры аустенизации ниже температуры полного растворения карбидов, последующее закалочное охлаждение и отпуск.

Известный способ обеспечивает получение мелкого зерна и оптимальное распределение дисперсных карбидов в структуре, предотвращает образование закалочных микротрещин, что положительно сказывается на свойствах. В результате усталостная прочность повышается в 2,5…3 раза, предел текучести при сжатии на 30…35%, немного увеличивается износостойкость заэвтектоидной стали.

Однако приведенный способ термообработки неприемлем для быстрорежущей стали и характеризуется невысокими значениями таких свойств инструмента, как стойкость, прочность на изгиб, теплостойкость и др. Это обусловлено недостаточно высокой степенью легирования твердого раствора карбидообразующими элементами из-за низкой температуры нагрева под закалку и малого числа циклов: двух.

Известен также способ термической обработки литой быстрорежущей стали (SU, A, 1014938), который включает подогрев выше температуры полиморфного превращения, термоциклирование, закалку и отпуск; а нагрев под закалку совмещают с последним нагревом до верхней температуры при термоциклировании. Причем при термоциклировании нагрев осуществляют до температуры на 20…50°C ниже температуры плавления, соответствующей температуре стандартной закалки, а охлаждение - до температуры, лежащей не ниже 800°C. Производят дополнительное охлаждение с нижней температуры термоциклирования до 700°C, выдерживают 4…8 часов и затем окончательно охлаждают до комнатной температуры.

При осуществлении указанного способа оптимальное число циклов при термоциклировании достигает 5…7 и зависит от степени неоднородности структуры. Причем верхняя и нижняя границы термоциклирования ограничены узким температурным интервалом, лежащим между температурой эвтектоидноидного превращения и температурой стандартной закалки; когда исключается возможность выполнения полиморфного превращения. Термоциклирование на всех стадиях термообработки проводят при постоянных значениях верхней и нижней температуры.

Недостатком данного способа являются длительность процесса (4…8 часов) и низкие значения стойкости инструмента, изготовленного из нелитой быстрорежущей стали. Предложенным способом устраняется сетка карбидной эвтектики только в литой быстрорежущей стали, по причине которой весь литой инструмент очень хрупок и плохо работает при резании труднообрабатываемых сплавов. А для инструмента из нелитой, в частности, прокованной и отожженной или порошковой быстрорежущей стали с уже раздробленной механическим или другими способами карбидной сеткой известный способ мало эффективен.

Наиболее близким к предлагаемому является способ термической обработки режущего инструмента из быстрорежущей стали (РФ, Пат. 2010870), включающий предварительную обработку путем многократного нагрева до температуры 610°C…А1 с охлаждением в масле, подогрев и затем термоциклирование в интервале между температурой начала мартенситных превращений стали (160°C) и ее температурой плавления (1305°C) с изотермической выдержкой в защитной среде, после чего проводят окончательную закалку от температуры последнего нагрева при термоциклировании и отпуск. Причем в качестве защитной среды используют расплавы хлористых солей, в которые дополнительно вводят карбонат бария (или калия) и карбид кремния (или кальция). В результате термообработки в структуре стали измельчаются зерна и карбиды, повышается степень легированности мартенсита, реализуется фазовый наклеп, что в целом повышает ударную вязкость, прочность, теплостойкость быстрорежущей стали и в конечном итоге эксплуатационную стойкость (Kw=1,2…2,0) деревообрабатывающего инструмента.

Однако данный способ термообработки быстрорежущей стали недостаточно высоко повышает стойкость инструмента для резания труднообрабатываемых сплавов, который испытывает большие механические и тепловые нагрузки.

Раскрытие изобретения

В основу изобретения положена задача создания нового способа упрочнения, который с помощью термоциклической термообработки быстрорежущей стали и отпуска, более полно измельчил бы зерна и карбиды, увеличил бы количество износостойких карбидов МеС и степень легированности мартенсита карбидообразующими элементами, уменьшил бы содержание остаточного аустенита, создал бы мозаично-дискретную и функционально-градиентную структуры, в результате чего повысились бы вязкость, прочность, твердость, теплостойкость и в итоге возросла эксплуатационная стойкость металлорежущего инструмента.

Существо изобретения заключается в том, что в новом способе термической обработки быстрорежущей стали, включающем термоциклирование в интервале между температурой начала мартенситных превращений и температурой плавления стали, закалку, нагрев под которую совмещают с последним нагревом при термоциклировании до температур, превышающих температуру полиморфного превращения, и многократный отпуск, согласно данному изобретению время термоциклического нагрева во всех циклах, кроме последнего нагрева под закалку, варьируют в пределах 10-110% от общего времени при стандартной закалке, а при закалке нагретую сталь сначала помещают в печь-ванну, имеющую температуру 630…650°C, выдерживают там 0,5…1,5 мин и затем охлаждают в масле. Предлагаемый способ распространяется на все марки быстрорежущих сталей.

Выбор температурного интервала при термоциклировании обусловлен тем, что в указанном интервале температур легко проходят фазовые превращения и другие изменения структуры, улучшающие свойства быстрорежущей стали. Верхний температурный предел термоциклического нагрева ограничен температурой плавления, поскольку выше этой температуры наблюдается оплавление и значительный рост зерна, что ведет к резкому снижению механических свойств быстрорежущей стали независимо от числа термоциклов. Нижний температурный предел термоциклического охлаждения ограничен температурой начала мартенситных превращений, поскольку при многократном охлаждении ниже этой температуры начинаются мартенситные превращения или другие изменения в структуре, ведущие к падению прочности и вязкости, в частности к образованию трудноисправимого брака под названием "нафталинистый излом", к появлению высоких напряжений и закалочных микротрещин. Температура начала мартенситных превращений в свою очередь зависит от температуры нагрева под закалку, марки быстрорежущей стали, скорости ее охлаждения и других факторов.

Выбор времени термоциклического нагрева во всех циклах, кроме последнего, обусловлен тем, что это время варьируют в пределах 0,1-1,1 τ3 от времени нагрева при традиционной закалке, что приводит к неполной аустенизации стали, созданию в ней неоднородной структуры и фазовому наклепу. При многократном повторении неполного нагрева формируется мозаично-дискретная и функционально-градиентная структуры с дисперсными карбидами, а окончательная закалка на последнем цикле фиксирует это состояние. Время неполного термоциклического нагрева тем меньше, чем больше циклов и выше температура нагрева. Время термоциклического охлаждения выбирается для выравнивания температуры по сечению.

При термоциклировании можно использовать любые нагревательные устройства: вакуумные печи, печи с защитной атмосферой, соляные печи-ванны. В последнем случае при нагреве выше температуры полиморфного (эвтектоидного) превращения рекомендуется использовать соляные ванны, хорошо раскисленные восстановителями: бурой, углем, карбидами бора, кальция, кремния и др.

Для улучшения режущих свойств быстрорежущей стали на стадии закалки сначала нагретую сталь помещают в печь-ванну, имеющую температуру 630…650°C, выдерживают там 0,5…1,5 мин и затем охлаждают в масле. При температуре 630…650°C образуются износостойкие карбиды типа МеС, повышается вязкость и теплостойкость стали, но превышение времени выдержки более 1,5 мин ведет к потере этих свойств. Чтобы сохранить положительные изменения структуры, сталь быстро охлаждают в масле. При охлаждении в воде могут образоваться трещины.

Лучший вариант осуществления изобретения

Предлагаемый способ термообработки быстрорежущей стали, преимущественно для металлорежущих инструментов, осуществляют следующим образом.

Инструмент из быстрорежущей стали, предварительно просушенный в электропечи или возле печи-ванны, подвергают термоциклированию путем последовательного переноса его из соляных ванн для нагрева в соляные ванны для охлаждения. После охлаждения инструмент возвращают в те же ванны для нагрева и вновь повторяют процесс. Температуру ванн для термоциклического нагрева и охлаждения варьируют в интервале температур между температурой плавления и температурой начала мартенситных превращений. Время термоциклического нагрева, кроме последнего цикла, составляет 0,1…1,1 от времени нагрева при традиционной закалке. Последний нагрев при термоциклировании совмещают с нагревом под закалку путем переноса из ванны для термоциклического охлаждения в ванну для нагрева под закалку. Причем температуру последнего термоциклического нагрева назначают в соответствии с общепринятыми нормами: 1270°C для стали Р18 (18%W), 1215…1225°C - для сталей Р6М5 (6%W, 5%Мо) и Р9М4К8 (9%W, 4%Мо, 8%Со), др. Нагретую до температуры закалки сталь закаливают путем ее переноса сначала в соляную ванну с температурой 630…650°C, где выдерживают 0,5…1,5 мин и охлаждают в масле. Закаленный таким способом инструмент подвергают 2- или 3-кратному отпуску при 550…570°C в течение 1…2 часов в зависимости от его размеров и марки стали.

Для осуществления термоциклирования стали путем многократного нагрева и охлаждения используют расплавы хлористых солей стандартного состава: при температурах выше 950°C - ванну на основе BaCl2, в интервале 800…950°C - ванну на основе NaCl, при температурах в интервале 515…800°C - ванну на основе 30% BaCl2+20% NaCl+50% CaCl2. Выше температуры 950°C соляные ванны хорошо раскисляют бурой, углем, карбидами бора, кальция, кремния и др. Для термоциклического охлаждения в интервале 250…...540°C используют ванну, состоящую из 50% KOH+50% NaOH, в интервале 160…280°C - ванну, состоящую из 80% KOH+20% NaOH, ниже 160°C - подогретое машинное масло. Количество соляных ванн зависит от температур термоциклического нагрева и охлаждения, а также от уровня автоматизации процесса термообработки.

Примеры

Эксплуатационную стойкость инструмента оценивали по результатам испытаний метчиков М6×1, изготовленных из стали Р9М4К8МП, путем нарезания резьбы 5Н6Н в гайках из жаропрочного никелевого сплава ЭИ437Б с твердостью НВ 300…350. Нарезание резьбы осуществляли на резьбонарезном станке Г813-5026 при следующих режимах обработки: V=5 м/мин, S - ручная с самозатягиванием, СОЖ - масло МР-7. Показатель стойкости определяли, как усредненное значение после испытаний 3…5 метчиков, термически обработанных по одному режиму. Результаты сравнительных испытаний инструмента приведены в табл.1.

Из приведенных данных следует, что использование предлагаемого способа термической обработки режущего инструмента из быстрорежущей стали позволяет, по сравнению с прототипом, повысить стойкость метчика при резании труднообрабатываемого жаропрочного сплава в 1,1…2,7 раза.

Промышленная применимость

Предлагаемый способ можно применить в условиях любого инструментального, машиностроительного и другого производства, оснащенного оборудованием для термической обработки быстрорежущих сталей.

1. Способ термической обработки режущего инструмента из быстрорежущей стали, включающий термоциклирование путем многократного нагрева и охлаждения в интервале между температурой начала мартенситных превращений и температурой плавления стали, закалку путем охлаждения от температуры, превышающей температуру полиморфного превращения, нагрев под закалку совмещают с последним термоциклическим нагревом и многократный отпуск, отличающийся тем, что охлаждение при закалке осуществляют в два этапа, при этом сначала нагретый до температуры закалки инструмент помещают в печь-ванну и осуществляют выдержку в ней при температуре 630-650°C, в течение 0,5-1,5 мин, а затем охлаждают в масле.

2. Способ по п.1, отличающийся тем, что на первом этапе нагретый до температуры закалки инструмент помещают в соляную печь-ванну.



 

Похожие патенты:

Изобретение относится к технологии объемного упрочнения и может быть использовано в машиностроении и других отраслях промышленности, где используется режущий инструмент, технологическая оснастка и др.
Изобретение относится к области термической обработки и может найти применение в машиностроении. Для повышения качества поверхности деталей благодаря повышению эффективности действия титана по раскислению расплава, особенно качества поверхности острых кромок инструмента с сохранением их высокой твердости, осуществляют погружение инструмента в расплав соли, нагревают его до температуры термообработки и затем охлаждают, при этом расплав соли в ванне раскисляют титаном.

Изобретение относится к области металлургии и может быть использовано для термической обработки инструмента из кобальтсодержащей быстрорежущей стали. Для повышения эксплуатационной стойкости инструмента осуществляют закалку путем нагрева инструмента до температуры 1190-1220°C с последующим охлаждением водой и отпуск за 5-7 циклов путем нагрева до температуры 500-520°C при длительности выдержки при температуре нагрева в каждом цикле 1-3 ч.

Изобретение относится к металлургии, преимущественно к области термомеханической обработки низколегированных сталей, и может быть использовано для изготовления ответственных элементов конструкций, крепежных изделий различного назначения.
Изобретение относится к области машиностроения и может быть использовано для термической обработки режущего инструмента, например протяжек небольшого диаметра, метчиков и других мелких инструментов.
Изобретение относится к области металлообработки и может найти применение в машиностроении. Техническим результатом изобретения является улучшение эксплуатационных характеристик оправок за счет значительного повышения их жёсткостных и демпфирующих параметров.

Изобретение относится к инструментальному производству, а именно изготовлению металлорежущего инструмента с применением наплавки. Способ изготовления наплавленного режущего инструмента включает механическую и термическую обработку корпуса, наплавку быстрорежущей сталью рабочего слоя, его поверхностное пластическое деформирование и высокотемпературный отпуск.
Изобретение относится к области термической обработки быстрорежущих сталей и может быть использовано преимущественно для термической обработки длинномерного инструмента и инструмента сплошной формы.
Изобретение относится к области машиностроения. Техническим результатом изобретения является обеспечение характеристик пластичности, вязкости, прочности материала литых штампов после упрочняющей термической обработки не ниже соответствующих характеристик инструмента, изготовленного из кованых заготовок.
Изобретение относится к области машиностроения и может быть использовано для термической обработки штампов из полутеплостойких и теплостойких сталей повышенной вязкости, к примеру 5ХНМ и 4Х5МФС, а также пресс-форм из стали 4Х5МФС.

Изобретение относится к машиностроению, в частности к области термической обработки инструмента. Способ упрочнения разделительного штампа включает лазерную закалку боковых рабочих поверхностей путем оплавления припусков за один проход при перемещении луча лазера по стыку припусков и последующий лазерный отпуск. После лазерной закалки выполняют обработку холодом до температуры окончания мартенситного превращения, а лазерный отпуск выполняют с помощью непрерывного излучения многоканального CO2 лазера на режимах, обеспечивающих нагрев стали в зоне закалки в интервале температур Ac1÷560°C, где Ac1 - критическая температура, при которой в стали начинает формироваться аустенит: мощность лазерного излучения P при выполнении лазерного отпуска в 4÷5 раз меньше, чем при выполнении лазерной закалки, скорость сканирования луча ν и диаметр пятна излучения d на обрабатываемой поверхности для выполнения лазерной закалки и лазерного отпуска одинаковы. 2 ил.
Изобретение относится к области обработки черных металлов, а более конкретно к обработке металлорежущего инструмента из быстрорежущей стали. Для повышения стойкости инструмента рабочую часть стандартно термоупрочненного инструмента из быстрорежущей стали подвергают воздействию пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ при комнатной температуре в течение 10-20 мин. Изобретение позволило повысить стойкость стандартно термоупрочненного металлорежущего инструмента из быстрорежущей стали в 2-2,5 раза.

Изобретение относится к области упрочняющей обработки изделий из твердых сплавов. Техническим результатом изобретения является повышение ресурса работы инструментов, деталей машин и механизмов, работающих в условиях резания, трения и абразивного износа. Для достижения технического результата рабочую поверхность инструмента или изделия из твердого сплава облучают импульсным сильноточным электронным пучком с энергией 10-30 кэВ при длительности импульсов облучения 150-200 мкс и количеством импульсов 10-30, при давлении плазмообразующих газов в рабочей камере облучения 0,02-0,03 Па и плотности энергии в электронном пучке 40-60 Дж/см2, при этом в качестве плазмообразующего газа для получения электронного пучка используются инертные газы криптон или ксенон. 6 ил., 3 табл.
Изобретение относится к области металлургии, в частности к химико-термической обработке изделий из инструментальных сталей. Для увеличения глубины азотируемого слоя за короткий промежуток времени, повышения износостойкости перетачиваемого инструмента, изготовленного из отожженной заготовки, инструмент нагревают в вакуумной камере в среде аргона при давлении 0,2-0,67 Па до температуры не ниже 450° и не выше Ac1-(50-70)°C с обеспечением ионной очистки поверхности, затем при указанной температуре нагрева осуществляют ионно-плазменное азотирование в плазме азота или смеси газов аргона и азота с концентрацией азота не менее 20% путем двухступенчатого вакуумно-дугового разряда, при этом сила тока дуги составляет (80-100)±0,5А, а сила тока дополнительного анода - (70-90)±0,5 А при подаче на инструмент напряжения смещения в диапазоне от -50 В до -900 В в течение 0,5-2 час, охлаждение ведут в камере, а закалку и отпуск проводят по стандартному режиму для данной стали с получением азотированного слоя глубиной 2-2,5 мм. 2 пр.

Изобретение относится к упрочняющей обработке металлов с использованием концентрированных потоков энергии, в частности к получению на техническом титане ВТ1-0 поверхностных слоев с градиентной многофазной структурой, которые могут быть использованы для повышения ресурса работы деталей машин и механизмов, работающих в условиях многоциклового усталостного разрушения. Способ включает импульсно-периодическое воздействие на поверхность технического титана ВТ1-0 сильноточным электронным пучком с энергией электронов 10…30 кэВ в среде аргона при остаточном давлении 0,02…0,03 Па, поглощаемой плотности энергии 10…30 Дж/см2, длительности импульсов 100…150 мкс и количестве импульсов 1…3. 1 ил., 1 табл., 3 пр.

Изобретение относится к области металлургии и может быть использовано при термической обработке режущих инструментов. Для повышения надежности и долговечности протяжек с плоскими гранями её подвергают трехступенчатому нагреву, при этом на первой ступени нагревают не менее 1 часа в камерной печи с температурой менее 600°С, но превышающей 560°С, на второй ступени - в соляном расплаве с температурой свыше 850°С, но не превышающей 900°С, в течение времени, определяемого из соотношения 15-25 секунд на миллиметр ширины корпуса протяжки, на третьей ступени - в соляном расплаве с температурой ниже 1270°С, но не менее 1160°С, в течение времени, определяемого из соотношения 10-15 секунд на миллиметр ширины корпуса протяжки, проводят охлаждение на воздухе до 980-1020°С, а затем в минеральном масле в течение 45-60 с до 590-610°С, определяют величину и направление продольного прогиба протяжки, укладывают горячую протяжку выпуклой гранью на поверочную плиту и совершают перемещения протяжки по поверочной плите до снижения ее прогиба до заданной величины, затем протяжку охлаждают в подвешенном положении до температуры мартенситного превращения металла протяжки. 3 з.п. ф-лы, 1 ил.

Изобретение относится к машиностроению, в частности к области термической обработки сталей, и может быть использовано на машиностроительных заводах в инструментальном производстве при изготовлении режущего и штампового инструмента. Способ упрочнения инструмента из быстрорежущей стали включает объемную термообработку, состоящую из закалки и низкотемпературного отпуска, упрочнение рабочих поверхностей инструмента лазерной закалкой, кратковременный отпуск путем нагрева инструмента в печи в течение от 3 до 5 минут при температуре от 550 до 560°С и чистовую механическую обработку оплавленных поверхностей. Данный способ обеспечивает повышение износостойкости быстрорежущей стали и уменьшение времени выполнения отпуска. 1 табл., 2 ил.
Изобретение относится к машиностроению и может быть использовано при изготовлении режущего и штампового инструмента, быстро изнашиваемых изделий и технологической оснастки из конструкционных и инструментальных сталей, а также из металлокерамических твердых сплавов. Для повышения износостойкости изделий и увеличения эксплуатационной стойкости проводят предварительные закалку, отпуск и нанесение металлического покрытия на изделие методом вакуумного напыления, осуществляют криогенную обработку изделия в среде газообразного азота при температуре от –153 до –196ºС более 24 ч с последующим нагревом в ней до комнатной температуры, затем проводят низкий отпуск при температуре от 150 до 180ºС с последующим охлаждением на воздухе. 1 з.п. ф-лы, 2 табл.

Изобретение может быть использовано для упрочняющей обработки наплавленной быстрорежущей стали при изготовлении биметаллического инструмента. После механической и термической обработки заготовки корпуса инструмента осуществляют дуговую наплавку при токе от 50 до 56 А и напряжении дуги от 5 до 6 В с управлением процессом переноса электродного металла в дуге посредством импульсной подачи проволоки и синхронизированного с ней импульсного режима тока и образованием наплавленного слоя толщиной от 1 до 2 мм. После наплавки выполняют ускоренное охлаждение с помощью медных пластин, приложенных к корпусу заготовки инструмента. Проводят упрочняющую чеканку наплавленного металла с энергией удара от 6 до 7 Дж фасонным бойком. Осуществляют локальный отпуск наплавленной быстрорежущей стали и металла зоны термического влияния (ЗТВ) при температуре от 520 до 540°С. Способ позволяет увеличить твердость и прочность металла ЗТВ, повысить износостойкость режущей части биметаллического инструмента, а также уменьшить энергозатраты на его изготовление. 2 ил., 9 пр.

Изобретение относится к области термической обработки резцов, имеющих поликристаллическую структуру. Для уменьшения остаточных напряжений получают один или более резцов, каждый из которых содержит основание, поликристаллическую структуру, присоединенную к нему, и остаточные напряжения. Способ включает этапы, на которых определяют критическую температуру и критический период времени для категории резцов, в которой резец становится структурно поврежденным, определяют температуру тепловой обработки и период времени тепловой обработки на основании критической температуры и критического периода времени, и нагревают один или более оставшихся резцов из категории резцов до заданной температуры тепловой обработки в течение заданного периода времени. Устройство включает в себя нагревательную камеру и расположенную в камере плавильную ванну, резцы размещают внутри предварительно нагретой плавильной ванны и изолируют от кислорода во время нагревания до температуры тепловой обработки в течение периода времени тепловой обработки. 4 н. и 23 з.п. ф-лы, 9 ил.
Наверх