Полупроводниковая гетероструктура

Изобретение относится к электронной технике. Полупроводниковая гетероструктура для мощного полевого транзистора СВЧ содержит на монокристаллической полуизолирующей подложке арсенида галлия последовательность полупроводниковых слоев каждый с заданными функциональными свойствами и техническими характеристиками - толщиной слоев, составом - качественным и количественным, концентрацией легирующей примеси. Полупроводниковая гетероструктура выполнена в виде прямой последовательности следующих упомянутых полупроводниковых слоев: буферный слой - GaAs, толщиной (150-400) нм, донорный слой - GaAs, толщиной (2-3) нм, легированный кремнием с концентрацией (6-8)×1018 см-3, спейсерный слой - GaAs, толщиной (2-5) нм, канальный слой - InyGa1-yAs, толщиной (8-12) нм, с содержанием химических элементов при у, равном (0,21-0,28), спейсерный слой - AlxGa1-xAs, толщиной (2-5) нм, с содержанием химических элементов при х, равном (0,20-0,24), донорный слой - AlxGa1-xAs, толщиной (3-6) нм, легированный кремнием с концентрацией (5-8)×1018 см-3, с содержанием химических элементов при х, равном (0,20-0,24), барьерный слой - AlxGa1-xAs, толщиной (10-30) нм, с содержанием химических элементов при х, равном (0,20-0,24), стоп-слой - InyGa1-yP, толщиной (2-4) нм, с содержанием химических элементов при y, равном (0,48-0,51), барьерный слой - AlxGa1-xAs, толщиной 10-20 нм, с содержанием химических элементов при х, равном (0,20-0,24), градиентный слой AlxGa1-xAs, толщиной (8-12) нм, легированный кремнием с концентрацией (3-5)×1018 см-3, толщиной (8-12) нм, легированный кремнием с концентрацией (3-5)×1018 см-3, с содержанием химических элементов при х, равном (0,20-0,24), с линейным изменением х до ноля по толщине слоя со стороны полуизолирующей подложки арсенида галлия, контактный слой - GaAs из двух частей - нижней, толщиной (30-50) нм, легированной кремнием с концентрацией (3-5)×1018 см-3, верхней, толщиной (10-20) нм, легированной кремнием с концентрацией (8-10)×1018 см-3, причем количественный состав упомянутых полупроводниковых слоев выражен в мольных долях. Технический результат - снижение плотности дефектов и повышение выхода годных полупроводниковых гетероструктур, повышение выходной мощности и верхней границы частотного диапазона и соответственно расширение диапазона рабочих частот полевого транзистора СВЧ и его выхода годных. 1 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к электронной технике СВЧ, в частности к полупроводниковым гетероструктурам для электронной техники, прежде всего для мощных полевых транзисторов СВЧ.

Как известно, полупроводниковые структуры арсенида галлия (GaAs) до недавнего времени являлись основными полупроводниковыми структурами для полевых транзисторов СВЧ.

Быстродействие таких полевых транзисторов с субмикронными длинами канала составляет 10-12 ГГц.

Существенный прогресс в части повышения быстродействия обеспечило изобретение так называемых транзисторов с высокой электронной подвижностью (НЕМТ - High Electron Mobility Transistor), активная область которых состоит из легированного широкозонного и нелегированного узкозонного слоев полупроводниковой гетероструктуры.

Это обеспечивает существенное увеличение быстродействия таких полевых транзисторов (до 100 ГГц и более).

Известен полевой транзистор СВЧ (полевой транзистор) на полупроводниковой гетероструктуре, содержащий высокоомную подложку и, по меньшей мере, один слой широкозонного и один слой узкозонного полупроводниковых материалов с согласованными или несогласованными кристаллическими решетками, а также электроды истока, затвора и стока, расположенные на наружной поверхности полупроводникового материала, в котором с целью улучшения линейности характеристик полевого транзистора и уменьшения влияния флуктуации концентрации и подвижности носителей тока в канале полевого транзистора на параметры его эквивалентной схемы, а также снижения модуляционных шумов СВЧ-устройств на упомянутых транзисторах часть слоя полупроводникового материала, расположенная на расстоянии от электрода затвора, превышающем 30 нм, выполнена с концентрацией легирующей примеси, большей 3×1017 см-3, и поверхностной плотностью этой примеси, большей 1012 см-2, а средняя концентрация легирующей примеси между упомянутой частью слоя полупроводникового материала и электродом затвора не превышает 3×1017 см-3 [1].

Известна полупроводниковая наногетероструктура InAlAs/InGaAs с метаморфным буферным слоем, включающая монокристаллическую полуизолирующую подложку GaAs, сверхрешетку AlGaAs/GaAs, буферный слой GaAs, метаморфный буферный слой InxAl1-xAs, инверсный слой InxAl1-xAs, залечивающий слой с однородным составом Inx4′Al1-x4′As, активную область InAlAs/InGaAs с высоким содержанием InAs (более 70%), согласованную по параметру решетки с залечивающим слоем, в которой с целью уменьшения плотности дислокаций (дефектов), проникающих в активную область, содержание InAs x по толщине в инверсном слое InxAl1-xAs плавно уменьшается от x4 до x4′, где x44′=0,03÷0,08, содержание InAs x по толщине в метаморфном буферном слое увеличивается линейно от x1 до x4, где x1~0, x4≥0,75, внутрь метаморфного буферного слоя на равных расстояниях друг от друга и от его границ вводятся два инверсных слоя InxAl1-xAs с плавным уменьшением содержания InAs x по толщине на Δх=0,03÷0,06, за каждым из которых следует залечивающий слой с составом, совпадающим с финальным составом инверсного слоя, толщина метаморфного буферного слоя 1,0÷1,5 мкм [2].

Недостатком полевого транзистора СВЧ на полупроводниковой гетероструктуре как первого, так и второго аналогов является большой разброс электрических параметров полевых транзисторов по площади полупроводниковой гетероструктуры из-за неоднородности по толщине полупроводниковой гетероструктуры в области электрода затвора, неизбежно возникающей в процессе операции ее утонения в этой области.

Известна полупроводниковая гетероструктура, которая содержит на монокристаллической полуизолирующей подложке арсенида галлия следующую прямую последовательность слоев:

буферный слой - сверхрешетка GaAs/AlGaAs,

канальный слой - InGaAs,

спейсерный слой - AlGaAs,

стоп-слой - n-InGaP,

донорный слой - n-AlGaAs, легированный

стоп-слой - AlAs,

донорный слой - n-GaAs,

стоп-слой - AlAs,

контактный слой - n-GaAs [3, прототип].

Наличие в полупроводниковой гетероструктуре прототипа стоп-слоев из n-InGaP и AlAs позволяет устранить недостаток аналогов и обеспечивает в процессе изготовления полевого транзистора относительно однородное утонение толщины полупроводниковой гетероструктуры в области электрода затвора полевого транзистора и, как следствие, увеличение выхода годных.

Однако данная полупроводниковая гетероструктура в силу несовершенства структуры и характеристик ее слоев не обеспечивает получение мощных полевых транзисторов СВЧ.

Техническим результатом изобретения является повышение выхода годных полупроводниковых гетероструктур путем снижения плотности дефектов, повышение выходной мощности и выхода годных полевых транзисторов СВЧ, расширение диапазона рабочих частот.

Указанный технический результат достигается заявленной полупроводниковой гетероструктурой для мощного полевого транзистора СВЧ, содержащей на монокристаллической полуизолирующей подложке арсенида галлия заданную последовательность слоев каждый с заданными функциональными свойствами и характеристиками.

Полупроводниковая гетероструктура выполнена в виде прямой последовательности следующих слоев:

буферный слой - GaAs, толщиной (150-400) нм,

донорный слой - GaAs, толщиной (2-3) нм, легированный кремнием с концентрацией (6-8)×1018 см-3,

спейсерный слой - GaAs, толщиной (2-5) нм,

канальный слой - InyGa1-yAs, толщиной (8-12) нм, с содержанием химических элементов при у, равном (0,21-0,28),

спейсерный слой - AlxGa1-xAs, толщиной (2-5) нм, с содержанием химических элементов при x, равном (0,20-0,24),

донорный слой - AlxGa1-xAs, толщиной (3-6) нм, легированный кремнием с концентрацией (5-8)×1018 см-3, с содержанием химических элементов при х, равном (0,20-0,24),

барьерный слой - AlxGa1-xAs, толщиной (10-30) нм, с содержанием химических элементов при x, равном (0,20-0,24),

стоп-слой - InyGa1-yP, толщиной (2-4) нм, с содержанием химических элементов при у, равном (0,48-0,51),

барьерный слой - AlxGa1-xAs, толщиной 10-20 нм, с содержанием химических элементов при x, равном (0,20-0,24),

градиентный слой AlxGa1-xAs, толщиной (8-12) нм, легированный кремнием с концентрацией (3-5)×1018 см-3, с содержанием химических элементов при х, равном (0,20-0,24), с линейным изменением х до ноля по толщине слоя со стороны полуизолирующей подложки арсенида галлия,

контактный слой - GaAs из двух частей - нижней, толщиной (30-50) нм, легированной кремнием с концентрацией (3-5)×1018 см-3, верхней, толщиной (10-20) нм, легированной кремнием с концентрацией (8-10)×1018 см-3, причем количественный состав упомянутых полупроводниковых слоев выражен в мольных долях.

Заданными характеристиками слоев полупроводниковой структуры являются последовательность расположения слоев, толщина, состав - качественный и количественный, концентрация легирующей примеси.

Раскрытие сущности изобретения

Совокупность существенных признаков заявленной полупроводниковой гетероструктуры, а именно:

совокупность заявленных функциональных слоев и последовательность их расположения в полупроводниковой гетероструктуре, равно как

совокупность характеристик каждого из слоев полупроводниковой гетероструктуры (толщины слоя, состава - качественного и количественного, концентрации легирующей примеси) обеспечит, а именно:

Наличие буферного слоя GaAs является барьером для проникновения примесей из подложки в полупроводниковую гетероструктуру и тем самым обеспечит:

во-первых, снижение плотности дефектов,

во-вторых, снижение токов утечки в полевом транзисторе и, как следствие, повышение его выходной мощности.

Выполнение канального слоя InyGa1-yAs в совокупности с другими слоями полупроводниковой гетероструктуры, которые выполнены из одного материала с полупроводниковой подложкой из арсенида галлия (GaAs), обеспечивает высокую работоспособность и максимальное снижение механических напряжений полупроводниковой гетероструктуры и тем самым снижение плотности дефектов и, как следствие, повышение выхода годных полупроводниковых гетероструктур.

Расположение двух донорных широкозонных слоев GaAs, легированных кремнием (Si), по обе стороны канального узкозонного слоя - InyGa1-yAs, и при этом разнесение их посредством нелегированных широкозонных спейсерных слоев GaAs и AlxGa1-xAs обеспечивает разделение в пространстве основных носителей (электронов) и легирующей примеси кремния и тем самым обеспечивает:

во-первых, максимально высокую концентрацию электронов в канале полевого транзистора и

во-вторых, максимально возможную скорость их пролета и тем самым минимально достижимое время переключения полевого транзистора и, как следствие, повышение верхней границы частотного диапазона и соответственно расширение диапазона рабочих частот полевого транзистора СВЧ.

Наличие в полупроводниковой гетероструктуре двух барьерных слоев обеспечивает, а именно:

барьерного слоя AlxGa1-xAs толщиной (10-30) нм в совокупности со стоп-слоем InyGa1-yP - формирование диэлектрического слоя в области электрода затвора с оптимальными значениями толщины и пробивного напряжения и тем самым заданный диапазон рабочих напряжений на электроде затвора полевого транзистора и

барьерного слоя AlxGa1-xAs толщиной (10-20) нм - исключение проникновения легирующей примеси атомов кремния в упомянутые барьерный слой и стоп-слой и тем самым уменьшение токов утечки электрода затвора полевого транзистора.

И, как следствие того и другого, повышение выходной мощности полевого транзистора СВЧ.

Более того, наличие стоп-слоя InyGa1-yP обеспечивает:

во-первых, практически полное согласование его кристаллической решетки со всеми слоями, имеющими состав AlxGa1-xAs, и тем самым значительное снижение механических напряжений в полупроводниковой гетероструктуре и, как следствие, снижение плотности дефектов в ней,

во-вторых, максимально точное заданное значение толщины полупроводниковой гетероструктуры и снижение ее разброса в области электрода затвора полевого транзистора и, как следствие, повышение его выходной мощности.

И, как следствие первого и второго, повышение выхода годных полевых транзисторов СВЧ.

Наличие градиентного слоя AlxGa1-xAs обеспечивает минимизацию механических напряжений и тем самым снижение плотности дефектов в полупроводниковой гетероструктуре и, как следствие, повышение выхода годных.

Наличие контактного слоя GaAs из двух частей обеспечивает низкое контактное сопротивление с металлизационным покрытием электродов истока и стока полевого транзистора и, как следствие, повышение его выходной мощности.

Выполнение буферного слоя GaAs толщиной как менее 150 нм, так и более 400 нм нежелательно, в первом случае из-за повышения уровня фонового легирования выше расположенных слоев полупроводниковой гетероструктуры, что приводит к повышению токов утечки электрода затвора полевого транзистора и соответственно снижению выходной мощности, во-втором - из-за повышения плотности дефектов полупроводниковой гетероструктуры.

Выполнение донорного слоя GaAs:

а) толщиной менее 2 нм недопустимо из-за диффузионного размытия профиля распределения легирующей примеси кремния и соответственно невозможности получения заданной концентрации легирования, а более 3 нм из-за увеличения плотности дефектов полупроводниковой гетероструктуры и соответственно снижения выхода годных,

б) легированного кремнием с концентрацией как менее 6×1018 см-3, так и более 8×1018 см-3 не желательно, в первом случае из-за снижения концентрации электронов в канале полевого транзистора и соответственно снижения выходной мощности, во втором - из-за увеличения плотности дефектов полупроводниковой гетероструктуры и соответственно снижения выхода годных.

Выполнение спейсерного слоя GaAs толщиной как менее 2 нм, так и более 5 нм не желательно, в первом случае из-за снижения подвижности электронов в канале полевого транзистора и соответственно снижения верхней границы частотного диапазона и сужения диапазона рабочих частот полевого транзистора, во втором - из-за снижения концентрации электронов в канале полевого транзистора и соответственно снижения выходной мощности.

Выполнение канального слоя InyGa1-yAs:

а) толщиной менее 8 нм и более 12 нм, равно как и

б) с содержанием химических элементов при у как менее 0,21, так и более 0,28 не желательно, в первых случаях (а, б) из-за снижения подвижности электронов в канале полевого транзистора и соответственно снижения верхней границы частотного диапазона и сужения диапазона рабочих частот полевого транзистора, во вторых - из-за возникновения значительных механических напряжений в полупроводниковой гетероструктуре и соответственно роста плотности дефектов и соответственно снижения выхода годных.

Выполнение спейсерного слоя AlxGa1-xAs:

а) толщиной как менее 2 нм, так и более 5 нм не желательно, в первом случае из-за снижения подвижности электронов в канале полевого транзистора и соответственно снижения верхней границы частотного диапазона и сужения диапазона рабочих частот полевого транзистора, во втором - из-за увеличения плотности дефектов полупроводниковой гетероструктуры и снижения концентрации электронов в канале полевого транзистора и соответственно снижения выхода годных полупроводниковых гетероструктур и снижения выходной мощности полевого транзистора СВЧ,

б) с содержанием химических элементов при x как менее 0,20, так и более 0,24 не желательно, в первом случае из-за снижения концентрации электронов в канале полевого транзистора и соответственно снижения выходной мощности, во втором - из-за возникновения значительных механических напряжений в полупроводниковой гетероструктуре и соответственно роста плотности дефектов и соответственно снижения выхода годных.

Выполнение донорного слоя AlxGa1-xAs:

а) толщиной как менее 3 нм, так и более 6 нм недопустимо, в первом случае из-за диффузионного размытия профиля распределения легирующей примеси кремния и соответственно невозможности воспроизводимого управления легированием донорного слоя, во втором - из-за увеличения толщины области под электродом затвора полевого транзистора и соответственно снижения выходной мощности,

б) легированного кремнием с концентрацией как менее 5×1018 см-3, так и более 8×1018 см-3 не желательно, в первом случае из-за снижения концентрации электронов в канале полевого транзистора и соответственно снижения выходной мощности, во втором - из-за увеличения плотности дефектов полупроводниковой гетероструктуры и соответственно снижения выхода годных,

в) с содержанием химических элементов при x как мене 0,20, так и более 0,24 не желательно, в первом случае из-за снижения концентрации электронов в канале полевого транзистора и соответственно снижения выходной мощности, во втором - из-за возникновения значительных механических напряжений в полупроводниковой гетероструктуре и соответственно роста плотности дефектов и соответственно снижения выхода годных.

Выполнение барьерного слоя AlxGa1-xAs:

а) толщиной как менее 10 нм, так и более 30 нм, недопустимо, в первом случае из-за вероятности короткого замыкания электрод затвора - канал полевого транзистора, во втором - из-за увеличения толщины области под электродом затвора и соответственно снижения его выходной мощности,

б) с содержанием химических элементов при x как менее 0,20, так и более 0,24 не желательно из-за возникновения значительных механических напряжений в полупроводниковой гетероструктуре и соответственно роста плотности дефектов и соответственно снижения выхода годных.

Выполнение стоп-слоя InyGa1-yP:

а) толщиной как менее 2 нм, так и более 4 нм недопустимо, в первом случае из-за его функциональной неэффективности, во втором - из-за увеличения плотности дефектов в полупроводниковой гетероструктуре и увеличения толщины области под электродом затвора полевого транзистора и соответственно снижения выхода годных и выходной мощности,

б) с содержанием химических элементов при у как менее 0,48, так и более 0,51, не желательно из-за возникновения значительных механических напряжений в полупроводниковой гетероструктуре и соответственно роста плотности дефектов и соответственно снижения выхода годных.

Выполнение барьерного слоя AlxGa1-xAs:

а) толщиной как менее 10 нм, так и более 20 нм недопустимо, в первом случае из-за его функциональной неэффективности, во втором - из-за увеличения плотности дефектов полупроводниковой гетероструктуры и соответственно снижения выхода годных,

б) с содержанием химических элементов при x как менее 0,20, так и более 0,24 не желательно из-за возникновения значительных механических напряжений в полупроводниковой гетероструктуре и соответственно роста плотности дефектов и соответственно снижения выхода годных.

Выполнение градиентного слоя AlxGa1-xAs,

а) толщиной как менее 8 нм, так и более 12 нм недопустимо из-за резкого увеличения плотности дефектов полупроводниковой гетеростркутуры и соответственно снижения выхода годных,

б) легированного кремнием с концентрацией как менее 3×1018 см-3, так и более 5×1018 см-3, равно как и нижней части контактного слоя недопустимо, в первом случае из-за увеличения паразитных сопротивлений и снижения выходной мощности, во втором - из-за увеличения плотности дефектов полупроводниковой гетероструктуры и соответственно снижения выхода годных,

в) с содержанием химических элементов при x как менее 0,20, так и более 0,24 не желательно из-за возникновения значительных механических напряжений в полупроводниковой гетероструктуре и соответственно роста плотности дефектов и соответственно снижения выхода годных.

Выполнение контактного слоя GaAs из двух частей -

нижней - толщиной менее 30 нм, недопустимо из-за функциональной неэффективности, а более 50 нм - из-за увеличения плотности дефектов полупроводниковой гетероструктуры и соответственно снижения выхода годных,

верхней - толщиной менее 10 нм и концентрацией кремния менее 8×1018 см-3, равно как толщиной более 20 нм и концентрацией более 10×1018 см-3, недопустимо, в первом случае из-за увеличения контактного сопротивления с металлизационным контактным покрытием полевого транзистора и соответственно увеличения его паразитных сопротивлений и соответственно снижения выходной мощности, во втором - из-за увеличения плотности дефектов полупроводниковой гетероструктуры и соответственно снижения выхода годных.

Итак, совокупность существенных признаков заявленной полупроводниковой гетероструктуры для мощного полевого транзистора СВЧ в полной мере обеспечит указанный технический результат - повышение выхода годных полупроводниковой гетероструктуры путем снижения плотности дефектов, повышение выходной мощности, расширение диапазона рабочих частот полевого транзистора СВЧ и повышение его выхода годных.

Изобретение поясняется чертежом.

На фиг. 1 дана топология структуры заявленной полупроводниковой гетероструктуры для мощного полевого транзистора СВЧ, где:

монокристаллическая полуизолирующая подложка арсенида галлия - 1,

буферный слой GaAs - 2,

донорный слой GaAs - 3,

спейсерный слой GaAs - 4,

канальный слой InyGa1-yAs - 5,

спейсерный слой AlxGa1-xAs - 6,

донорный слой AlxGa1-xAs - 7,

барьерный слой AlxGa1-xAs - 8,

стоп-слой InyGa1-yP - 9,

барьерный слой AlxGa1-xAs - 10

градиентный слой AlxGa1-xAs - 11,

контактный слой GaAs - 12 из двух частей.

Примеры конкретного выполнения заявленной полупроводниковой гетероструктуры для мощного полевого транзистора СВЧ

Пример 1

На монокристаллической полуизолирующей подложке арсенида галлия 1 GaAs-S-INS-EPD1000-T62(76,2)M/LE-AV-LM Hitachi Gable толщиной 650 мкм посредством газофазной эпитаксии на установке (AIX 2400 G3) в едином технологическом цикле выращивают прямую последовательность слоев заявленной полупроводниковой гетероструктуры:

буферный слой GaAs, толщиной 275 нм,

донорный слой GaAs, толщиной 2,5 нм, легированный кремнием, с концентрацией 7×1018 см-3,

спейсерный слой GaAs, толщиной 3,5 нм,

канальный слой InyGa1-yAs, толщиной 10 нм, с содержанием химических элементов при y, равном 0,245,

спейсерный слой AlxGa1-xAs, толщиной 3,5 нм, с содержанием химических элементов при x, равном 0,22,

донорный слой AlxGa1-xAs, толщиной 4,5 нм, легированный кремнием с концентрацией 6,5×1018 см-3, с содержанием химических элементов при x, равном 0,22,

барьерный слой AlxGa1-xAs, толщиной 20 нм, с содержанием химических элементов при x, равном 0,22,

стоп-слой InyGa1-yP, толщиной 3 нм, с содержанием химических элементов при y, равном 0,495,

барьерный слой AlxGa1-xAs, толщиной 15 нм, с содержанием химических элементов при x, равном 0,22,

градиентный слой AlxGa1-xAs, толщиной 10 нм, легированный кремнием с концентрацией 4×1018 см-3, с содержанием химических элементов при x, равном 0,22,

контактный слой GaAs из двух частей, нижней - толщиной 40 нм, легированной кремнием с концентрацией 4×1018 см-3, верхней - толщиной 15 нм, легированной кремнием с концентрацией 9×1018 см-3.

Примеры 2-5

Изготовлены образцы заявленной полупроводниковой гетероструктуры аналогично примеру 1, но при других характеристиках слоев (количественном составе, толщине и концентрации легирования кремнием), как согласно формуле изобретения (примеры 2-3), так и за ее пределами (примеры 4-5).

Пример 6 соответствует образцу прототипа.

На изготовленных образцах полупроводниковой гетероструктуры была измерена плотность дефектов с размером 0,2-1,6 мкм и 1,6-63,0 мкм на установке Surfscan 6220 согласно технологической карте КРПГ.57802.00046.

Изготовленные образцы полупроводниковой гетероструктуры были использованы для изготовления мощных полевых транзисторов СВЧ.

На изготовленных образцах мощных полевых транзисторов СВЧ была измерена выходная мощность на рабочей частоте 10 ГГц.

Данные сведены в таблицу.

Как видно из таблицы:

1. Образцы полупроводниковой гетероструктуры, изготовленные согласно заявленной формуле изобретения, имеют плотность дефектов от 1,51 см-2 до 5,58 см-2 размером дефектов (0,2-1,6) мкм и от 1,07 см-2 до 6,44 см-2 размером дефектов (1,6-63,0) мкм (примеры 1-3)

в отличие от образцов, изготовленных за пределами, указанными в формуле изобретения, плотность дефектов которых составляет от 95,6 см-2 до 577,0 см-2 размером дефектов (0,2-1,6) мкм и от 116,0 см-2 до 992,0 см-2 размером дефектов (1,6-63,0) мкм (примеры 4-5),

плотность дефектов образца прототипа - 35,5 см-2 размером дефектов (0,2-1,6) мкм и 46,7 см-2 размером дефектов (1,6-63,0) мкм.

2. Мощные полевые транзисторы СВЧ на полупроводниковой гетероструктуре, изготовленной согласно заявленной формуле изобретения, имеют выходную мощность порядка 1,2 Вт/мм (примеры 1-3) в отличие от образцов - за пределами, указанными в формуле изобретения, выходная мощность которых порядка 0,8 и 0,3 Вт/мм (примеры 4-5 соответственно).

Данные относительно выходной мощности прототипа отсутствуют.

Таким образом, заявленная полупроводниковая гетероструктура для полевых транзисторов СВЧ обеспечит по сравнению с прототипом

во-первых, повышение выхода годных полупроводниковых гетероструктур путем снижения плотности дефектов примерно в (6-23) и (7-43) раза в обеих группах размеров дефектов соответственно,

во-вторых, повышение выходной мощности полевых транзисторов СВЧ примерно до 1,2 Вт/мм, что на сегодня является хорошим результатом.

Источники информации

1. Патент РФ №2093924, МПК H01L 29/772, приоритет 10.03.1993 г., опубл. 20.10.1997 г.

2. Патент РФ №2474924, МПК H01L 29/737, В82В 1/00, приоритет 08.08.2011 г., опубл. 10.02.2013 г.

3. Патент США 2005/0263789 А1, МПК H01L 31/0328, кл. 257/194, опубл. 01.12.2005 г., - прототип.

1. Полупроводниковая гетероструктура для мощного полевого транзистора СВЧ, содержащая на монокристаллической полуизолирующей подложке арсенида галлия заданную последовательность слоев каждый с заданными функциональными свойствами и характеристиками, отличающаяся тем, что полупроводниковая гетероструктура выполнена в виде прямой последовательности следующих слоев:
буферный слой - GaAs, толщиной (150-400) нм,
донорный слой - GaAs, толщиной (2-3) нм, легированный кремнием с концентрацией (6-8)×1018 см-3,
спейсерный слой - GaAs, толщиной (2-5) нм,
канальный слой - InyGa1-yAs, толщиной (8-12) нм, с содержанием химических элементов при у, равном (0,21-0,28),
спейсерный слой - AlxGa1-xAs, толщиной (2-5) нм, с содержанием химических элементов при x, равном (0,20-0,24),
донорный слой - AlxGa1-xAs, толщиной (3-6) нм, легированный кремнием с концентрацией (5-8)×1018 см-3, с содержанием химических элементов при х, равном (0,20-0,24),
барьерный слой - AlxGa1-xAs, толщиной (10-30) нм, с содержанием химических элементов при х, равном (0,20-0,24),
стоп-слой - InyGa1-yP, толщиной (2-4) нм, с содержанием химических элементов при у, равном (0,48-0,51),
барьерный слой - AlxGa1-xAs, толщиной 10-20 нм, с содержанием химических элементов при х, равном (0,20-0,24),
градиентный слой AlxGa1-xAs, толщиной (8-12) нм, легированный кремнием с концентрацией (3-5)×1018 см-3, с содержанием химических элементов при x, равном (0,20-0,24), с линейным изменением x до ноля по толщине слоя со стороны полуизолирующей подложки арсенида галлия,
контактный слой - GaAs, из двух частей - нижней, толщиной (30-50) нм, легированной кремнием с концентрацией (3-5)×1018 см-3, верхней, толщиной (10-20) нм, легированной кремнием с концентрацией (8-10)×1018 см-3, причем количественный состав упомянутых полупроводниковых слоев выражен в мольных долях.

2. Полупроводниковая гетероструктура для мощного полевого транзистора СВЧ по п. 1, отличающаяся тем, что заданными характеристиками слоев полупроводниковой гетероструктуры являются последовательность расположения слоев, толщина, состав - качественный и количественный, концентрация легирующей примеси.



 

Похожие патенты:

Изобретение относится к электронной технике. Модулированно-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты.

Изобретение относится к измерительной технике, представляет собой зонд на основе полевого транзистора с наноразмерным каналом и может быть использовано при определении физико-химических и электрических параметров наноразмерных объектов физической, химической и биологической природы.

Изобретение относится к электронной технике, а именно к полупроводниковым приборам, предназначенным для усиления СВЧ-электромагнитных колебаний. Гетероструктурный модулировано-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты.

Изобретение относится к электронной технике, а именно к полупроводниковым приборам, предназначенным для усиления СВЧ-электромагнитных колебаний. Гетероструктурный модулировано-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты.

Изобретение относится к нитрид-галлиевым транзисторам с высокой подвижностью электронов (GaN HEMT) и в частности к конструкции GaN НЕМТ для высоковольтных применений. Нитрид-галлиевый транзистор с высокой подвижностью электронов выращивается на кремниевой подложке с нанесенной на нее темплейтной структурой толщиной 700-800 нм, состоящей из чередующихся слоев GaN/AlN толщиной не более 10 нм, между буферным и барьерным слоями внедряется спейсерный слой AlN толщиной не более 1 нм, на пассивационный слой наносится полевая пластина, электрически соединенная с затвором, расстояние между затвором и стоком и длина полевой пластины - взаимосвязанные величины и подбираются исходя из требуемого значения напряжения пробоя.

Изобретение относится к электронной технике и может быть использовано в качестве активных элементов СВЧ-устройств различного назначения. Мощный транзистор СВЧ содержит базовую подложку из кремния, теплопроводящий поликристаллический слой алмаза, эпитаксиальную структуру на основе широкозонных III-нитридов, буферный слой, исток, затвор, сток и омические контакты.

Изобретение относится к электронной технике и может быть использовано в качестве активных элементов СВЧ-устройств различного назначения. Мощный транзистор СВЧ с многослойной эпитаксиальной структурой содержит базовую подложку из кремния, теплопроводящий поликристаллический слой алмаза, эпитаксиальную структуру на основе широкозонных III-нитридов, буферный слой, исток, затвор, сток и омические контакты.

Изобретение относится к области полупроводниковой электроники. В предлагаемом приборе объединены три полевых транзистора в единую вертикальную структуру с каналами n- и p-типами проводимости, между которыми образуется электрический переход, при этом исток p-канала расположен напротив стока n-канала, а сток p-канала - напротив истока n-канала.

Изобретение относится к области полупроводниковой техники. Полупроводниковый прибор включает утоненную подложку из монокристаллического кремния р-типа проводимости, ориентированного по плоскости (111), с выполненным на ней буферным слоем из AlN, поверх которого выполнена теплопроводящая подложка в виде осажденного слоя поликристаллического алмаза толщиной, равной по меньшей мере 0,1 мм, на другой стороне подложки выполнена эпитаксиальная структура полупроводникового прибора на основе широкозонных III-нитридов, исток из AlGaN, затвор, сток из AlGaN, омические контакты к истоку и стоку, припой в виде слоя, включающего AuSn, медный пьедестал и фланец.

Изобретение относится к экспериментальной медицине и может быть использовано при ранней диагностике и лечении опухолей, индуцированных в эксперименте. Для раннего МРТ выявления опухолей, инвазий и метастазов животному вводят комбинации МРТ-негативных контрастных нанопрепаратов с позитивными МРТ контрастными препаратами.

Изобретение относится к электронной технике СВЧ. В мощном полевом транзисторе СВЧ на полупроводниковой гетероструктуре упомянутая гетероструктура выполнена в виде последовательности следующих основных слоев: по меньшей мере одного буферного слоя GaAs толщиной не менее 200 нм, группы проводящих слоев, формирующих канал полевого транзистора, в составе собственно канального слоя InyGa1-yAs толщиной 12-20 нм и по меньшей мере двух δn-слоев, легированных донорной примесью, и двух спейсерных i-слоев AlxGa1-xAs, толщиной каждый 1-3 нм, двух групп барьерных слоев AlxGa1-xAs, одна из которых расположена с одной стороны группы проводящих слоев - подложечная, другая - с противоположной стороны - затворная, при этом подложечная группа барьерных слоев выполнена в виде акцепторно-донорной p-i-δn системы барьерных слоев, затворная группа барьерных слоев - в виде донорно-акцепторной δn-i-p системы барьерных слоев, при этом в каждой группе барьерных слоев i-слой выполнен толщиной 0,5-10 нм, p-слой выполнен с уровнем легирования, обеспечивающим высоту потенциальных барьеров 0,4-0,8 ширины запрещенной зоны AlxGa1-xAs, δn-слой выполнен с избыточным уровнем легирования, обеспечивающим разницу поверхностной плотности донорной и акцепторной примеси равной (1-10)×1012 см-2.

Изобретение относится к ядерной технике, а именно к материалам для защиты от ионизирующего излучения, и предназначено для использования при изготовлении элементов радиационно-защитных экранов.

Изобретение относится к химической промышленности, а именно к технологическим составам, используемым для покрытия поверхностей твердого материала (тела) и получения многофункциональной (защитной) наноразмерной пленки (конкретно для модификации поверхностей с целью улучшения их свойств), и может найти применение в приборостроении, электронике, машиностроении, топливо-энергетическом комплексе, ЖКХ и иных отраслях, например, в металлообработке.
Изобретение относится к акриловым клеевым композициям (варианты) термического отверждения для прочного соединения металлических поверхностей, в том числе алюминиевых субстратов.

Изобретение относится к области производства резиновых смесей и изделий из этих смесей, в частности для изготовления пневмошин. Резиновая смесь содержит каучук и наполнители.

Изобретение относится к области термоэлектрического преобразования энергии. Сущность: термоэлектрический материал содержит полупроводниковую подложку, полупроводниковую оксидную пленку, образованную на полупроводниковой подложке, и термоэлектрический слой, выполненный на полупроводниковой оксидной пленке.

Изобретение относится к области строительного производства в автодорожной отросли и может быть применено при изготовлении асфальтобетона, в том числе с использованием нанотехнологий.

Изобретение относится к области химической модификации поверхности пористого кремния и, в частности, может найти применение для создания биосовместимого и способного к полной биодеградации носителя медицинских препаратов, обеспечивающего их целевую доставку и пролонгированное действие в организме.

Изобретение относится к медицине, а именно к экспериментальным исследованиям в онкологии, и может быть использовано для оценки противоопухолевого действия наночастиц (НЧ) металлов.

Изобретение относится к электронной технике СВЧ. В мощном полевом транзисторе СВЧ на полупроводниковой гетероструктуре упомянутая полупроводниковая гетероструктура выполнена в виде последовательности следующих основных слоев, по меньшей мере, одного буферного слоя GaAs толщиной не менее 200 нм, группы проводящих слоев, формирующих канал полевого транзистора, в составе собственно канального слоя InyGa1-yAs толщиной 12-18 нм и, по меньшей мере, двух δn-слоев, легированных донорной примесью, и двух спейсерных i-слоев AlxGa1-xAs толщиной каждый 1-3 нм, попарно расположенных по обе стороны собственно канального слоя, двух групп барьерных слоев AlxGa1-xAs, каждая в виде i-p-i системы барьерных слоев, одна из которых расположена с одной стороны группы проводящих слоев - подложечная, другая - с противоположной стороны - затворная, при этом барьерные слои в каждой i-p-i системе имеют толщину (100-200, 4-15, 2-10) нм в подложечной, (2-10, 4-10, 4-15) нм в затворной соответственно, уровень легирования акцепторной примесью (4-20)×1018 см-2 соответственно, барьерного слоя i-GaAs толщиной 5-30 нм, слоя омического контакта n+-GaAs толщиной (10-60) нм электродов истока и стока, при этом электрод затвора выполнен длиной не более 0,5 мкм. Технический результат - повышение выходной мощности и коэффициента усиления. 2 з.п. ф-лы, 2 ил., 1 табл.
Наверх