Способ определения динамического коэффициента внешнего трения с удержанием образца на наклонной поверхности упругим элементом

Использование относится к области механических испытаний материалов, в частности к определению динамического коэффициента трения. Способ определения динамического коэффициента внешнего трения заключатся в том, что используют два образца, верхний из которых помещают на плоской рабочей поверхности нижнего. Образцам обеспечивают возможность совместного наклона относительно горизонтальной плоскости. В исходном положении верхний образец прикрепляют к находящемуся в разгруженном состоянии упругому элементу, обладающему постоянной жесткостью в направлении соскальзывания верхнего образца по наклонной поверхности нижнего. Для определения динамического коэффициента внешнего трения образцы наклоняют до соскальзывания верхнего из них по уклону, измеряют угол наклона φ образцов в момент соскальзывания и путь l. пройденный верхним образцом по рабочей поверхности нижнего относительно исходного положения. Динамический коэффициент внешнего трения рассчитывают по формуле

m д и н = t g ϕ l 2 L cos ϕ ,

где L - определяемая в калибровочном опыте деформация вертикально расположенного упругого элемента при свободном подвешивании к нему верхнего образца. Техническим результатом изобретения является простота определения динамического коэффициента внешнего трения, сводящегося только к экспериментальному установлению геометрических параметров без измерения усилий. 3 ил.

 

Предлагаемое изобретение относится к области механических испытаний материалов, в частности к определению динамического коэффициента трения.

Известны различные способы определения статического и динамического коэффициентов внешнего трения. В большинстве случаев для определения статического и динамического коэффициентов внешнего трения требуется не только проведение отдельных опытов, но и использование различных устройств. Например, известен способ, применяемый для определения только статического коэффициента внешнего трения, состоящий в изменении угла наклона φ относительно горизонта двух образцов, расположенных один на другом, и измерении угла φ в момент, когда начинается скольжение одного образца относительно другого, с расчетом коэффициента m внешнего трения по формуле m=tgφ [патент США №3020744, кл. 73-9, кл. G01N 19/02, 1962]. Для определения динамического коэффициента внешнего трения этот способ неприменим.

Распространены способы определения динамического коэффициента внешнего трения, основанные на непосредственном измерении силы трения при известной или измеряемой силе прижатия образцов друг к другу. При использовании таких способов необходимы сложные силоизмерительные устройства, что затрудняет их применение, особенно при исследовании токсичных материалов, которые приходится исследовать в стесненных пространствах герметичных боксов.

Известны способы определения динамического коэффициента внешнего трения, не требующие применения силоизмерительных устройств, основанные на измерении геометрических параметров системы, связанных с величиной динамического коэффициента трения. Например, известен способ определения динамического коэффициента внешнего трения при наклоне двух образцов, нижний из которых, имеющий форму диска, приводят во вращение вокруг своей оси и наклоняют относительно горизонта, удерживая верхний образец в том месте диска, где его линейная скорость направлена вверх по уклону, при этом динамический коэффициент трения определяют по текущему значению угла наклона φ в тот момент, когда верхний образец начинает соскальзывать вниз [патент РФ №2444000, кл. G01N 19/02, опубл. 10.08.2012]. Недостатком способа является наличие усложняющего конструкцию устройства для вращения нижнего образца, а также необходимость использования в качестве одного из образцов диска с большими габаритами, что для ряда исследуемых материалов невозможно.

В тех случаях, когда габариты исследуемых образцов ограничены, более удобен «Способ экспериментального определения динамического коэффициента внешнего трения» [патент РФ №2458336, кл. G01N 19/02, опубл. 27.02.2012]. Способ позволяет ограничить путь относительного перемещения образцов при определении коэффициента трения их габаритами, однако в этом случае для достижения устойчивого относительного положения системы, необходимого для определения коэффициента трения, опыт приходится повторять многократно. Устройство для определения динамического коэффициента внешнего трения рассматриваемым способом, имеющее возможность регулируемого наклона расположенных друг на друге образцов, может быть использовано и для определения статического коэффициента внешнего трения, однако для этого требуется проведение самостоятельного опыта после переналадки устройства. Данный способ экспериментального определения динамического коэффициента внешнего трения принят в качестве прототипа.

Техническим результатом предлагаемого способа является возможность определения динамического и статического коэффициентов внешнего трения на образцах с ограниченными размерами в одном опыте, без измерения сил трения, на основании их взаимосвязи с геометрическими параметрами процесса и равенства работы, совершаемой образцом, соскальзывающим по плоской поверхности, уменьшению потенциальной энергии образца вследствие изменения его вертикального положения при соскальзывании с учетом увеличения потенциальной энергии деформируемого упругого элемента, удерживающего образец.

Технический результат достигается тем, что для определения динамического коэффициента внешнего трения используют два расположенных друг на друге образца с плоскими рабочими поверхностями, имеющие возможность наклона с изменяющимся углом относительно горизонтальной плоскости. Верхний образец имеет возможность перемещения вниз по уклону относительно рабочей поверхности нижнего образца, однако это перемещение ограничивается прикрепленным к образцу упругим элементом с постоянной жесткостью в используемом диапазоне его деформирования. В исходном положении устанавливают горизонтальное положение образцов и прикрепляют верхний из них таким образом, чтобы отсутствовала продольная деформация упругого элемента, сила воздействия которого на верхний образец при этом равна нулю. Для определения коэффициента трения наклоняют нижний образец вместе с расположенным на нем верхним образцом и измеряют угол наклона. С увеличением угла наклона возрастает скатывающая сила, действующая на подвижный образец, удерживаемый силой трения. При достижении углом наклона некоторого значения φ под действием скатывающей силы происходит соскальзывание и движение верхнего образца под уклон. Препятствующая движению образца сила трения при этом определяется уже динамическим коэффициентом внешнего трения, который обычно меньше статического, поэтому в начальный период движение верхнего образца ускоренное. При перемещении верхнего образца связанный с ним упругий элемент деформируется, в нем возникает пропорциональная величине деформации, т.е. возрастающая по мере перемещения образца, упругая сила, которая противоположна направлению скатывающей гравитационной силы и стремится удержать образец. В результате движение образца начинает замедляться и в некотором его положении прекращается.

По значению угла φ известным рассмотренным выше способом можно определить статический коэффициент трения как mст=tgφ.

Для определения динамического коэффициента трения определяют путь l, пройденный верхним образцом по поверхности нижнего. После этого проводят калибровочный опыт, в котором наклоняют систему с образцами до угла φ=90°, т.е. приводят упругий элемент вместе с подвешенным к нему верхним образцом в вертикальное положение и измеряют возникшую при этом деформацию L упругого элемента по отношению к его исходному ненагруженному состоянию. Наличие нижнего образца в калибровочном опыте не требуется.

Динамический коэффициент внешнего трения определяют по формуле m д и н = t g ϕ l 2 L cos ϕ , полученной из условия равенства работы, произведенной силой трения при соскальзывании образца, суммарному изменению потенциальной энергии вследствие изменения положения верхнего образца по вертикали и увеличения потенциальной энергии деформируемого упругого элемента.

На фиг.1 показано исходное горизонтальное положение системы;

на фиг.2 показано конечное положение верхнего образца после соскальзывания при достижении угла наклона φ и действующая система сил;

на фиг.3 показано вертикальное положение упругого элемента с верхним образцом в калибровочном опыте, где:

1 - нижний образец;

2 - верхний образец;

3 - упругий элемент.

Для определения динамического коэффициента внешнего трения используют нижний образец 1 и устанавливаемый на него верхний образец 2. Рабочим поверхностям образцов, которыми они контактируют друг с другом, придают плоскую форму.

Перед проведением опыта образцы приводят в исходное состояние. Для этого нижний образец 1 устанавливают в положение, при котором его рабочая поверхность горизонтальна (фиг.1). Верхний образец 2 устанавливают на рабочую поверхность нижнего образца 7 и прикрепляют его к упругому элементу 3 таким образом, чтобы исключить продольную деформацию последнего, что, в свою очередь, исключает силовое взаимодействие между верхним образцом 2 и упругим элементом 3. При ограниченных габаритах рабочей поверхности нижнего образца 1 в пробных опытах жесткость упругого элемента подбирают так, чтобы путь l верхнего образца 2 из исходного положения в конечное был оптимальным, при котором верхний образец 2 смещается на максимальную величину (для повышения точности результатов опыта), но гарантирующую при этом его устойчивость верхнего образца 2 относительно нижнего образца 1 (фиг.2).

При проведении опыта по определению коэффициентов трения наклоняют нижний образец 1 вместе с расположенным на нем верхним образцом 2 и измеряют угол наклона. В начальный период опыта верхний образец 2 неподвижно удерживается на поверхности нижнего образца 7 статической силой трения. С увеличением угла наклона скатывающая сила, действующая на верхний образец 2, возрастает и при достижении углом наклона некоторого значения φ под ее воздействием происходит соскальзывание верхнего образца 2 и начинается его движение вниз по уклону. Препятствующая движению образца сила трения при этом определяется уже динамическим коэффициентом внешнего трения, который обычно меньше статического, поэтому в начальный период движение верхнего образца ускоренное. По мере перемещения верхнего образца 2 связанный с ним упругий элемент 3 деформируется, в нем возникает пропорциональная величине деформации, т.е. возрастающая упругая сила, которая противоположна направлению скатывающей гравитационной силы и стремится удержать верхний образец 2. В результате движение верхнего образца 2 начинает замедляться и в определенном положении прекращается.

По значению угла φ известным, рассмотренным выше способом определяют статический коэффициент трения как mст=tgφ.

Для определения динамического коэффициента трения определяют путь l, пройденный верхним образцом 2 по поверхности нижнего образца 1 от исходного положения в конечное.

В конечном положении системы на верхний образец 2 действуют следующие силы (фиг 2).

Сила тяжести G верхнего образца 2 может быть представлена как результирующая двух составляющих по отношению к плоскости рабочих поверхностей образцов - скатывающей Gскат и нормальной GN.

Скатывающая составляющая силы тяжести

Gскат=G·sinφ.

Нормальная составляющая силы тяжести верхнего образца 2, действующая на поверхность нижнего образца 7, при значении угла наклона φ составляет

Под воздействием нормальной составляющей силы тяжести возникает сила трения между верхним 2 и нижним 7 образцами, которая в процессе движения верхнего образца 2 определяется динамическим коэффициентом трения mдин.

Удерживающая верхний образец 2 в его конечном положении сила упругого элемента 3, деформированного на величину l, составляет

где с - жесткость пружины, численное значение которой при проведении опыта неизвестно.

Для учета жесткости пружины проводят калибровочный опыт, в котором наклоняют систему с образцами до угла φ=90°, т.е. приводят упругий элемент 3 вместе с подвешенным к нему верхним образцом в вертикальное положение и измеряют возникшую при этом деформацию L упругого элемента 3 по отношению к исходному состоянию. Жесткость пружины определяется как

Для определения динамического коэффициента трения с использованием формулы (2) находят работу, затрачиваемую верхним образцом 2 на преодоление силы трения

Эта работа совершается за счет уменьшения потенциальной энергии скатывающегося вниз верхнего образца 2

Одновременно с этим увеличивается потенциальная энергия ПU упругого элемента 3. Величину этой энергии можно определить как работу по деформированию упругого элемента 3 силой, линейно изменяющейся от нулевого значения в исходном состоянии до величины U в конечном положении. Таким образом, с учетом (3) и (4)

Суммируя определенные в (6) и (7) значения, на основании закона сохранения энергии получим

А=ПобрU,

или, с учетом (5), (6) и (7)

После преобразования выражения (8) получим

Полученное выражение (9) для определения динамического коэффициента внешнего трения исключает необходимость взвешивания верхнего образца 2 и определения жесткости упругого элемента 3 как исходного параметра системы. Определение динамического коэффициента внешнего трения предлагаемым способом сводится к определению лишь геометрических параметров, т.е. угла наклона, при котором произойдет соскальзывание верхнего образца 2, и пройденного им до остановки в конечном положении пути l, а также к установлению в калибровочном опыте деформации упругого элемента 3 под действием силы тяжести свободно подвешенного верхнего образца 2.

Таким образом, предложен простой в реализации способ определения динамического коэффициента внешнего трения. Достоинством способа является также то, что одновременно с определением динамического коэффициента внешнего трения в том же опыте известным способом определяется и статический коэффициент внешнего трения, что исключает необходимость проведения двух разных опытов.

Способ определения динамического коэффициента внешнего трения с удержанием образцов на наклонной поверхности упругим элементом, имеющих возможность совместного наклона относительно горизонтальной плоскости, отличающийся тем, что верхний образец в исходном положении прикрепляют к находящемуся в разгруженном состоянии упругому элементу, обладающему постоянной жесткостью в направлении соскальзывания верхнего образца по рабочей поверхности нижнего, наклоняют образцы до соскальзывания верхнего из них вниз по уклону, измеряют угол наклона φ образцов в момент соскальзывания и путь l, пройденный верхним образцом по рабочей поверхности нижнего относительно исходного положения, после чего динамический коэффициент внешнего трения рассчитывают по формуле
m д и н = t g ϕ l 2 L cos ϕ ,
где L - определяемая в калибровочном опыте деформация вертикально расположенного упругого элемента при свободном подвешивании к нему верхнего образца.



 

Похожие патенты:

Изобретение относится к способам измерения и используется для оценки состояния поверхности взлетно-посадочной полосы аэродрома. В способе определения коэффициента сцепления аэродромного покрытия, включающем измерение динамических характеристик колес самолета при его движении по аэродромному покрытию, осуществляют формирование ведущего (переднего) и ведомого (заднего) колес шасси, ведомое (заднее) колесо формируют путем создания постоянного динамического торможения колесу шасси, колесо без динамического торможения считается ведущим, при этом динамическое торможение формируется с помощью тормозной системы колеса шасси, которое может отключаться при разбеге самолета, измеряют частоты вращения ведущего (переднего) и ведомого (заднего) колес шасси, устанавливают зависимость разницы вращения ведущего (переднего) и ведомого (заднего) колес от сцепных качеств аэродромного покрытия, а сцепные качества аэродромного покрытия определяют по установленной зависимости после проезда по нему самолета и измерения частот вращения ведущего (переднего) и ведомого (заднего) колес шасси.

Изобретение относится к области метрологии и может быть использовано при определения физико-механических свойств материалов и, в частности, коэффициента гистерезисных потерь материала.

Устройство для измерения переходного сопротивления, износостойкости и антифрикционных свойств гальванических покрытий, выполненное в одном блоке с комплектом сменных принадлежностей, позволяет проводить исследования вышеперечисленных свойств в соответствии с требованиями ГОСТ 9.302-88.

Изобретение относится к области сельского хозяйства и может быть использовано для исследования физико-механических свойств корнеклубнеплодов. Устройство для исследования физико-механических свойств корнеклубнеплодов содержит раму (1) с прикрепленными к ней электродвигателем (2), на валу которого установлен сменный диск (3) с исследуемой поверхностью, и направляющей (4), на которой установлена подвижная тележка (5).

Изобретение относится к области механических испытаний материалов, в частности к определению динамического коэффициента трения при взаимном перемещении образцов.

Изобретение относится к способам для определения коэффициента сцепления на искусственных поверхностях, преимущественно взлетно-посадочных полос аэродромов, а также дорожных покрытий.

Группа изобретений относится к обработке металлов давлением, а именно к оценке силы и коэффициента трения при холодной обработке металлов давлением. Представлен способ оценки параметров трения при холодной обработке металлов давлением, по которому протягивают через валки с заданным обжатием образцов с коническим участком с одного конца, длина которого позволяет обеспечивать прирост степени обжатия при протягивании образцов, визуально определяют место образования задиров на образцах, составляют для всех образцов график зависимости сила деформирования - перемещение, с помощью которого для места образования задиров определяют степень обжатия и напряжение сдвига второго образца и образцов с нанесенными смазочными материалами или покрытиями при их протягивании через жестко закрепленные валки, при этом определяют момент сопротивления вращению валков при их торможении и нормальную силу, действующую на валки со стороны образцов при их деформировании, посредством датчиков силы и устройства торможения валков, а из этих, фиксируемых датчиками силы, величин определяют силу трения по формуле: Tтр.=Pдат.×L/R, где Ттр.

Изобретение относится к области механических испытаний материалов. Для определения статического и динамического коэффициентов внешнего трения используют два образца: базовый и подвижный.

Изобретение относится к устройствам определения физико-механических свойств транспортируемых грузов. Устройство для определения величины коэффициента трения сыпучего груза о грузонесущий орган транспортной машины содержит размещенную на опорной раме съемную пластину из материала грузонесущего органа транспортной машины с размещенной на пластине пробой транспортируемого груза.

Предлагаемое изобретение относится к области испытаний конструкционных материалов на трение и износ в узлах трения щетка-коллектор электродвигателя или электрогенератора, а также в узлах токосъемная вставка-троллей, вставка-токоподводящая шина, башмак-рельс, т.е.

Изобретение относится к экспериментально-теоретическому определению фрикционных характеристик пары трения, а именно установлению в паре трения соотношения между коэффициентами трения покоя и трения скольжения. Способ экспериментально-теоретического определения соотношения между коэффициентами fmpП трения покоя и fmpСK трения скольжения заключается в том, что брус прямоугольного сечения, изготовленный из материала А, устанавливают на две подвижные опоры, изготовленные из материала Б. С помощью блочно-тросовой системы обеспечивают сближение этих опор, предварительно на одной из них искусственно вызывают срыв контакта с брусом и переход в состояние скольжения, в то время как на второй опоре сохраняется неподвижная связь между контактирующими поверхностями, и данная опора совместно с брусом как единая система перемещается относительно первой опоры. При этом сближение опор приводит к изменению величины сил реакции на опорах, а следовательно, и возникающих на них сил трения. Причем на первой опоре сила трения скольжения по мере движения системы растет, в то время как на второй опоре сила трения покоя пропорционально уменьшается. Как только величина обеих сил сравняется, движение бруса относительно первой опоры прекращается. В этот момент систему останавливают и фиксируют величину перемещения бруса относительно данной опоры. Затем вычисляют величину реакции на опорах и определяют искомое соотношение между коэффициентами трения покоя и трения скольжения. Техническим результатом является установление соотношения С коэффициентов трения фрикционной пары, состоящей из материалов А и Б, в процессе одного эксперимента. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к области механических испытаний материалов, в частности к определению динамического коэффициента трения при взаимном перемещении образцов. В способе для определения динамического коэффициента внешнего трения используются два образца. Нижний образец выполняют с выпуклой сферической поверхностью и приводят во вращение вокруг вертикально расположенной оси этой поверхности. Верхний образец выполняют тонкостенным, в виде правильной геометрической фигуры, с рабочей поверхностью вогнутой формы, чтобы обеспечить контакт с нижним образцом по всему периметру верхнего. Верхний образец при помощи шарнирной связи, имеющей возможность поворота в любом угловом направлении, соединяют с опорой, имеющей возможность перемещения в любом направлении. Для определения динамического коэффициента внешнего трения изменением координат опоры или длины шарнирной связи приводят верхний образец в положение, при котором линия, проходящая через центр сферической поверхности и центр площадки контакта верхнего образца с нижним, перпендикулярна шарнирной связи. Затем выявляют плоскость, касательную к сферической поверхности в центре контакта верхнего образца с нижним, определяют линию наибольшего ската в этой плоскости, находят угол ее откоса φ относительно горизонта, определяют угол β между линией наибольшего ската и направлением шарнирной связи, после чего динамический коэффициент внешнего трения определяют по формуле m д и н = t g ϕ c t g β . Технический результат − возможность определения динамического коэффициента внешнего трения на деталях со сферическими поверхностями в ответственных узлах длительного пользования, простота реализации и возможность ограничиться определением только геометрических параметров. 2 ил.

Группа изобретений относится к области оперативного контроля коэффициента сцепления колеса с дорожным покрытием. Способ определения коэффициента сцепления колеса с дорожным покрытием заключается в определении величины силового вращающего момента, приложенного к ступице или к диску тестируемого колеса. После чего дважды меняют вертикальную силовую нагрузку, действующую на тестируемое колесо, за счет поддомкрачивания автомобиля, и вновь определяют вращающий силовой момент. По разности измеренных в экспериментах силовых вращающих моментов для различных случаев поддомкрачивания судят о коэффициенте сцепления колеса с дорогой. Устройство для определения коэффициента сцепления колеса с дорожным покрытием, содержащее систему нагружения колеса вертикальной нагрузкой и крутящим моментом. Устройство содержит станину, домкрат для поддомкрачивания автомобиля, имеющий датчик усилия, воспринимаемый домкратом. Достигается повышение точности определения коэффициента сцепления отдельного колеса с полотном дороги и расширение диапазона использования способа для тестирования колес большого диаметра. 2 н.п. ф-лы, 3 ил.
Изобретение относится к способу предотвращения задиров в парах трения. Перед работой к образцу и контробразцу из материалов пары прикладывают точечную нагрузку Р при использовании смазочной композиции без антифрикционных добавок и определяют силу трения Fтр при возникновении задира, затем в смазочную композицию добавляют антифрикционные добавки и измеряют нагрузку Рд, при которой происходит задир, после чего рассчитывают коэффициент трения по формуле Fтр/Рд, где Fтр - сила трения при задире с использованием смазочной композиции без добавок, и пару трения перед работой смазывают композициями при значениях этого коэффициента не более 0,05. Технический результат - снижение трудозатрат и сокращение времени выбора составов смазочных композиций с антифрикционными добавками более чем в 10 раз.

Изобретение относится к испытательной технике для трибологических исследований. Прибор для одновременной оценки оптических и трибологических характеристик смазочного материала позволяет измерить их при заданных значениях скорости сдвига и толщины смазочного слоя. Пару трения образуют два стеклянных плоскопараллельных оптических окна круглой формы, образующие зазор между их плоскими поверхностями. Нижнее окно закреплено неподвижно, верхнее - приводится во вращение электроприводом, обеспечивающим бесступенчатое регулирование угловой скорости пары трения. Рабочий зазор, толщина которого устанавливается микрометрическим устройством для регулирования зазора между плоскопараллельными оптическими окнами, заполняется исследуемым смазочным материалом. Момент силы сдвига, возникающей при трении, регистрируют измерительной схемой, совмещенной с электроприводом вращения. Оптический сигнал, отражающий надмолекулярную самоорганизацию смазочного материала, получают с помощью лазера, луч которого в процессе трения проходит через поперечное сечение смазочного слоя и дополнительный поляризатор. При возникновении в смазочном слое (при наличии мезогенных присадок и определенного режима трения) явлений надмолекулярного упорядочивания смазочного материала происходит изменение интенсивности оптического сигнала лазерной системы. Технический результат - обеспечение количественной оценки внутренней структуры смазочного слоя. 2 ил.

Изобретение относится к области трибологии и триботехники и может использоваться для качественной оценки фрикционного взаимодействия при изучении трибологических свойств свитых изделий типа стальных канатов, тросов и других подобных изделий. В частности, способ полезен при выборе смазочных материалов, используемых для обработки («пропитки») стальных канатов. Задачей изобретения является повышение точности и достоверности экспериментального анализа фрикционного взаимодействия элементов свитых изделий. Способ оценки фрикционного взаимодействия элементов свитых изделий, заключающийся в том, что одним концом изделие закрепляют неподвижно, а со стороны свободного конца воздействуют осевым усилием, которое прикладывают одновременно ко всем элементам изделия, последовательно испытывают эталонное и контролируемое изделия равной между собой и превышающей шаг свивки длины, при этом прикладывают дополнительное силовое воздействие в виде крутящего момента и поворачивают изделия вокруг вертикальной оси в направлении свивки на одинаковый угол, обеспечивающий режим трения скольжения между элементами, после чего снимают воздействие, фиксируют свободные возвратно-крутильные колебания, определяют логарифмические декременты затухания в обоих случаях, по соотношению которых оценивают фрикционное взаимодействие между элементами сравниваемых свитых изделий. Технический результат заключается в качественной оценке фрикционного взаимодействия элементов свитых изделий, при обеспечении высокой точности и достоверности исследования. 1 табл.

Изобретение относится к мясной промышленности, к устройствам для определения коэффициента трения мясного и рыбного сырья. Устройство состоит из диска, закрепленного на вертикальной оси, шкалы, расположенной по радиусу диска. Вращение диска осуществляется от электромотора с преобразователем частоты через ременную передачу. Определение коэффициента трения К выполняется по формуле К=4π2n2R/g, где n - число оборотов диска, R - радиус вращения образца в момент сброса, g - ускорение свободного падения. Техническим результатом является снижение трудоемкости измерений коэффициента трения. 1 ил.

Изобретение относится к области сельскохозяйственного машиностроения, а именно к методам исследования коэффициентов трения сыпучих материалов. Способ определения коэффициента трения сыпучих материалов заключается в том, что исследуемый материал размещается в цилиндре на вращающейся винтовой поверхности, установленной по оси цилиндра. Причем частота ее вращения определяется по формуле , где g - ускорение свободного падения, м/с2; D - диаметр винтовой поверхности, м; kV - коэффициент уменьшения линейной скорости частицы. Затем в процессе определения коэффициента трения определяется объем исследуемого материала, перемещенного за один оборот вращающейся винтовой поверхности, по формуле , где Q - объем перемещенного материала, м3; t - продолжительность опыта, с. При этом коэффициент трения определяют по формуле, где η - отношение шага S к диаметру D винтовой поверхности; λ - отношение диаметра D0 винтовой линии центров давления сыпучего материала на винтовой поверхности к диаметру винтовой поверхности D. Техническим результатом является повышение точности определения коэффициента трения сыпучих материалов. 1 ил.

Группа изобретений относится к способам измерения и используется для определения коэффициента сцепления аэродромного покрытия. Технической задачей изобретения является разработка способа и устройства, позволяющие определять коэффициент сцепления покрытия непосредственно при движении самолета по аэродрому. Технический результат по способу достигается тем, что в способе определения коэффициента сцепления аэродромного покрытия, включающем измерение динамических характеристик колес средства при его движении по аэродромному покрытию, дополнительно определяют динамические характеристики корпуса средства, за счет установки на объекте устройств, а сцепные качества аэродромного покрытия определяют по величине разности величин скорости перемещения корпуса объекта и скорости перемещения корпуса объекта, определяемой по скорости вращения колес объекта. При нулевой разности коэффициент сцепления аэродромного покрытия - максимален, при достижении разности скоростей величины порога формируется оповещающий сигнал и осуществляется запись сигналов, пропорциональных скоростям и разностного сигнала. Устройство для измерения коэффициента сцепления аэродромного покрытия содержит датчик 1 измерения частоты вращения колеса, блок 2 определения скорости корпуса объекта по частоте вращения колеса, блок 3 измерения скорости корпуса объекта, блок 4 вычитания, пороговое устройство 5, блок 6 оповещения и регистрирующую аппаратуру 7, причем выход датчика 1 измерения частоты вращения колеса через блок 2 определения скорости корпуса объекта по частоте вращения колеса соединен с первыми входами соответственно блока 4 вычитания и регистрирующей аппаратуры 7, выход блока 4 вычитания через пороговое устройство 5 соединен с входом блока 6 оповещения и третьим входом регистрирующей аппаратуры 7. 2 н.п. ф-лы, 1 ил.

Изобретение относится к способам измерения трения в подшипниках. Способ определения коэффициента трения подшипника заключается в создании усилия на подшипник от нагрузочного устройства. При этом создается дополнительное усилие от силовозбудителя. Причем усилия, приложенные к подшипнику от нагрузочного устройства и от силовозбудителя, создаются на равных, но противоположных плечах с последующим расчетом коэффициента трения по формуле , где F1 - усилие, приложенное к подшипнику от силовозбудителя; F2 - усилие, приложенное к подшипнику от нагрузочного устройства; L - плечо приложения силы; D - диаметр подшипника. Техническим результатом является создание устройства, обеспечивающего определение коэффициента трения подшипника. 4 ил.
Наверх