Способ двухступенчатого преобразования энергии ионизирующего излучения в электрическую энергию

Изобретение относится к способу преобразования энергии ионизирующего излучения в ультрафиолетовое излучение. В заявленном способе предусмотрено использование диссоциирующего газа и преобразование ультрафиолетового излучения в электрическую энергию с помощью полупроводникового алмаза. Источник альфа-излучения испускает альфа-частицы, которые в диссоциирующем газе превращаются в ультрафиолетовое излучение. На пути ультрафиолетового излучения располагается синтетический полупроводниковый алмаз р-типа с контактом Шоттки и омическим контактом так, чтобы ультрафиолетовое излучение полностью или частично попадало на полупроводниковый базовый элемент-преобразователь на основе синтетического алмаза. При этом электрический ток снимается с контактов при помощи проводников и передается потребителю. Техническим результатом изобретения является исключение сложной, многостадийной схемы изготовления полупроводниковой структуры с возможностью использования только низкоэнергетических бета-источников, повышение электрофизических характеристик (радиационная стойкость, напряжение пробоя, подвижность электронов и дырок, теплопроводность) при преобразовании энергии ионизирующего излучения различных видов (альфа-излучение, бета-излучение, ультрафиолетовое излучение) в широком диапазоне энергий в электрическую энергию. 4 з. п. ф-лы, 1 табл., 1 ил.

 

Изобретение относится к способу преобразования энергии ионизирующего излучения в ультрафиолетовое излучение с помощью диссоциирующего газа и преобразование ультрафиолетового излучения в электрическую энергию с помощью полупроводникового алмаза. Способ может быть использован в электронике, приборостроении и машиностроении при создании автономных устройств с большим сроком службы.

Изучение процессов и методов преобразования энергии ультрафиолетового излучения и ионизирующего излучения в электрическую энергию актуально по нескольким причинам. Во-первых, такие исследования имеют фундаментальное значение для изучения полупроводниковых свойств алмаза. Во-вторых, в России и в мире наблюдается потребность в источниках электроэнергии с большим сроком службы для нужд промышленности, в частности оборонной; такие источники могут быть созданы на основе заявляемого изобретения. В-третьих, автономные источники электроэнергии необходимы для исследовательских целей, в частности для исследования космоса и для глубоководных исследований.

Наиболее близким по технической сущности и принятым за прототип является автономный источник питания и способ двухступенчатого преобразования ионизирующего излучения в электрическую энергию, патент US №8552616, публ. 2013.10.08, МПК G21H 01/06, по заявке №20090026879, публ. 2009.01.29, содержащий в качестве первичного источника ионизирующего излучения радиоизотопы, воздействие излучения на газ криптон или ксенон, размещенные в герметичной емкости с созданием ультрафиолетового излучения, которым в качестве вторичного источника ионизирующего излучения воздействуют на полупроводниковый материал с областями р- и n-типами проводимости и области p-n перехода, присоединение к различным областям проводимости проводников, генерацию электрического тока в полупроводниковом материале и последующее снятие электричества посредством проводников.

К недостаткам известного изобретения можно отнести использование в качестве первичного источника ионизирующего излучения радиоактивного материала низкоэнергетических радиоизотопов Sr-35,Tm-171, Po-210 с периодом полураспада 0,239-1,92 года, которые не могут обеспечить стабильную работу в течение длительного времени, а также обеспечивают низкую степень генерации электричества в полупроводнике.

Техническим результатом предлагаемого изобретения является создание способа двухступенчатого преобразования энергии ионизирующего излучения в электрическую энергию, обеспечивающего стабильную работу в течение более длительного времени, а также высокую степень генерации электричества в полупроводнике.

Поставленный технический результат достигается за счет того, что в способе двухступенчатого преобразования энергии ионизирующего излучения в электрическую энергию, включающем воздействие на газ, содержащийся в герметичной емкости, энергией радиоизотопа с созданием ультрафиолетового излучения, воздействие им в качестве вторичного источника ионизирующего излучения на полупроводниковый базовый элемент-преобразователь на основе синтетического алмаза, состоящий из областей с р- и n-типами проводимости в области p-n перехода, генерирование в нем электричества, нанесение на поверхность полупроводникового материала в разных его областях слоев различных металлов, присоединение к ним проводников и снятие электричества с их помощью, согласно изобретению, в качестве первичного источника ионизирующего излучения используют радиоизотопы тяжелых металлов, излучением которых воздействуют на смесь газов, состоящую из криптона и хлора, в соотношении (97±2):(3±2) по объему соответственно, находящуюся в герметичной емкости, тем самым создают ультрафиолетовое излучение, которым воздействуют на полупроводниковый базовый элемент-преобразователь на основе синтетического алмаза. В качестве полупроводникового материала используют синтетический алмаз р-типа проводимости, содержащий бор в количестве 1014-1016 атомов на см3, и на его поверхностях в разных областях с р- и n-типами проводимости в вакууме наносят неразрывные металлические контакты, один из которых трехслойная система металлизации вида титан-платина-золото 5-100 нм толщиной для съема положительного заряда, и другой с потенциальным барьером Шоттки - из платины, золота или иридия толщиной 10-200 нм, для снятия отрицательных зарядов, генерируемых внутри полупроводникового материала с присоединением к ним проводников.

Смесь газов из криптона и хлора в соотношении по объему (97±2):(3±2) соответственно после воздействия на них ионизирующим излучением создает ультрафиолетовое излучение с длиной волны, соответствующей максимальной степени поглощения алмазом.

В качестве первичного ионизирующего излучения взято альфа-излучение 238Pu, так как один грамм чистого 238Pu генерирует 0,567 Вт мощности, что обеспечивает достижение необходимого напряжения, также период полураспада 238Pu обеспечивает длительный срок службы приборов, использующих способ преобразования энергии ионизирующего излучения в электрическую энергию.

Выбор системы металлизации титан-платина-золото в роли омического контакта обусловлен следующими требованиями: во-первых, данный контакт не должен приводить к существенному падению напряжения на нем, чтобы исключить дополнительные резистивные потери. Во-вторых, данный слой должен обладать высокой адгезией к алмазу и высокой стойкостью к термоциклированию, т.к. планируется, что он будет использоваться для соединения кристалла преобразователя с корпусом источника тока. Для формирования контакта с барьером Шоттки ключевой является максимальная разность работ выхода электрона из алмаза и из металла контакта - высота этого барьера определяет разность потенциалов на границах области пространственного заряда, от нее зависит напряжение, генерируемое полупроводниковым базовым элементом-преобразователем на основе синтетического алмаза. Именно платина (металлы платиновой группы) обеспечивает достижение максимального напряжения.

Изобретение поясняется фигурой, иллюстрирующей предлагаемое техническое решение.

Преобразование энергии альфа-излучения радиоизотопа в электрическую энергию с помощью полупроводникового алмаза осуществляется следующим образом. Источник 1 альфа-излучения испускает альфа-частицы, которые в диссоциирующем газе вызывают ультрафиолетовое излучение 2. На пути лучей ультрафиолетового излучения 2 располагается синтетический полупроводниковый алмаз с р- и n-типом проводимости 3 с контактом Шоттки 4 и омическим контактом 5 так, чтобы ультрафиолетовое излучение 2 полностью или частично попадало на контакт Шоттки 4. При помощи проводников 6 электрический ток снимается с контактов 4 и 5 и передается потребителю 7.

Пример конкретного выполнения способа.

Для проведения испытаний создают образцы полупроводникового материала, состоящего из синтетического алмаза с содержанием бора в количестве 1014-1016 атомов на см3. Также предварительно изготавливают смесь газов, состоящую из криптона и хлора в соотношении 95 и 5 объемн.% соответственно, и смесь тех же газов в соотношении 99 и 1 объемн.%.

Создают сосуд давления со сложенными один на другой 362 слоями полупроводниковых базовых элементов-преобразователей на основе синтетического алмаза, закрепленных в подложке из диоксида циркония (ZrO2) и пластин с напыленным плутонием 238Pu (плутоний-238). Между слоями базовых элементов и пластинами с плутонием необходим зазор 100 мкм, который наполняется газовой смесью криптон-хлор путем закачки газа в сосуд под давлением 150 атм. Верх сосуда, через который вставляют набор элементов, закрывается фланцем со шпильками.

Одновременно проведены испытания известного способа. Результаты испытаний сведены в таблице.

Таблица
Способ Параметры способа Показатели способа
Мощность источника Срок службы
Предлагаемый Алмаз с содержанием бора в количестве 1014 атомов/см3 Альфа-излучение (238Pu)+ газовая смесь Kr-Cl (95:5) 20 нВт 30 лет
Алмаз с содержанием бора в количестве 1016 атомов/см3 Альфа-излучение (238Pu)+ газовая смесь Kr-Cl (99:1) 20 нВт 30 лет
Известный карбид кремния Альфа-излучение (210Ро)+ газовая смесь Kr-Cl (97:3) 10 мкВт 1 год

Технико-экономическая эффективность изобретения по сравнению с прототипом выразится в более высокой степени генерации электричества за счет использования высокоэнергетических источников альфа-излучения и увеличении надежности и срока службы приборов, использующих способ двухступенчатого преобразования ионизирующего излучения в электрическую энергию.

Источники информации

1. Патент US №8552616, публ. 2013.10.08, МПК G21H 01/06, по заявке №20090026879, публ. 2009.01.29.

1. Способ двухступенчатого преобразования энергии ионизирующего излучения в электрическую энергию, включающий воздействие на газ, содержащийся в герметичной емкости, энергией радиоизотопа с созданием ультрафиолетового излучения, воздействие им в качестве вторичного источника ионизирующего излучения на полупроводниковый базовый элемент-преобразователь на основе синтетического алмаза, состоящий из областей с р- и n-типами проводимости в области р-n перехода, генерирование в нем электричества, нанесение на поверхность полупроводникового материала в разных его областях слоев различных металлов, присоединение к ним проводников и снятие электричества с их помощью, отличающийся тем, что в качестве первичного источника ионизирующего излучения используют радиоизотопы тяжелых металлов, излучением которых воздействуют на смесь газов, состоящую из криптона и хлора, в соотношении (97±2):(3±2) по объему соответственно, находящуюся в герметичной емкости, тем самым создают ультрафиолетовое излучение, которым воздействуют на полупроводниковый базовый элемент-преобразователь на основе синтетического алмаза, в качестве полупроводникового материала используют синтетический алмаз р-типа проводимости, содержащий бор в количестве 1014-1016 атомов на см3, и на его поверхностях в разных областях с р- и n-типами проводимости в вакууме наносят неразрывные металлические контакты, один из которых трехслойная система металлизации вида титан-платина-золото для снятия положительного заряда, и другой с потенциальным барьером Шоттки - из платины, золота или иридия, для снятия отрицательных зарядов, генерируемых внутри полупроводникового материала с присоединением к ним проводников.

2. Способ двухступенчатого преобразования энергии ионизирующего излучения в электрическую энергию по п. 1, отличающийся тем, что металлические контакты в виде трехслойной системы металлизации вида титан-платина-золото наносят толщиной 5-100 нм каждый.

3. Способ двухступенчатого преобразования энергии ионизирующего излучения в электрическую энергию по п. 1, отличающийся тем, что контакты с потенциальным барьером Шоттки - из платины, или золота, или ирридия наносят толщиной 10-200 нм каждый.

4. Способ двухступенчатого преобразования энергии ионизирующего излучения в электрическую энергию по п. 1, отличающийся тем, что в металле контакта Шоттки формируют отверстия различной формы и размеров для лучшего прохождения ионизирующего излучения.

5. Способ двухступенчатого преобразования энергии ионизирующего излучения в электрическую энергию по п. 1, отличающийся тем, что в качестве источника первичного излучения используют плутоний-238 или его радионуклиды.



 

Похожие патенты:

Изобретение относится к устройствам для получения электрической энергии от радиоактивных источников и может использоваться в энергетике. Подземный ядерно-энергетический комплекс содержит наклонные У-образно расположенные скважины.

Изобретение относится к устройствам, преобразующим энергию ядерного распада в электрическую энергию, и может быть использовано в производстве компактных источников электрического тока длительного пользования.

Изобретение относится к использованию локальной электрической станции-преобразователя энергии излучения радиоактивного вещества в электрическую. .

Изобретение может быть использовано в электронике, приборостроении и машиностроении при создании автономных устройств с большим сроком службы. Способ преобразования энергии ионизирующего излучения в электрическую энергию включает изготовление полупроводникового материала, состоящего из областей с р- и n-типами проводимости в области р-n перехода, нанесение на поверхность полупроводникового материала в разных его областях слоев различных металлов, присоединение к ним проводников и воздействие на полупроводниковый базовый элемент-преобразователь на основе синтетического алмаза ионизирующим излучением с одновременным снятием электричества с помощью проводников, при этом в качестве ионизирующего излучения используют высокоэнергетические источники альфа-излучения мощностью не менее 0,567 Вт/г, а в качестве полупроводникового материала изготавливают синтетический алмаз р-типа с содержанием бора 1014-1016 атомов на см3 и на его поверхностях в разных областях с р- и n-типами проводимости в вакууме наносят неразрывные металлические контакты, один из которых трехслойная система металлизации вида титан-платина-золото для съема положительного заряда и другой с потенциальным барьером Шоттки - из платины, золота или иридия для снятия отрицательного заряда, на который воздействуют ионизирующим излучением, в результате чего внутри алмаза создают область пространственных зарядов, последние в электрическом поле разлетаются на отрицательные заряды, собираемые на металле контакта Шоттки, и положительные, собираемые на контакте из титана-платины-золота, и с них снимают электричество. Техническим результатом изобретения является создание способа преобразования ионизирующего излучения в электрическую энергию, обладающего более простой схемой изготовления полупроводниковой структуры, более высокой радиационной стойкостью, а также более высоким сроком службы полупроводникового материала. 2 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к области преобразователей энергии оптических и радиационных излучений бета-источников в электрическую энергию. Создание оригинальной планарной конструкции высоковольтного преобразователя реализуется по стандартной микроэлектронной технологии. Особенностью такой конструкции является размещение нескольких элементов p-i-n-структур, изолированных друг от друга микроканалами и соединенных последовательно, причем каждая структура собирает излучение р-n-переходов на обеих сторонах кремниевой пластины как от светового источника, так и от бета-источника. Такой преобразователь может быть использован в труднодоступных местах, шахтах, для питания биосенсоров, внедряемых внутрь организма, и т.д., а также для зарядки микроаккумуляторов на основе химических источников тока с твердотельным электролитом. Планарный фото- и бета-вольтаический преобразователь согласно изобретению обеспечивает высокое значение выходного напряжения ЭДС. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области преобразователей энергии оптических и радиационных излучений - бетаисточников в электрическую энергию. Изобретение обеспечивает создание двухсторонней конструкции комбинированного накопительного элемента фото- и бетавольтаики, состоящей из совмещенных на одной пластине кремния с одной стороны - фотоэлемента и подключенного параллельно к нему планарного плоского конденсатора, с другой стороны - бетавольтаического элемента, бета-источник никель-63 которого помещается в микроканалы для увеличения КПД и тока генерации. Такой преобразователь может быть использован в труднодоступных местах, шахтах, для питания биосенсоров, внедряемых внутрь организма, и т.д. 2 н.п. ф-лы, 3 ил.

Бета-вольтаический полупроводниковый генератор электроэнергии, содержащий полупроводниковую пластину с развитой поверхностью и слой никеля-63 на этой поверхности. Поверхность пластины полупроводника выполнена в виде множества микропор и «колодцев», имеющих разную форму, при этом слой никеля покрывает стенки микропор и общей поверхности до 95-99%. Поверхность полупроводника содержит микропоры с размерами: ширина - 20÷40 нм, длина - 400÷600 нм; глубина - 100÷250 нм; количество пор до 2500-3000 на 1 см2. Способ изготовления бета-вольтаического генератора включает этап нанесения радиоактивного вещества в микропоры пластин полупроводника с развитой поверхностью, при этом напыляют слой металлического цинка, а затем помещают пластины в водный раствор хлорида никеля-63 на 8-60 часов при температуре 10-50°C и pH 4,5. Изобретение обеспечивает возможность создания бета-вольтаического генератора электроэнергии с повышенной энергоемкостью, сроком службы 50-70 лет, при минимальной трудоемкости, затраченной на изготовление изделия. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к полупроводниковой технике, в частности к созданию компактных источников электроэнергии с использованием радиоактивных изотопов и полупроводниковых преобразователей. Бета-вольтаический полупроводниковый генератор электроэнергии, содержащий пластину с развитой поверхностью, выполненной в виде множества микропор, имеющих разную форму. Никель-63 покрывает стенки микропор и остальную поверхность пластины с максимально высоким уровнем радиоактивности. Пластины полупроводника с текстурированной поверхностью, имеющего глухие микропоры и «колодцы», заполненные слоем металлического цинка, закрепляют на стальную пластину, обладающую магнитными свойствами, помещают в водный раствор хлорида никеля-63 на 8-10 часов при температуре 10-20°C и pH 4,5. Уровень радиоактивности на поверхности пластины при данном способе нанесения может достигать 10 mCu/см2. Изобретение обеспечивает возможность создания бета-вольтаического генератора электроэнергии с повышенной энергоемкостью, сроком службы 50-70 лет, при минимальной трудоемкости, затраченной на изготовление изделия. 2 н.п. ф-лы, 3 ил.

Изобретение относится к средствам прямого преобразования энергии радиоактивного распада в электрическую и может быть использовано для питания микроэлектронной аппаратуры. Гибкий бета-вольтаический элемент содержит источник бета-излучения выполнен в виде содержащей радиоактивный изотоп фольги, который окружен, по меньшей мере, одним прилегающим к нему полупроводниковым преобразователем. Преобразователь выполнен в виде фольги из вентильного металла (например, Ni, Nb, Zr, V), на поверхности которой, обращенной к источнику излучения, сформирован слой полупроводникового оксида упомянутого вентильного металла, пропускающий электрический ток только в одном направлении, снабженный, по меньшей мере, одним электрическим контактом, нанесенным на этот слой. Способность слоя полупроводникового оксида вентильного металла пропускать ток только в одном направлении обеспечивается либо тем, что электрический контакт, нанесенный на этот слой, выполнен в виде сплошного металлического покрытия, образующего с упомянутым полупроводниковым оксидом барьер Шоттки, либо тем, что в упомянутом слое сформирована выпрямляющая гетероструктура. Техническим результатом является возможность оптимизации весогабаритных характеристик бета-вольтаического элемента. 3 з.п. ф-лы, 2 ил.

Изобретение относится к источникам питания на основе полупроводниковых преобразователей с использованием бета-вольтаического эффекта. Сущность: бета-вольтаическая батарея содержит корпус, крышку, полупроводниковые преобразователи, изолирующие и радиоизотопные элементы и токопроводящие контакты, конфигурируемые в один или несколько комплектов, соединяемых параллельно и (или) последовательно до достижения требуемой выходной мощности. Комплект собран из преобразователей, направленных разнополярными поверхностями друг к другу, между которыми размещены токопроводящие радиоизотопные элементы. Комплекты разделены изолирующими элементами, снабженными равномерно расположенными пазами. Противолежащие пазы снабжены токопроводящими контактами, выполненными с возможностью их электрического соединения как с токопроводящими контактами крайних преобразователей каждого комплекта, так и с регулятором. В качестве радиоизотопного элемента используется никель-63 с обогащением от 80%, нанесенный на n-слои полупроводниковых преобразователей. Технический результат: повышение удельной мощности батареи. 3 з.п. ф-лы, 5 ил.

Изобретение относится к технике безотходной ядерной технологии. Компактный бетавольтаический источник тока длительного пользования с бета-эмиттером, представляющий собой сборку «сэндвичевой» структуры в виде стопки чередующихся между собой единичных или комплектных микроисточников тока, где каждый из микроисточников тока содержит кремнийсодержащую n+ легированную пластинку с р+ эпитаксиальным слоем, и источник бета-частиц в виде содержащего радиоизотоп никеля-63 металлического электропроводного слоя, контактирующего с одной или с двух сторон с полупроводниковым преобразователем, и систему токосъемных электродов для подключения к нагрузке, при этом в качестве полупроводникового преобразователя энергии бета-частиц в электрическую энергию - матрицу монокристаллического р-кремния, а в качестве источника бета-частиц - соразмерную с пластинкой полупроводника токопроводящую металлическую пластинку, в качестве системы токосъемных электродов - комбинацию системы внутренних встроенных с обеих сторон кремниевой пластинки по всей площади поверх слоя нитрида кремния серебряных линейных электродов. Изобретение позволяет повысить генерируемую электрическую мощность, ток и напряжение бетавольтаического источника. 2 н. и 7 з.п. ф-лы, 8 ил.
Наверх