Способ коррекции бесплатформенной инерциальной навигационной системы

Изобретение относится к измерительной технике и предназначено для непрерывной коррекции углов крена и тангажа подвижных объектов, в частности беспилотных летательных аппаратов. Изобретение предусматривает использование сигналов, соответствующих угловой скорости объекта, и сигнала, соответствующего земной скорости объекта, и комплексирование данных сигналов и сигналов, соответствующих линейным ускорениям, преобразованных с учетом параметров полета объекта, и адаптивную оценку крена и тангажа осуществляют посредством фильтра Калмана, в котором коэффициент усиления изменяется в зависимости от текущих значений модули перегрузки, угловых скоростей и земной скорости объекта. В процессе работы интенсивность коррекции адаптируется к отклонениям кажущейся вертикали от гравитационной. При этом происходит подавление влияния кажущегося ускорения, достаточное для обеспечения необходимой точности оценивания крена и тангажа. За счет этого зависимость маятниковой коррекции от вида движения объекта ослабляется до уровня, позволяющего использовать датчики ДУС и ДЛУ средней и низкой точности, в том числе микромеханического типа. Технический результат - повышение точности навигации подвижных объектов. 2 ил.

 

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов. Задачей изобретения является повышение точности бесплатформенной инерциальной навигационной системы (БИНС) путем создания способа непрерывной коррекции курсовертикали.

Классическим алгоритмом вычисления углов ориентации является пересчет показаний ДУС в угловые скорости ψ ˙ ,   ϑ ˙ ,    γ ˙ с последующим их интегрированием. Недостатком такой системы является накапливаемая во времени погрешность и, как следствие, ограниченное время работы. Для устранения указанного недостатка в систему необходимо вводить дополнительную информацию, характеризующую реальную угловую ориентацию объекта, в частности беспилотного летательного аппарата (БПЛА). Источником такой информации служат датчики линейного ускорения (ДЛУ). Основные погрешности системы маятниковой коррекции возникают в результате действия постоянных или медленно меняющихся ускорений. В настоящий момент данная проблема решается путем отключения маятниковой коррекции на высокоманевренных участках полета или путем комплексирования блока гироскопов (БГ) с другими системами ориентации (магнитометрическая, видеосистема и др.).

Проблема коррекции курсовертикали БИНС заключается в том, что при маневрировании ЛА моменты времени, когда статические оценки крена и тангажа обладают достаточной точностью, могут возникать недопустимо редко. В связи с этим предлагается способ адаптивной коррекции углов крена и тангажа, в котором коррекция выполняется непрерывно.

Известен способ коррекции инерциальной навигационной системы (ИНС), описанный в патенте RU 2345326 С1, МПК G01C 21/06, опубл. 27.01.2009, автора Прохорцова А.В., принятый нами за прототип.

Сущность способа заключается в следующем. По показаниям акселерометров, входящих в состав ИНС, определяют абсолютное ускорение, действующее на объект, на котором установлена ИНС, по формуле:

,

где gx - показания акселерометра, измеряющего ускорение по продольной оси объекта, на котором установлена ИНС; gy - показания акселерометра, измеряющего ускорение по вертикальной оси;

gz - показания акселерометра, измеряющего ускорение по поперечной оси объекта, на котором установлена ИНС.

В момент времени, когда абсолютное ускорение равно ускорению силы тяжести | g | = g для местности, где находится ИНС, производится коррекция ИНС по углам тангажа и крена. Этот момент времени соответствует равномерному движению объекта. Для коррекции ИНС по формуле υ=-arcsin(gx/g) находится истинное значение угла тангажа, а по формуле γ=-arctg(gz/gy) находится истинное значение угла крена. Далее показания ИНС по углам тангажа и крена заменяются на вычисленные.

Недостаток известного способа заключается в том, что при маневрировании ЛА моменты времени, когда оценки крена и тангажа обладают достаточной точностью, могут возникать недопустимо редко. Это может привести к возникновению значительных погрешностей в результате действия постоянных или медленно меняющихся ускорений во всем диапазоне полета.

Целью заявляемого изобретения является обеспечение непрерывной коррекции БИНС по углам крена и тангажа с требуемой точностью, в том числе и при маневрировании летательного аппарата.

Поставленная цель достигается за счет того, что в способе коррекции бесплатформенной инерциальной навигационной системы, при котором на основании сигналов, поступающих с акселерометров, входящих в состав инерциальной навигационной системы (ИНС), определяют модуль абсолютного ускорения, действующего на объект, на котором установлена ИНС, и в момент времени, когда абсолютное ускорение равно ускорению силы тяжести для местности, где находится ИНС, в установившимся режиме полета определяют углы тангажа и крена объекта, для непрерывной коррекции углов тангажа и крена дополнительно используют сигналы, соответствующие угловой скорости объекта и сигнал, соответствующий земной скорости объекта, причем комплексирование данных сигналов и сигналов, соответствующих линейным ускорениям, преобразованных с учетом параметров полета объекта, и адаптивную оценку углов крена и тангажа осуществляют посредством фильтра Калмана, в котором коэффициент усиления изменяется в зависимости от текущих значений модуля перегрузки, угловых скоростей и земной скорости объекта.

Благодаря предлагаемому способу коррекции БИНС происходит подавление влияния кажущегося ускорения, достаточное для обеспечения необходимой точности оценивания крена и тангажа. В результате зависимость маятниковой коррекции от вида движения ЛА ослабляется до уровня, позволяющего использовать датчики ДУС и ДЛУ средней и низкой точности, в том числе микромеханического типа.

Суть работы способа излагается ниже.

По измерениям датчиков ДУС и ДЛУ оценивается вектор состояния:

Здесь ϑ - угол тангажа; γ - угол крена; V - модуль вектора скорости летательного аппарата относительно земли; i - номер дискретного момента времени измерений датчиков; x 0 N { x ¯ 0 , P ¯ 0 } - априорное нормальное распределение вектора состояния; x ¯ 0 - априорное математическое ожидание; P ¯ 0 - априорная ковариационная матрица.

Изменения крена и тангажа во времени описываются уравнениями Эйлера. За счет постоянной коррекции накопление ошибок, обусловленных влиянием конических вибраций конструкции аппарата, устраняется. При этом отпадает необходимость применения многошаговых алгоритмов ориентации и достаточно использовать простой одношаговый алгоритм следующего вида

.

Дискретная динамическая модель объекта наблюдения имеет вид.

Адаптивный фильтр Калмана строится относительно вектора состояния (1). Вектор наблюдений, обозначаемый далее Z, содержит измерения акселерометров.

Здесь vi - вектор ошибок измерений с заданной постоянной ковариационной матрицей R.

Функции fx, fy, fz определяют связь измерений перегрузок с параметрами полета. Точные соотношения для этих функций имеют вид.

Здесь Vx, Vy, Vz - проекции вектора земной скорости на связанные оси ЛА.

Полный учет соотношений (5) при ограничении состава датчиков только акселерометрами и гироскопами не представляется возможным, поэтому принимается упрощающее допущение о малости углов атаки и скольжения, а также допущение о постоянстве модуля путевой скорости на интервале дискретизации Δt.

При этом имеют место соотношения: V x = V , , V ˙ = V y = V z = 0 и уравнения (5) упрощаются.

С учетом (6) матрица Якоби вектора наблюдений (5) имеет вид.

Соотношения (6) являются приближенными. Степень приближения зависит от отклонения модуля перегрузки от единицы. Чем больше модуль перегрузки отличается от единицы, тем менее точны эти уравнения и тем больше дисперсии σ nxi 2 , σ nyi 2 , σ nzi 2 . Данные дисперсии задаются линейной функцией следующего вида:

где n = | n x i 2 + n y i 2 + n z i 2 1 | .

Текущий вектор состояния (1) рассчитывается по уравнениям Эйлера (2), после чего полагается, что он известен с точностью до погрешностей датчиков. При этом уравнения объекта принимаются в виде:

Здесь xiq - вектор, в котором компоненты крена и тангажа рассчитаны по соотношениям (3), а компонента скорости принимается равной ее априорному значению на момент текущих измерений;

wi - вектор возмущений с ковариационной матрицей Qi:

Вектор возмущений qϑ, qγ задается с учетом точности ДУС, qV - учитывает изменение скорости.

В соответствии с (9) переходная матрица дискретной модели объекта, используемая в алгоритме фильтра Калмана для прогноза ковариационной матрицы ошибок оценивания, принимается единичной.

Адаптивный алгоритм фильтра Калмана имеет следующий вид:

Способ коррекции БИНС проверялся при помощи обработки полетных данных вертолета Robinson (фиг. 1 и 2).

В модельных задачах для процессов движения требовалось:

1 - обеспечение устойчивости процессов оценки ориентации, заключающейся в отсутствии накопления ошибок при смещениях нулей гироскопов порядка до 200 град/час.

2 - хороший уровень ошибок оценивания относительно модельных значений крена и тангажа на переходных процессах.

В задачах обработки полетных данных вертолета требовалось соблюдение близости оценок крена и тангажа к оценкам, полученным иным способом, а именно - с помощью алгоритма ориентации при комплексировании информации от ДУС и ДЛУ с измерениями проекций земной скорости, поступающими от приемника спутниковой навигационной системы (СНС). Также проверялось соответствие получаемых оценок показаниям контрольного прибора.

В то время, когда положение ЛА является близким к установившемуся, имеет место идеальный случай маятниковой коррекции. При этом оценки крена и тангажа, определяемые по фильтру Калмана, заменяются оценками, вычисляемыми непосредственно по показаниям акселерометров.

Для снижения влияния вибрационных шумов измерений сигналы датчиков предварительно пропускаются через сглаживающие фильтры второго порядка с постоянной времени 0.1 с и декрементом затухания 1.

Таким образом, с помощью приведенных соотношений решается задача оценивания вектора (1) по наблюдениям (4) с учетом одношагового алгоритма ориентации (2). Получаемые при этом оценки вектора (1) на каждом шаге подставлялись в уравнения Эйлера (2).

Расчеты показывают, что способ сохраняет работоспособность при изменении углов тангажа и крена в пределах абсолютных значений до 70-80 градусов.

На основе результатов обработки полетных данных вертолета:

1. Вычислялась ориентация ЛА по алгоритму комплексирования измерений приемника СНС с датчиками ДУС и ДДУ на скользящем интервале наблюдений.

2. Вычислялись углы крена и тангажа по способу адаптивной коррекции БИНС. Полученные данные подтвердили, что заявляемое изобретение обеспечивает повышение точности и непрерывности коррекции углов тангажа и крена курсовертикали БИНС в условиях маневрирования в полете.

Предложенный способ коррекции БИНС позволяет использовать датчики ДУС и ДЛУ средней и низкой точности, в том числе микромеханического типа, так как из-за непрерывной коррекции ошибки не накапливаются.

Способ коррекции бесплатформенной инерциальной навигационной системы, при котором на основании сигналов, поступающих с акселерометров, входящих в состав инерциальной навигационной системы (ИНС), определяют модуль абсолютного ускорения, действующего на объект, на котором установлена ИНС, и в момент, когда абсолютное ускорение равно ускорению силы тяжести для местности, где находится ИНС, в установившемся режиме полета определяют углы тангажа и крена объекта, отличающийся тем, что для непрерывной коррекции углов тангажа и крена дополнительно используют сигналы, соответствующие угловой скорости объекта, и сигнал, соответствующий земной скорости объекта, причем комплексирование данных сигналов и сигналов, соответствующих линейным ускорениям, преобразованных с учетом параметров полета объекта, и адаптивную оценку углов крена и тангажа осуществляют посредством фильтра Калмана, в котором коэффициент усиления изменяется в зависимости от текущих значений модуля перегрузки, угловых скоростей и земной скорости объекта.



 

Похожие патенты:

Изобретение относится к комплексной системе управления траекторией летательного аппарата при заходе на посадку. Система включает инерциальную навигационную систему, систему воздушных сигналов, индикатор посадочных сигналов (ИПС), блок комплексной обработки информации (КОИ), спутниковую навигационную систему, блок памяти, блок определения параметров взлетно-посадочной полосы (ВПП), блок определения местоположения виртуального курсо-глиссадного радиомаяка (ВКГРМ), блок определения пеленга и дальности ВКГРМ, первый и второй сумматоры, блок определения угла места ВКГРМ.

Изобретение предназначено для применения в области авиационного приборостроения, в частности в пилотажно-навигационном оборудовании летательных аппаратов (ЛА). Технический результат - повышение надежности и безопасности совершения посадки ЛА, увеличение точности формирования заданной траектории посадки.

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов. .

Изобретение относится к области измерительной техники и может быть использовано в навигации для определения угловых положений автоматических подводных, надводных и летательных аппаратов, в нефтепромысловой геофизике для определения углового положения буровой скважины.

Изобретение относится к области авиации и может быть использовано в приборном оборудовании летательного аппарата для упрощения восприятия и переработки информации.

Изобретение относится к оптико-электронной технике и может быть использовано при изготовлении оптических наблюдательных приборов. .

Изобретение относится к области приборостроения и может найти применение в астроинерциальных навигационных системах, в которых основная навигационная информация корректируется по сигналам, поступающим с выхода астровизирующего устройства. Технический результат - повышение надежности. Для этого блок формирования астропоправок подключен к блоку отбраковки ложных астропоправок, состоящему из последовательно соединенных буфера выходных сигналов блока формирования астропоправок, двух счетчиков, обеспечивающих выборку сигналов из буфера, разностной системы и системы сравнения, формирующую порог, по которому производится отбраковка сбойных сигналов, выход которого подключается к входу блока формирования осредненного значения астропоправок. При этом блок формирования осредненного значения астропоправок выполнен с возможностью сравнения, обеспечивающего отбраковку сбойных астропоправок по порогу, сформированному в блоке отбраковки ложных астропоправок. 4 ил.

Изобретение относится к области приборостроения и может найти применение в высокоточных астроинерциальных системах пилотируемых авиационно-космических объектов. Технический результат - повышение точности. Для этого осуществляют отбраковку дефектных сигналов. При этом формируют пары сигналов, составляющие максимальное значение полученной абсолютной величины разности, и исключают ее из последующего рассмотрения. Повторяют отбраковку оставшихся сигналов вплоть до того, как не исключенными из рассмотрения останется один сигнал, в случае нечетного начального числа обрабатываемых сигналов, либо два сигнала, в случае четного начального числа обрабатываемых сигналов. Формируется константа, равная значению оставшегося сигнала, либо среднему арифметическому двух оставшихся в рассмотрении сигналов, а в качестве измерения формируется осредненное значение как сумма сигналов, абсолютная величина разности которых и сформированной в процессе отбраковки константы не превышает заданного порога, величина которого определяется точностными характеристиками астровизирующего устройства и делением полученной суммы на число сигналов, удовлетворяющих этому условию. 2 ил.

Способ определения углового положения подвижного объекта относительно центра масс, т.е определение пространственной ориентации при угловом движении, преимущественно летательных аппаратов (ЛА), относительно какой-либо базовой системы координат, путем аналитического ее вычисления на основе измерений каких-либо отдельных параметров ориентации (углов, угловых скоростей и т.д.). Способ включает определение текущей угловой ориентации системы координат OX1Y1Z1 относительно геоцентрической базовой системы координат OXYZ, задание требуемой ориентации системы координат OX2Y2Z2 относительно геоцентрической базовой системы координат OXYZ, при этом системы координат OX1Y1Z1 и OX2Y2Z2 имеют начало координат в центре масс объекта и связаны с ним. Текущие значения углов ориентации связанной системы координат относительно базовой определяются с помощью бесплатформенной инерциальной навигационной системы (БИНС), при этом в геоцентрической базовой системе координат направление оси OZ принимают совпадающим с направлением вектора вращения Земли, а ось ОХ направлена в точку пересечения гринвичского меридиана с экватором. Определяют углы относительной ориентации ςx, ςy, ςz между соответствующими осями связанной системы текущей угловой ориентации и требуемой в геоцентрической базовой системе координат по определенным зависимостям и по результатам вычислений судят об угловом положении подвижного объекта. Технический результат - расширение области применения, повышение достоверности и точности определения углового положения подвижного объекта. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов. Технический результат - повышение точности и обеспечение непрерывности коррекции углов курса, тангажа и крена подвижного объекта, в частности ЛА в условиях маневрирования в полете. Указанный результат достигается за счет того, что согласно данному способу, при котором коррекция углов крена и тангажа подвижного объекта осуществляется путем обработки сигналов ДЛУ и ДУС, использования адаптивной обработки посредством фильтра Калмана и измерения магнитного курса магнитометрическим датчиком, дополнительно определяют вертикальную и горизонтальную проекции абсолютного значения магнитного поля Земли на плоскости магнитного меридиана с учетом угла магнитного наклонения по известным координатам местоположения, определяют разность измеренных значений проекций магнитного поля Земли трехкомпонентным магнитометрическим датчиком и проекций составляющих магнитного поля Земли, определенных по текущим координатам подвижного объекта при помощи матрицы направляющих косинусов на связанную ось. Минимизируя полученную разность путем использования фильтра Калмана, получают скорректированные текущие значения магнитного курса, углов тангажа и крена объекта. 1 з.п. ф-лы.

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов. Технический результат - повышение точности способа коррекции бесплатформенной инерциальной навигационной системы (БИНС) по углам крена и тангажа, в частности, в условиях маневрирования летательного аппарата (ЛА). Способ включает в себя комплексирование сигналов, соответствующих угловой скорости и земной скорости объекта, с сигналами, соответствующими линейным ускорениям и преобразованными с учетом параметров полета объекта, и адаптивную оценку крена и тангажа посредством фильтра Калмана, в котором коэффициент усиления изменяется в зависимости от текущих значений модулей перегрузки и линейной скорости, а также угловых скоростей. Дополнительно используют сигнал, соответствующий продольной скорости объекта, полученный от системы воздушных сигналов (СВС) в виде функции от динамического давления, и сигнал, соответствующий продольному ускорению, полученный путем дифференцирования с последующим сглаживанием сигнала скорости от СВС. Кроме того, производят оптимизацию коэффициентов фильтра Калмана, для чего формируют девять обучающих последовательностей, назначают шесть коэффициентов фильтра, подлежащих настройке, и критерий качества в виде взвешенной среднеквадратической ошибки (СКО) ориентации по крену и тангажу, усредненной по времени и по множеству всех девяти обучающих последовательностей. Оптимизацию коэффициентов алгоритма осуществляют в три этапа. Первый этап заключается в численной минимизации критерия качества и определении коэффициентов для полетов в спокойной атмосфере. Второй этап заключается в численной минимизации критерия качества и определении коэффициентов для полетов в условиях турбулентности. Третий этап определяет процедуру, удовлетворяющую с достаточной точностью полетам как в спокойной атмосфере, так и в турбулентности, путем линейной интерполяции коэффициентов фильтра Калмана по результатам первого и второго этапов. Изобретение позволяет использовать датчики ДУС и ДЛУ средней и низкой точности, в том числе микромеханического типа, так как из-за непрерывной коррекции ошибки не накапливаются. Устройство не требует начальной выставки и обладает свойством самовыставки в течение нескольких секунд и может быть использовано на всех типах ЛА. 3 ил., 1 табл.
Наверх