Формовочные смеси, содержащие карбонатные соли, и их применение

Изобретение относится к литейному производству. Смесь содержит заполнитель формовочной смеси и карбонатную соль в количестве от 0,25 мас.% до 5,0 мас.% от массы заполнителя в формовочной смеси. Обеспечивается снижение образования просечек в металлической отливке. 4 н. и 15 з.п. ф-лы, 1 табл., 7 пр.

 

ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ

Данная заявка претендует на приоритет и эффект изобретения в соответствии с предварительной заявкой на патент США с регистрационным номером 61/286913, поданной 16 декабря 2009 г., содержание которой полностью включено в данное описание посредством ссылки.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Кварцевый песок (SiO2, кварц) широко используют в качестве заполнителя в металлолитейной промышленности для изготовления литейных форм и литейных стержней. Его используют как для получения сырой формовочной смеси (песка, связанного водой и глиной), так и для получения химически связанного песка. Используют различные неорганические и органические связующие, в том числе натрийсиликатные связующие, фенолуретановые, фурановые, эпоксиакриловые, фенольные связующие, отверждаемые сложными эфирами, фенольные связующие, отверждаемые кислотами, и др.

Связующие смешивают с песком и смесь уплотняют в модели, чтобы она приняла форму желаемой литейной формы или литейного стержня, затем связующее отверждается и связывает зерна песка друг с другом. Затем детали формы и стержня собирают с получением формы в сборке и заливают в форму металл, который заполняет ее внутренние полости, принимая форму желаемой отливки. Тепло от жидкого металла, в частности, в случае сплавов на основе железа с температурами плавления, превышающими 1100°C, начинает разлагать органическое связующее и нагревать песок. При нагревании кварцевого песка происходит его термическое расширение. Это расширение является относительно линейным до тех пор, пока температура не достигнет примерно 570°C, когда трансформируется кристаллическая структура зерен песка. Эта трансформация структуры сопровождается быстрым изотермическим расширением, за которым следует стадия термической усадки до примерно 980°C, когда происходит другое изменение кристаллической структуры с большим термическим расширением.

Считается, что эти быстрые изменения объема зерен песка вызывают механические напряжения в слоях песка, расположенных вблизи поверхности отливки, что может привести к растрескиванию поверхности формы или стержня, которая контактирует с горячим расплавленным жидким металлом, находящимся в форме. Расплавленный жидкий металл может затечь в эти трещины и сформировать просечки или заливины на поверхности отливки. Это нежелательно, и для удаления таких дефектов требуются время и труд. В критических прикладных задачах с мелкими внутренними проходами в формах просечки могут проходить поперек проходов и блокировать их. Примерами таких критических отливок являются блоки цилиндров и головки двигателей с водяными рубашками охлаждения, которые могут быть блокированы просечками, которые трудно обнаружить и еще труднее удалить.

Для получения «песчаных» литейных форм и стержней можно использовать также другие типы заполнителей, в том числе природный циркон, хромит, оливин и искусственную керамику, а также другие заполнители. Для них характерны меньшие скорости расширения без фазовых изменений и значительно сниженная тенденция к образованию дефектов типа просечек, однако они существенно дороже.

Для того чтобы уменьшить тенденцию к образованию просечек, вместе с кварцевым песком были использованы добавки к формовочным смесям. Эти добавки к формовочным смесям обычно можно разделить на три основные категории в зависимости от механизма их действия.

Первая категория состоит из «заполнителей с низким термическим расширением»; примером является смесь кварцевого и цирконового песка в соотношении 90:10, которая обладает меньшим термическим расширением, чем чистый кварцевый песок. Кроме природных заполнителей, можно использовать искусственные заполнители, такие как керамические (муллитовые) шарики, «микросферы» из силиката алюминия или плавленый кварц.

Вторая категория состоит из «органических демпфирующих материалов», таких как древесная мука, декстрин и крахмал. При смешивании с кварцевым песком они занимают определенный объем между зернами песка. Поэтому, когда расплавленный металл заливают в форму, тепло от расплавленного металла быстро выжигает дополнительный органический материал. Объем, который ранее был занят органическим материалом, затем может служить «амортизатором» или пространством для расширения песка, что снижает развитие напряжений в песке.

Третья категория добавок к формовочной смеси состоит из «флюсов», которые реагируют с поверхностью зерен песка и химически изменяют поверхностный слой песка и соответствующие характеристики расширения песка. Примерами таких флюсов являются оксиды железа - гематит (Fe2O3) и магнетит (Fe3O4), которые издавна используют в качестве добавок к формовочным смесям. Другими добавками к формовочным смесям типа флюсов являются материалы, содержащие оксид титана (TiO2) и оксид лития (Li2O), например сподумен. Также было показано, что использование комбинации нескольких различных добавок типа флюсов может обеспечить полезный эффект. Это относится, в частности, к использованию гематита совместно с другими добавками.

Существующие категории добавок к формовочным смесям могут снизить образование просечек в отливках, но все три категории добавок к формовочным смесям обладают определенными важными недостатками. Агрегаты с низким термическим расширением обычно являются более дорогими, чем кварцевый песок, и их необходимо использовать в относительно больших количествах (более 10% от массы песка). Органические демпфирующие материалы имеют тенденцию увеличивать общее количество газа, выделяемого литейной формой или стержнем при воздействии жидкого металла, и могут значительно снизить прочность формы/стержня, если их используют в количестве, превышающем примерно 1 процент. Добавки к формовочным смесям типа флюсов в настоящее время являются наиболее широко используемыми добавками, однако они также имеют определенные недостатки. Например, оксиды железа при использовании в количестве, превышающем примерно 2 масс.% от массы песка, могут приводить к повышенной проницаемости металла и снижать прочность формы/стержня при использовании в больших количествах. Сподумены, содержащие литий, являются дорогими, и обычно их используют в больших количествах, например в количестве от 4 до 8 масс.% от массы песка.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В заявке описана формовочная смесь, содержащая заполнитель и определенные карбонатные соли. Карбонатные соли можно использовать в количествах менее 4,0 масс.% от массы заполнителя и даже в количествах 1,0 масс.% и менее, для эффективного снижения образования просечек на металлической отливке, изготовленной с использованием формовочной смеси. Также описано применение формовочной смеси для изготовления литейных форм с использованием способов warm-box (ворм-бокс), hot-box (хот-бокс), no-bake (ноу-бэйк) и cold-box (колд-бокс), применение этих литейных форм для изготовления металлических отливок и металлические отливки, изготовленные таким способом. При использовании формовочной смеси согласно настоящему изобретению в металлических отливках, изготовленных с использованием литейных форм для литья металлических деталей, снижается или устраняется образование просечек.

Известно, что карбонатные соли, как чистые, так и входящие в состав природных минералов, например доломита, могут сокращать время обработки песчаных смесей, используемых в cold-box способе для изготовления литейных форм, и снижать химическую активность кислотных катализаторов, используемых для отверждения литейных форм в warm-box, hot-box и no-bake способах. В связи с этим желательно удалять карбонатные соли из формовочных смесей или минимизировать их содержание в формовочных смесях. Несмотря на это препятствие для использования карбонатных солей в формовочных смесях, оценка отливок показала не только то, что добавление карбонатных солей уменьшает образование просечек, но и то, что сопоставимое уменьшение просечек обеспечивается при использовании меньших количеств карбонатных солей (по сравнению с количествами известных добавок к формовочным смесям).

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Карбонатными солями, используемыми в качестве добавок к формовочной смеси, являются такие карбонаты, как карбонат натрия, карбонат калия, карбонат кальция, карбонат магния и их смеси. Можно использовать чистые карбонатные соли и/или природные минералы, содержащие карбонатные соли. Примером природного минерала, содержащего карбонатные соли, является доломит. Доломит обладает преимуществами в качестве источника карбонатных солей благодаря его доступности и низкой цене.

Количество карбонатной соли, используемое в формовочной смеси, - это количество, эффективно снижающее или устраняющее образование просечек в металлических отливках, изготовленных с использованием литейных форм (т.е. форм и стержней), используемых для литья металлических деталей. Эффективное количество карбонатной соли обычно составляет от 0,25 масс.% до 5,0 масс.% от массы заполнителя в формовочной смеси, предпочтительно - от 0,5 масс.% до 3,0 масс.% от массы заполнителя в формовочной смеси и наиболее предпочтительно - от 0,75 масс.% до 2,0 масс.% от массы заполнителя в формовочной смеси.

Кроме карбонатных солей формовочная смесь может также содержать известные добавки для формовочных смесей, такие как красный оксид железа, черный оксид железа и литийсодержащие соединения. Особо предпочтительно использовать совместно с карбонатной солью красный оксид железа. Если с карбонатной солью используют красный оксид железа, то его обычно используют в массовом отношении карбонатной соли к красному оксиду железа в диапазоне от 1:1 до 4:1, предпочтительно - от 1:1 до 2:1.

Формовочная смесь также может содержать связующее для формовочных смесей. Эти связующие для формовочных смесей хорошо известны в данной области техники. Можно использовать любое неорганическое или органическое связующее для способов warm-box, hot-box, no-bake или cold-box, если оно будет в достаточной степени фиксировать литейную форму, а в случае органических связующих - если оно будет полимеризоваться в присутствии катализатора отверждения. Примерами таких органических связующих являются, среди прочих, фенольные смолы, фенолуретановые связующие, фурановые связующие, щелочные фенолрезольные связующие и эпоксиакриловые связующие. Фенолуретановые связующие описаны в патентах США №№3485497 и 3409579, содержание которых полностью включено в данную заявку посредством ссылки. В основе этих связующих лежит двухкомпонентная система, одна часть которой является компонентом фенольной смолы, а вторая часть - полиизоцианатным компонентом. Эпоксиакриловые связующие, отверждаемые диоксидом серы в присутствии окислителя, описаны в патенте США №4526219, содержание которого также полностью включено в данную заявку посредством ссылки.

Необходимое количество связующего является эффективным количеством, обеспечивающим поддержание формы и эффективное отверждение, то есть количеством, которое позволит получить литейную форму, с которой можно будет обращаться после отверждения или которая после отверждения будет самоподдерживающейся. Эффективное количество связующего обычно превышает примерно 0,1 масс.% от массы заполнителя формовочной смеси. Предпочтительно количество связующего лежит в диапазоне от примерно 0,5 масс.% до примерно 5 масс.%, более предпочтительно - от примерно 0,5 до примерно 2 масс.%.

Отверждение формовочной смеси в случае no-bake способа происходит после смешивания жидкого катализатора отверждения с формовочной смесью (альтернативно - после первоначального смешивания жидкого катализатора отверждения с формовочной смесью), формования формовочной смеси, содержащей катализатор, и отверждения сформованной формовочной смеси (обычно при температуре окружающей среды без использования тепла). Warm-box и hot-box способы сходны с no-bake способом, за исключением используемого оборудования и/или того, что литейную форму нагревают для ускорения отверждения. Предпочтительным жидким катализатором отверждения для no-bake способа является третичный амин, описанный в патенте США №3485797, содержание которого полностью включено в данную заявку посредством ссылки. Конкретными примерами таких жидких катализаторов отверждения являются 4-алкилпиридины, алкильная группа которых содержит от одного до четырех атомов углерода, изохинолин, арилпиридины, например фенилпиридин, пиридин, акридин, 2-метоксипиридин, пиридазин, 3-хлорпиридин, хинолин, N-метилимидазол, N-этилимидазол, 4,4'-дипиридин, 4-фенилпропилпиридин, 1-метилбензимидазол и 1,4-тиазин. Если фурановое связующее используют в warm-box, hot-box или no-bake способах, то типичным используемым катализатором является неорганическая или органическая кислота, например сильные кислоты, такие как толуолсульфокислота, ксилолсульфокислота, бензолсульфокислота, HCl и H2SO4. Также можно использовать слабые кислоты, например фосфорную кислоту.

Отверждение литейной формы в cold-box способе происходит при вдувании или набивке формовочной смеси в форму и контакте литейной формы с парообразным или газообразным катализатором. Можно использовать различные пары или смеси паров и газов или газы, например третичные амины, диоксид углерода, метилформиат и диоксид серы, в зависимости от выбранного химического связующего. Специалист в данной области техники сможет определить, какой газообразный отверждающий агент является подходящим для используемого связующего. Например, смесь парообразных/газообразных аминов используют с фенолуретановыми смолами. Диоксид серы (совместно с окислителем) используют с эпоксиакриловой смолой. См. патент США №4526219, содержание которого включено в данную заявку посредством ссылки. Диоксид углерода (см. патент США №4985489, содержание которого включено в данную заявку посредством ссылки) или сложные метиловые эфиры (см. патент США №4750716, содержание которого включено в данную заявку посредством ссылки) используют с щелочными фенолрезольными смолами. Диоксид углерода также используют со связующими на основе силикатов. См. патент США №4391642, содержание которого включено в данную заявку посредством ссылки

Связующим предпочтительно является фенолуретановое cold-box связующее, отверждаемое посредством пропускания газообразного третичного амина, например триэтиламина, через сформованную формовочную смесь способом, описанным в патенте США №3409579, или эпоксиакриловое связующее, отверждаемое диоксидом серы в присутствии окислителя, как описано в патенте США №4526219.

Специалисту в данной области техники будет очевидно, что к формовочной смеси могут быть добавлены другие добавки, например разделительные композиции, растворители, средства, увеличивающие время обработки, силиконовые соединения и т.п.

ОПИСАНИЕ ПРИМЕРОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

В Примере А (сравнительный пример) и в Примерах 1-3 литейные стержни для испытаний (цилиндрические стержни диаметром 2” и высотой 2”) были изготовлены с использованием warm-box процесса посредством смешивания кварцевого песка Badger 5574 с фурановым связующим CHEM-REZ® (коммерчески доступным в компании Ashland Inc.) в количестве, равном 1,25% от массы песка, катализатором CHEM-REZ FC521 (коммерчески доступным в компании Ashland Inc.) в количестве, равном 20% от массы связующего, и добавкой для формовочной смеси, вид и количество которой (в процентах от массы песка) указаны в Таблице 1, и вдувания смеси в стержневой ящик, температуру которого поддерживали на уровне примерно 235°C.

В Примере В (сравнительный пример) и в Примерах 4-5 литейные стержни для испытаний были изготовлены с использованием cold-box процесса посредством смешивания кварцевого песка Wedron 540 с фенолуретановым связующим ISOCURE® TKW 10/20 (двухкомпонентное фенолуретановое связующее, коммерчески доступное в компании Ashland Inc., в котором соотношение Части I к Части II равно 1:1) в количестве, равном 1,25% от массы песка, катализатором CHEM-REZ FC521 (коммерчески доступным в компании Ashland Inc.) в количестве, равном 1% и указанном в Таблице 1, вдувания смеси в стержневой ящик с цилиндрическими полостями диаметром 2” и высотой 2” и отверждения стержней с использованием катализатора триэтилалюминия (TEA).

Характеристики образования просечек на стержнях для испытаний были измерены после проведения пробного литья для испытания на «пенетрацию», для которого стержни для испытаний были вклеены в литейную форму в сборке. Затем в литейную форму в сборке, содержавшую стержни для испытаний, залили расплавленный серый литейный чугун Класса 30, имевший температуру около 1450°C. Результаты испытания на пенетрацию в отношении образования просечек и механической пенетрации описаны авторами Tordoff and Tenaglia в AFS Transactions, стр.149-158 (84-е ежегодное совещание AFS, Сент-Луис, Миссури, 21-25 апреля 1980 г.). Дефекты поверхности определяли посредством визуального наблюдения, а оценка отливок была основана на опыте исследователей и фотографиях испытательных отливок.

Отливку охлаждали, очищали посредством пескоструйной обработки и внутренние поверхности полостей, образованных стержнями, оценивали на образование просечек, сравнивали друг с другом и оценивали по шкале от 1 до 5, где 5 обозначает наиболее выраженное образование просечек, а 1 обозначает отсутствие просечек. Результаты представлены в Таблице 1, приведенной ниже.

Таблица 1
Характеристики образования просечек на стержнях для испытаний
Пример Добавка Общее количество добавки, препятствующей образованию просечек (в % от массы песка) Образование просечек (оценка)
A (warm-box) Нет Нет 4,0
1 (warm-box) Смесь карбоната кальция и карбоната магния (доломит) В общей сложности 1 процент1 1,5
2 (warm-box) Смесь карбоната кальция и карбоната магния (доломит) В общей сложности 1 процент2 1,0
3 (warm-box) Смесь карбоната кальция и карбоната магния (доломит) В общей сложности 2 процента3 1,0
В (cold-box) Нет Нет 3,0
4 (cold-box) Смесь карбоната кальция и карбоната магния (доломит) + сульфат кальция (гипс) (50/50) В общей сложности 1 процент2 1,0
5 (cold-box) Смесь карбоната кальция и карбоната магния (доломит) + сульфат кальция (гипс) (50/50) В общей сложности 2 процента2 1,0
1 - без добавления оксида железа
2 - для контроля пенетрации также добавлено 0,5 процента оксида железа
3 - для контроля пенетрации также добавлен 1 процент оксида железа

Данные Таблицы 1 четко показывают, что стержни для испытаний, изготовленные из формовочной смеси, содержащей карбонатную соль, снижают образование просечек в исследуемой отливке даже в концентрации, равной 1 масс.% от массы песка.

В описании и примерах осуществления настоящего изобретения возможны различные комбинации, модификации и изменения параметров, которые входят в объем формулы изобретения, так что формулу изобретения следует толковать как включающую альтернативные варианты его осуществления.

1. Формовочная смесь, содержащая:
(а) заполнитель формовочной смеси, и
(б) карбонатную соль в количестве от 0,25 мас.% до 5,0 мас.% от массы заполнителя в формовочной смеси для снижения образования просечек в металлической отливке, изготовленной с использованием формовочной смеси.

2. Формовочная смесь по п. 1, отличающаяся тем, что она дополнительно содержит оксид железа, выбранный из группы, состоящей из красного оксида железа, черного оксида железа и их смесей.

3. Формовочная смесь по п. 2, отличающаяся тем, что оксидом железа является красный оксид железа.

4. Формовочная смесь по п. 3, отличающаяся тем, что заполнитель для формовочной смеси содержит кварцевый песок.

5. Формовочная смесь по п. 4, отличающаяся тем, что карбонатная соль выбрана из группы, состоящей из карбоната кальция, карбоната магния и их смесей.

6. Формовочная смесь по п. 5, отличающаяся тем, что в качестве источника карбоната кальция и/или карбоната магния она содержит доломит.

7. Формовочная смесь по п. 4, отличающаяся тем, что она дополнительно содержит гипс.

8. Формовочная смесь по пп. 5, 6 или 7, отличающаяся тем, что массовое соотношение карбонатной соли и красного оксида железа лежит в диапазоне от 1:1 до 4:1.

9. Формовочная смесь по п. 8, отличающаяся тем, что массовое соотношение карбонатной соли и красного оксида железа лежит в диапазоне от 1:1 до 2:1.

10. Формовочная смесь по п. 9, отличающаяся тем, что она содержит органическое связующее.

11. Формовочная смесь по п. 10, отличающаяся тем, что связующим является фенолуретановое связующее или эпоксиакрилатное связующее.

12. Формовочная смесь по п. 11, отличающаяся тем, что она содержит жидкий катализатор.

13. Формовочная смесь по п. 11, отличающаяся тем, что количество соли в формовочной смеси лежит в диапазоне от 0,5 мас.% до 4,0 мас.% от массы заполнителя для формовочной смеси.

14. Формовочная смесь по п. 12, отличающаяся тем, что количество соли в формовочной смеси лежит в диапазоне от 0,5 мас.% до 4,0 мас.% от массы заполнителя для формовочной смеси.

15. Формовочная смесь по п. 11, отличающаяся тем, что количество соли в формовочной смеси лежит в диапазоне от 0,5 мас.% до 2,5 мас.% от массы заполнителя для формовочной смеси.

16. Формовочная смесь по п. 12, отличающаяся тем, что количество соли в формовочной смеси лежит в диапазоне от 0,5 мас.% до 2,5 мас.% от массы заполнителя для формовочной смеси.

17. Способ изготовления литейной формы, включающий:
(а) помещение формовочной смеси по п. 1 в модель для получения литейной формы,
(б) применение одного из следующих трех этапов обработки:
(б.1) обеспечение контакта литейной формы, полученной на стадии (а), с газообразным или парообразным катализатором отверждения, способным отвердить форму, или
(б.2) обеспечение контакта литейной формы, полученной на стадии (а), с жидким катализатором отверждения, способным отвердить форму, или
(б.3) нагревание литейной формы, полученной на стадии (а), до температуры в диапазоне от 150°C до 260°C,
(в) отверждение литейной формы, полученной на стадии (б), до тех пор, пока эта форма не станет пригодной для обращения, и
(г) извлечение, по меньшей мере, частично отвержденной литейной формы из модели.

18. Способ литья металлических деталей, включающий:
(а) введение отвержденной литейной формы, изготовленной способом по п. 17, в литейную форму в сборе,
(б) заливку металла, находящегося в жидком состоянии, в форму в сборе,
(в) охлаждение и отверждение металла, и
(г) отделение отлитой металлической детали от формы в сборе.

19. Применение карбонатной соли в количестве от 0,25 мас.% до 5,0 мас.% от массы заполнителя в формовочной смеси, содержащей заполнитель формовочной смеси для снижения образования просечек в металлической отливке, изготовленной с использованием указанной формовочной смеси.



 

Похожие патенты:
Изобретение относится к литейному производству. Композиция содержит эпоксидную смолу и композицию гидропероксида, содержащую раствор трет-бутилгидропероксида, который содержит не более чем 7 вес.% воды.

Изобретение относится к литейному производству. Наполнитель содержит в мас.%: хромитовый песок 30-70, дистен-силлиманит 70-30.

Изобретение относится к области литейного производства. Смесь содержит, мас.%: порошковую глину 7-15, воду 2,8-4,2, многоатомный спирт 2,8-4,2 и формовочный песок - остальное.
Изобретение относиться к литейному производству. Смесь содержит кварцевый песок 82-85 мас.%, огнеупорную глину или бентонит 5-8 мас.%, 6-8% водный раствор стиромаля 5-8 мас.%, декстрин 2-2,5 мас.% и воду 2-5 мас.%.
Изобретение относится к составам связующих, предназначенных для изготовления литейных форм и стержней теплового отверждения. Связующее изготовлено на основе растительного масла с добавлением анионного ПАВ, выбранного из ряда: натриевые, калиевые, триэтаноламиновые, моноэтаноламиновые, аммиачные соли жирных кислот, таллового масла, соапстока, таллового пека, канифоли, их смеси; и с добавлением неионогенного ПАВ в виде продукта этоксилирования или пропоксилирования алкилфенолов, жирных кислот, жирных спиртов, содержащего в своей структуре 2÷15 этоксилированных или пропоксилированных звеньев.

Изобретение относится к литейному производству. Литейную форму получают путем введения смеси для получения литейной формы в модель, уплотнения смеси для получения литейной формы внутри модели и извлечения литейной формы из модели.
Изобретение относится к оснасткам для получения изделий композиционных материалов способом горячего отверждения. Термостойкая матрица выполнена из смеси портландцемента и расширяющегося цемента, или из смеси портландцемента и напрягающего цемента, причем доля расширяющегося или напрягающего цемента равна «А», где А определяется из соотношения: А=Ку/(Кр+Ку), где: Ку - коэффициент усадки портландцемента, Кр - коэффициент расширения расширяющегося или напрягающего цемента.

Изобретение относится к способу связывания немонолитных оксидных неорганических материалов отверждаемыми композициями, а также к отвержденным композициям, которые могут быть получены указанным способом.
Изобретение относится к огнеупорной композиции для получения литейных форм. Композиция содержит (a) не менее 85 частей по массе огнеупора, (b) 0,5-10 частей по массе связующего и (c) трикарбонил циклопентадиенил марганца, его производные, в количестве от примерно 0,0005 до примерно 4 частей по массе, где части по массе указаны в расчете на 100 частей по массе огнеупорной композиции.

Суспензия для получения литейной формы содержит от 50 до 80 мас.% термостойких частиц, средний размер которых составляет от 0,5 до 150 мкм, от 5 до 35 мас.% частиц оксида алюминия, средний диаметр которых составляет менее 300 нм, и от 5 до 35 мас.% воды, pH указанной суспензии составляет от 5 до 12.

Изобретение относится к литейному производству. Песчаную литейную форму изготавливают из песка, поверхностно-активного вещества, воды и жидкого стекла. Молярное соотношение диоксида кремния по отношению к оксиду натрия в жидком стекле составляет от 0,65 до 1,30. Составляющие компоненты перемешивают. Песчаную смесь уплотняют в пространстве для изготовления песчаной литейной формы и отверждают. Обеспечивается улучшение качества отливки за счет подавления получающегося газообразного водорода. 2 н. и 6 з.п. ф-лы, 10 ил.
Изобретение относится к литейному производству. Формовочная смесь содержит заполнитель формовочной смеси и соль органической кислоты. Соль органической кислоты выбрана из группы, состоящей из цитратов, ацетатов, тартратов и их смесей, в количестве от 0,25 мас.% до 5,0 мас.% от массы заполнителя в формовочной смеси. Обеспечивается снижение образования просечек. 7 н. и 11 з.п. ф-лы, 1 табл., 2 пр.

Настоящее изобретение относится к литейному производству. Добавка содержит полые алюмосиликатные микросферы в количестве от 90% до 99% и флюс от 1% до 10% от общего веса добавки. Использование добавки при изготовлении литейных форм обеспечивает предотвращение возникновения ужимин в отливках. 9 н. и 7 з.п. ф-лы, 7 ил., 6 табл., 4 пр.

Изобретение относится к литейному производству и может быть использовано при литье алюминиевых и магниевых сплавов. Холоднотвердеющая смесь содержит, мас.ч.: кремнезем - 100, карбамидная смола - 2,1-3,5, ортофосфорная кислота - 0,5-1,3, по меньшей мере, одно соединение бора - 0,1-0,3, и нанодисперсный углеродсодержащий модификатор в количестве 0,005-0,1% от массы карбамидной смолы. Обеспечивается повышение прочности форм и стержней, выбиваемости и живучести смеси, снижение шероховатости поверхности. При заливке сплавов создается защитная атмосфера от окисления. 1 з.п. ф-лы, 2 табл.

Настоящее изобретение относится к связующему на основе полиуретана с применением изоцианатов, содержащих уретониминовые и/или карбодиимидные группы для получения стержней и литейных форм, к смеси формовочных материалов, содержащей связующее, и к способу применения связующего для получения литейных форм. Описано связующее для смесей формовочных материалов, содержащее: (A) одно или несколько полиольных соединений, содержащих по меньшей мере 2 гидрокси группы на молекулу, включающих по меньшей мере одну фенольную смолу в качестве полиольного соединения; и (B) одно или несколько изоцианатных соединений, содержащих по меньшей мере 2 изоцианатные группы на молекулу, включающих по меньшей мере одно изоцианатное соединение по меньшей мере с 2 изоцианатными группами на молекулу, дополнительно содержащее по меньшей мере одну уретониминовую группу и/или карбодиимидную группу на молекулу. Также описаны смесь формовочных материалов, содержащая указанное связующее и основной жаростойкий материал для форм, и способ получения формованного изделия в виде литейной формы или в виде стержня, включающий этапы, на которых: (i) смешивают основные жаростойкие материалы для форм с вышеописанным связующим; (ii) вводят смесь формовочных материалов или ее ингредиенты в пресс-форму; (iii) отверждают смесь формовочных материалов в пресс-форме так, чтобы получить цельную форму; и (iv) затем отделяют отвержденную форму от пресс-формы и необязательно дополнительно отверждают ее, тем самым получают отвержденное формованное изделие. Технический результат - обеспечение смеси формовочных материалов, с помощью которой формованные изделия для литейной промышленности могут быть получены с меньшими выбросами в окружающую среду. 3 н. и 19 з.п. ф-лы, 5 табл., 16 пр.
Изобретение относится к литейному производству. Смесь для изготовления водорастворимых стержней содержит, мас.%: галогенид аммония 5-10, нитрат натрия и нитрат калия в сумме 25-35, карбамид - остальное. Соотношение содержания нитрата натрия к нитрату калия составляет 0,81-0,83. Введение нитратов натрия и калия в состав смеси обеспечивает повышение прочности, свободную линейную усадку и высокое качество поверхности стержня. 2 табл.

Изобретение относится к литейному производству, а именно к получению отливок по удаляемым (выплавляемым, выжигаемым, газифицируемым) моделям. Способ включает послойное нанесение на модель оболочек путем погружения модели в суспензию из огнеупорного наполнителя и раствора связующего и последующей обсыпки зернистым материалом. В обсыпочный материал каждого слоя, кроме последнего, вводят коацерват в количестве 0,5-1,5 мас.%. Удаляют модели и осуществляют прокалку оболочек. В качестве коацервата используют квасцы. Обеспечивается сокращение времени сушки каждого слоя оболочковой формы. 1 з.п. ф-лы, 1 пр.

Изобретение относится к литейному производству, а именно к вспененной песчаной смеси, используемой для изготовления литейных песчаных стержней и литейных песчаных форм для литья алюминия или алюминиевых сплавов. Смесь содержит песок, водорастворимый связующий материал, частицы неорганического соединения и образованную при перемешивании указанных компонентов с водой пену. Частицы неорганического соединения выполнены с возможностью выделения при нагреве расплавленным металлом по меньшей мере одного из водяного пара или газообразного диоксида углерода. Растворимость частиц неорганического соединения в воде составляет 100 мг или менее в 1 л воды при 25°С, а вязкость смеси составляет от 0,5 до 10 Па⋅с. Использование вспененной песчаной смеси позволит упростить удаление изготовленных из нее литейных форм и стержней с поверхности литого изделия. 5 н. и 18 з.п. ф-лы, 4 ил., 3 табл., 7 пр.
Изобретение относится к порошковой металлургии, а именно к металлополимерным композициям для изготовления PIM-изделий путем формования и спекания указанных композиций. Композицию получают методом механического смешивания двух смесей, компонентами первой являются высокодисперсные порошки легирующего элемента и железа, а компонентами второй - органическое связующее и пластификатор - стеариновая кислота, причем в качестве легирующего элемента композиция содержит порошок титана, а в качестве органического связующего - смесь парафина и полипропилена. При этом смешивают упомянутые две смеси в массовом соотношении 65:35, причем наноразмерная часть исходных порошков составляет 3-7 мас.% и имеет кривую распределения по размерам в пределах 30-70 нм. Технический результат изобретения заключается в получении композиции, обладающей как седиментационной устойчивостью, так и высокой текучестью для получения формованных изделий любой степени сложности. 4 з.п. ф-лы, 3 пр.

Изобретение относится к литейному производству. Противопригарная краска для литейных форм и стержней содержит цирконовый порошок, воду, пыль бигхаузную, ортофосфорную кислоту и алюмохромфосфатное связующее при следующем соотношении компонентов, мас.%: цирконовый порошок 70,0-80,0; пыль бигхаузная 2,0-4,0; ортофосфорная кислота 5,0-8,0; алюмохромфосфатное связующее 2,0-5,0; вода остальное. Изобретение позволяет повысить седиментационную устойчивость, кроющую способность, прочность к истиранию, снизить вязкость, предотвратить образование пригара на отливках. 2 табл.
Наверх