Способ определения нарушения воздушной границы охраняемого объекта и устройство для его реализации

Группа изобретений относится к способу определения нарушения воздушной границы охраняемого объекта и устройству для реализации этого способа. Для определения нарушения воздушной границы используют частотный радиолокатор в виде одного передающего модуля и четырех приемных модулей, два фазовых детектора, четыре блока отображения информации. Приемный модуль содержит приемную антенну, смеситель, фильтр разностных частот, обнаружитель сигнала узкополосного спектра частот, выходную шину. Устанавливают передающую антенну в центре окружности и четыре приемных антенны на этой же окружности на равном удалении друг от друга. Облучают нарушителя электромагнитной энергией, принимают отраженные от нарушителя непрерывные сигналы с частотной модуляцией по одностороннему пилообразно линейно возрастающему закону (НЛЧМ сигнал). Перемножают полученные и излучаемый сигналы в четырех смесителях для получения четырех сигналов с конкретной одинаковой разностной частотой. По моментам обнаружения этих сигналов загорается один из четырех светодиодов, характеризующих известные расстояния до охраняемой воздушной границы, сигнализируя о ее нарушении. Обеспечивается защита воздушной границы. 2 н.п. ф-лы.

 

Изобретения относятся к охранным системам, используемым для защиты воздушной границы объектов от нарушителей, например парашютистов.

Общеизвестен способ определения параметров движения цели (угловых координат, дальности, скорости и направления перемещения цели) с помощью РЛС, антенна которой, вращаясь по азимуту, все время производит круговой обзор околоземного пространства. О других РЛС и тем более с не вращающимися антеннами и выполняющими аналогичные функции, мало что известно.

Целью изобретения является расширение ассортимента охранных систем, используемых для защиты воздушных границ объектов.

Поставленная цель достигается за счет использования для определения параметров движения нарушителя РЛС с невращающимися антеннами.

Определение нарушения воздушной границы охраняемого объекта заключается в облучении нарушителя электромагнитной энергией, причем принимают отраженные от нарушителя непрерывные сигналы с частотной модуляцией по одностороннему пилообразно линейно возрастающему закону (НЛЧМ сигнал), по крайней мере, четырьмя приемными антеннами ПРА1, ПРА2, ПРА3 и ПРА4, установленными на Земле, на окружности, на равном удалении по окружности друг от друга, с базовыми L расстояниями между диаметрально противоположными ПРА1 и ПРА2, а также ПРА3 и ПРА4, а излучают НЛЧМ сигнал в сторону приближающегося к объекту нарушителя через передающую антенну (ПДА), установленную в центре окружности установки ПРА, и отраженные от нарушителя и излучаемый НЛЧМ сигналы перемножают в четырех смесителях (СМ1, СМ2, СМ3 и СМ4) с первыми входами, подключенными, соответственно, к выходам ПРА1, ПРА2, ПРА3, ПРА4, и вторыми входами, подключенными к маломощному выходу передатчика НЛЧМ сигнала совмещенного с ПДА, с целью обнаружения сигналов с разностной частотой: Fp1=Fp2=Fp3=Fp4=[(Di+Dj)Fm×dfm/C]-(2Vif/C)=Fp, где: Di, Dj - расстояния от нарушителя до ПРА и ПДА; С, Vi - скорость света и нарушителя, f, Fm, dfm - частота, частота модуляции и девиация частоты НЛЧМ сигнала, после чего, по очередности моментов начала обнаружения сигналов с частотами Fp1 и Fp2, а также Fp3 и Fp4 и величинам интервалов времени t1 и t2, соответственно, между моментами обнаружения сигналов с частотами Fp1 и Fp2, а также Fp3 и Fp4 определяют ячейки постоянного запоминающего устройства (ЯПЗУ1÷ЯПЗУ4), в которых хранятся заранее рассчитанные данные о величинах: азимута, угла места и дальностях до охраняемой области над объектом, в которой обнаружен нарушитель

Устройство определения нарушения воздушной границы охраняемого объекта содержит частотный радиолокатор, который выполнен в виде одного передающего модуля (ПДМ) и четырех идентичных приемных модулей (ПРМ1÷ПРМ4), каждый из которых представляет собой последовательно соединенные: приемную антенну (ПРА); смеситель (СМ) с вторым входом, подключенным к маломощному выходу передатчика ПДМ; фильтр разностных частот (ФРЧ), обнаружитель сигнала узкополосного спектра частот (ОСУСЧ), выходную шину, а ПДМ, совмещенный с первым и вторым фазовыми детекторами (ФД1 и ФД2) и четырьмя блоками отображения информации (БОИ1÷БОИ4), содержит передатчик непрерывного сигнала с частотной модуляцией по одностороннему пилообразно линейно возрастающему закону (НЛЧМ сигнал), высокомощный выход которого подключен к передающей антенне (ПДА), а выходы ПРМ1, ПРМ2, ПРМ3 и ПРМ4 подключены, соответственно, к первому и второму входам ФД1 и к первому и второму входам ФД2, а первый выход ФД1 подключен к первым входам БОИ1 и БОИ4, второй выход ФД1 подключен к первым входам БОИ2 и БОИ3, первый выход ФД2 подключен к вторым входам БОИ1 и БОИ2, второй выход ФД2 подключен к вторым входам БОИ3 и БОИ4.

Рассмотрим работу устройства определения нарушения воздушной границы охраняемого объекта.

Установим ПРА1, ПРА2, ПРА3, ПРА4 ПРМ1÷ПРМ4 на Земле, на окружности, на равном удалении по окружности друг от друга, с базовым L=20 м расстоянием между диаметрально противоположными ПРА1 и ПРА2, а также ПРА3 и ПРА4, а в центре окружности установим ПДА ПДМ, через которую будем излучать в сторону нарушителя, приближающегося к границе охраняемого объекта со скоростью Vi=3 м/c, НЛЧМ сигнал с частотой f=100 ГГц, частотой модуляции Fm=1 МГц и девиацией частоты dfm=5 МГц. И пусть нарушитель приближается к Земле так, что Di2>Di4>Di3>Di1. Тогда на выходах СМ1, СМ2, СМ3, СМ4 ПРМ1÷ПРМ4, после перемножения в них излученного и отраженного от астероида НЛЧМ сигналов, будут сформированы, при Di1+Dj=300 м, разностные сигналы с частотой

Fp2>Fp4>Fp3>Fp1=[(Di1+Dj)Fm×dfm/C]-(2×Vi×f/C)=5 МГц.

Далее сигналы с частотой Fp1÷4 обнаруживаются ОСУСЧ1÷ОСУСЧ4, например, реализованными по способу из патента RU №2374597. Так, например, при подаче на входы смесителей в ОСУСЧ1÷ОСУСЧ4 постоянного опорного сигнала с частотой 4 МГц обнаружители будут обнаруживать сигналы частотой, примерно, 5 МГц - 4 МГц = 1 МГц. Так как в рассматриваемом случае Di2>Di4>Di3>Di1, то короткие импульсы появятся сначала на выходе ОСУСЧ1, затем ОСУСЧ3, далее ОСУСЧ4 и наконец ОСУСЧ2. При этом только на первых выходах ФД1 и ФД2, например микросхемах типа МС 4044 или МС 12040 (см. [1] У. Титце К. Шенк, Полупроводниковая схемотехника, М.: Мир, 1982, стр.495), появятся импульсы длительностью, равной времени t1 и t2, между моментами появления коротких импульсов на выходах ОСУСЧ1 и ОСУСЧ2 и соответственно ОСУСЧ3 и ОСУСЧ4, которые далее поступят, соответственно, на первый и второй входы БОИ1.

Любой из БОИ, например, в каждой четвертой части четверти полусферы может быть выполнен с использованием двух реверсивных регистров сдвига (РРС1 и РРС2), например, реализованных по авторскому свидетельству СССР №1529291. При этом входы РРС1 и РРС2 будут являться первым и вторым входами БОИ, а: первый выход РРС1 необходимо будет подключить к первым входам элементов И1 и И2; первый выход РРС2 необходимо будет подключить к вторым входам элементов И1 и И3; второй выход РРС1 необходимо будет подключить к первым входам элементов И3 и И4; второй выход РРС2 необходимо будет подключить к вторым входам элементов И2 и И4, а к выходам каждого из элементов И1, И2, И3, И4 подключить светодиоды. Тогда при обнаружении нарушителя в наиболее близкой области к выбранной точке к ПДА загорится светодиод, подключенный к выходу И1, а при его обнаружении в наиболее дальней области загорится светодиод, подключенный к выходу И4 и т.п., характеризующие наперед известные величины дальности, азимута и угла места до области обнаружения нарушителя.

Очевидно, что светодиоды можно в пространстве расположить так, что сделанный с их применением, например, макет будет отражать картину местоположения нарушителя над объектом.

1. Способ определения нарушения воздушной границы охраняемого объекта, заключающийся в облучении нарушителя электромагнитной энергией, отличающийся тем, что принимают отраженные от нарушителя непрерывные сигналы с частотной модуляцией по одностороннему пилообразно линейно возрастающему закону (НЛЧМ сигнал), по крайней мере, четырьмя приемными антеннами ПРА1, ПРА2, ПРА3 и ПРА4, установленными на Земле, на окружности, на равном удалении по окружности друг от друга, с базовыми L расстояниями между диаметрально противоположными ПРА1 и ПРА2, а также ПРА3 и ПРА4, а излучают НЛЧМ сигнал в сторону приближающегося к объекту нарушителя через передающую антенну (ПДА), установленную в центре окружности установки ПРА, и отраженные от нарушителя и излучаемый НЛЧМ сигналы перемножают в четырех смесителях (СМ1, СМ2, СМ3 и СМ4) с первыми входами, подключенными, соответственно, к выходам ПРА1, ПРА2, ПРА3, ПРА4, и вторыми входами, подключенными к маломощному выходу передатчика НЛЧМ сигнала, совмещенного с ПДА, с целью получения и обнаружения четырех сигналов с конкретной разностной частотой:
Fp1=Fp2=Fp3=Fp4=[(Di+Dj)Fm×dfm/C]-(2×Vi×f/C)=Fp,
где Di, Dj - текущие расстояния от нарушителя до, соответственно, ПРА и ПДА,
С, Vi - соответственно, скорость света и нарушителя,
f, Fm, dfm - частота, частота модуляции и девиация частоты НЛЧМ сигнала, после чего по очередности моментов начала обнаружения сигналов с частотами Fp1 и Fp2, а также Fp3 и Fp4 и величинам интервалов времени t1 и t2, соответственно, между моментами обнаружения сигналов с частотами Fp1 и Fp2, а также Fp3 и Fp4 загорится один из четырех светодиодов, характеризующих наперед известные величины дальности, азимута и угла места до области обнаружения нарушителя.

2. Устройство определения нарушения воздушной границы охраняемого объекта, содержащее частотный радиолокатор, отличающееся тем, что частотный радиолокатор выполнен в виде одного передающего модуля (ПДМ) и четырех идентичных приемных модулей (ПРМ1÷ПРМ4), каждый из которых представляет собой последовательно соединенные: приемную антенну (ПРА); смеситель (СМ) с вторым входом, подключенным к маломощному выходу передатчика ПДМ; фильтр разностных частот (ФРЧ), обнаружитель сигнала узкополосного спектра частот (ОСУСЧ), выходную шину, а ПДМ, совмещенный с первым и вторым фазовыми детекторами (ФД1 и ФД2) и четырьмя блоками отображения информации (БОИ1÷БОИ4), содержит передатчик непрерывного сигнала с частотной модуляцией по одностороннему пилообразно линейно возрастающему закону (НЛЧМ сигнал), высокомощный выход которого подключен к передающей антенне (ПДА), а выходы ПРМ1, ПРМ2, ПРМ3 и ПРМ4 подключены, соответственно, к первому и второму входам ФД1 и к первому и второму входам ФД2, а первый выход ФД1 подключен к первым входам БОИ1 и БОИ4, второй выход ФД1 подключен к первым входам БОИ2 и БОИ3, первый выход ФД2 подключен к вторым входам БОИ1 и БОИ2, второй выход ФД2 подключен к вторым входам БОИ3 и БОИ4.



 

Похожие патенты:

Изобретение относится к области радиоэлектронной борьбы, а именно к способам защиты наземных малоразмерных подвижных объектов от высокоточного оружия с лазерным наведением.

Изобретение относится к классу моделирующих устройств, которые следует рассматривать как учебные или тренировочные устройства, вызывающие в обучающихся ощущения, идентичные ощущениям, возникающим при обращении с реальными системами вооружения.

Комплекс средств автоматизации системы управления силами и средствами ракетно-космической обороны содержит каналы связи, управляющую подсистему, подсистему приема и передачи данных, управляемую подсистему, подсистему информационной поддержки принятия решения, интеллектуальной подсистемы информационной поддержки принятия решения.

Изобретение относится к военной технике. При адаптивном способе защиты объекта от управляемой по лазерному лучу ракеты обнаруживают лазерный сигнал ракеты.

Группа изобретений относится к оборонной технике. При способе противодействия оптико-электронным системам с лазерным наведением (ОЭСЛН) регистрируют облучающие лазерные импульсы и генерируют помеховые лазерные импульсы определенным способом сразу после регистрации каждого облучающего лазерного импульса.

Изобретение относится к классу моделирующих устройств, которые следует рассматривать как учебные или тренировочные устройства. Устройство для тренировки должностных лиц боевых расчетов командных пунктов войск воздушно-космической обороны содержит узел доступа первого уровня, узел доступа второго уровня, маршрутизатор первого уровня, автоматизированное рабочее место сегмента первого уровня, автоматизированное рабочее место сегмента второго уровня.

Группа изобретений относится к способу и устройству формирования команды на пуск защитного боеприпаса, а также к применению этого устройства в качестве радиолокационной станции (РЛС) измерения скорости цели, в качестве радиовзрывателя и в качестве измерителя интервала времени пролета целью известного расстояния.

Изобретения относятся к радиолокационной технике. Техническим результатом является расширение функциональных возможностей устройств определения защитного боеприпаса, подлежащего пуску.

Группа изобретений относится к радиолокационной технике. Техническим результатом является повышение эффективности защиты объектов, что достигается за счет использования нескольких классов защитных боеприпасов, каждый из которых выстреливается в нужный момент времени и подрывается в своей определенной точке упреждения.

Изобретения относятся к высокоскоростной радиолокационной технике и могут быть использованы при создании активной системы защиты объекта (человека-снайпера) от поражения его сверхскоростной малоразмерной целью (пулей).

Изобретение относится к области применения индивидуальной защиты (скрытности) объектов на основе формирования голографического изображения реального фона без объекта от оптико-электронных приборов малогабаритных беспилотных летательных аппаратов (МБЛА), может быть использовано в военной технике. Техническим результатом является сокрытие объектов от оптико-электронных приборов разведки МБЛА. Способ реализуется посредством блока обнаружения и автоматизированной системы обработки информации. При этом система обработки информации включает в себя камеры кругового обзора, ЭВМ, систему наведения, голографическую видеокамеру, устройство построения голографической проекции, блок питания. Способ включает в себя определение пространственных координат МБЛА. Способ включает построение голографической проекции, при помощи которого формируется голографическое изображение фоновой обстановки. Способ включает получение видеопоследовательности, посредством голографической видеокамеры и программное удаление объекта из кадров. 2 ил.

Изобретение относится к области обнаружения и поражения малогабаритных беспилотных летательных аппаратов (МБЛА). Система обнаружения и поражения МБЛА состоит из средств обнаружения и прицеливания, устройств поражения, боевой части пакета направляющих, ракеты, состоящей из головной части, поражающих элементов, взрывчатого вещества, детонатора, блока питания. Средства обнаружения и прицеливания выполнены на трех гиростабилизированных платформах, связанных между собой рабочими базами, автоматически определяющими расстояния между собой и свои пространственные координаты. На каждой базе размещены датчики, работающие в оптическом, акустическом и в настраиваемых радиолокационных диапазонах электромагнитных волн. Управление работой и обработку полученной информации и сигналов осуществляет ЭВМ. Достигается возможность поражения МБЛА в различных условиях наблюдения. 5 ил.

Изобретение относится к системам обнаружения и борьбы с малогабаритными беспилотными летательными аппаратами (МБЛА). Изобретение содержит две системы поражения, систему управления боевой частью, пакет направляющих, ракету, систему обнаружения и прицеливания, систему управления боевой частью, систему навигации и топопривязки, систему горизонтального и вертикального наведения, систему скрытности, систему перехвата, систему подавления, блок питания, систему управления МБЛА, процессор, систему захвата, МБЛА со средствами борьбы, систему обработки и формирования команд с ЭВМ с элементами искусственного интеллекта. Обеспечивается эффективность борьбы с МБЛА. 5 з.п. ф-лы, 8 ил.

Изобретение относится к военной технике и может быть использовано в средствах противовоздушной обороны. Зенитная ракетно-пушечная боевая машина (ЗРПБМ) содержит башенную установку с пушечным и ракетным вооружением, зенитные управляемые ракеты (ЗУР) с оптическими и радиолокационными ответчиками, оптико-электронную аппаратуру визирования ЗУР, цифровую вычислительную систему, радиолокационную станцию (РЛС) обнаружения целей, РЛС сопровождения целей и ввода ЗУР миллиметрового диапазона волн (ССЦР) с устройством обработки сигналов и управления, задающий генератор (ЗГ), усилитель мощности (УМ), передающий тракт, приемопередающую основную антенну (OA), с корпусом в виде металлического кольца, в виде фазированной антенной решетки (ФАР) проходного типа с пространственным возбуждением с системой управления лучом (СУЛ), моноимпульсным облучателем (МИО), приемным трактом, малошумящими усилителями (МШУ), приемником промежуточной частоты (ПЧ-приемник), приемную антенну ввода ЗУР (АВР) в виде ФАР проходного типа с пространственным возбуждением с СУЛ, МИО, приемным трактом, МШУ, ПЧ-приемником, примыкающие друг к другу линейные модули с основанием в виде металлической ленты с многопроводной печатной платой, стяжки с закрепленными между собой металлическими пластинами, упоры. Корпус АВР, ФАР АВР, СУЛ АВР и МИО АВР в виде функционально-завершенного модуля АВР, ЗГ, УМ и передающий тракт, OA, МШУ OA и ПЧ-приемник OA в виде функционально-завершенных конструктивных сменных единиц расположены в корпусе ССЦР, приемный тракт АВР, МШУ АВР и ПЧ-приемник АВР в виде функционально-завершенной конструктивной сменной единицы размещены в корпусе АВР. Изобретение позволяет повысить боевую эффективность и надёжность, упростить конструкцию. 4 з.п. ф-лы, 3 ил.

Изобретение относится к устройствам для систем противоракетной обороны, а также к средствам уничтожения живой силы и техники вероятного противника. Согласно способу поражения цели боевой лазер, выполненный с возможностью сбивать ракету, запускают в полет на ракете и поражают цель излучением лазера. Устройство для реализации способа поражения цели содержит боевой лазер, установленный на ракете с системой наведения, выполненный с возможностью сбивать ракету. 2 н. и 66 з.п. ф-лы, 14 ил.

Изобретение относится к способу имитации оптического излучения воздушных целей. Для имитации воздушной цели сбрасывают источник ложного излучения, в котором индуцируют ложное оптическое излучение широкой полосы с помощью набора излучающих светодиодов различного диапазона и/или лазеров, смешивают мультипликативно эти дискретные излучения на нелинейных оптических элементах, выделяют и фильтруют участки спектров, необходимые для имитации конкретной воздушной цели, а ненужные компенсируют или ослабляют с помощью оптических фильтров, затем аддитивно смешивают и рассеивают их на внешней оболочке имитатора. Обеспечивается повышение точности и качества имитации оптического излучения воздушной цели. 2 ил.

Изобретение относится к области защиты летательного аппарата в процессе противодействия управляемому оружию на основе системы самонаведения на источник оптического излучения. Сущность способа использования тепловой ловушки заключается в снижении уровня непреднамеренных помех бортовым оптико-электронным средствам путем экранирования излучения тепловой ловушки в направлении защищаемого летательного аппарата. Снижает уровень непреднамеренных помех бортовым оптоэлектронным системам, создаваемых ложными тепловыми целями. 3 ил.

Изобретение относится к способам определения координат летательных аппаратов. Для определения координат летательных аппаратов принимают и формируют информацию в пространственно разнесенных приемниках, одновременно регистрируют информацию на основе двух дирекционных углов и угла места летательного аппарата, обрабатывают ее в ЭВМ определенным образом, определяя координаты летательного аппарата в геодезической системе координат. Обеспечивается уменьшение времени обработки информации при определении пространственных координат летательных аппаратов. 2 ил.
Изобретение относится к боеприпасам, предназначенным для постановки высотных завес и защиты объектов от высокоточных средств поражения. В способе создания комбинированной низкотемпературной помехи для ложной цели или маскировочной завесы снаряжение боеприпасов выполняют в виде тлеющих ленточных или ленточно-спиральных элементов на основе бумаги. Осуществляют вращение элемента вокруг его большей оси симметрии при падении в атмосфере. Основа элемента пропитывается водным раствором окислителя, например раствором марганцевокислого калия, высушивается и покрывается с двух сторон однородным сплошным слоем пудры алюминия в связующем, например, на основе целлулоида или полистирола. Техническим результатом изобретения является повышение эффективности радиопротиводействия. 2 пр.

Изобретение относится к области противодействия управляемому оружию на основе самонаведения на источник оптического излучения. Способ применения ложной тепловой ловушки основан на обнаружении управляемого элемента поражения с тепловой головкой самонаведения, определении текущей скорости полета летательного аппарата, в соответствии с которой регулируют силу тяги и время включения реактивного двигателя тепловой ловушки, поджигают вышибной заряд и термическое вещество тепловой ловушки, выбрасывают тепловую ловушку и стабилизируют ее полет в требуемом направлении, включают в заданное время реактивный двигатель тепловой ловушки и осуществляют ее полет под действием силы тяги реактивного двигателя с требуемой скоростью. После пуска реактивного двигателя тепловой ловушки, вручную или автоматически формируется команда на увеличение скорости полета летательного аппарата. Достигается повышение эффективности защиты летательного аппарата. 2 ил.
Наверх