Способ получения нанокапсул 2-цис-4-транс-абсцизовой кислоты

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используется абсцизовая кислота, в качестве оболочки - каррагинан, который осаждают из суспензии в бензоле или гексане путем добавления четыреххлористого углерода в качестве нерастворителя, с последующей сушкой при комнатной температуре. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе). 3 пр.

 

Изобретение относится к области нанотехнологии, в частности к растениеводству.

Ранее были известны способы получения микрокапсул.

В пат. 2173140, МПК А61К 009/50, А61К 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В пат. 2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул абсцизовой кислоты, отличающимся тем, что в качестве оболочки нанокапсул используется каррагинан, а в качестве ядра - абсцизовая кислота при получении нанокапсул методом осаждения нерастворителем с применением четыреххлористого углерода в качестве осадителя, процесс получения нанокапсул осуществляется без специального оборудования.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием четыреххлористого углерода в качестве осадителя, а также использование каррагинана в качестве оболочки частиц и абсцизовой кислоты - в качестве ядра.

Результатом предлагаемого метода является получение нанокапсул абсцизовой кислоты.

ПРИМЕР 1. Получение нанокапсул абсцизовой кислоты в каррагинане, соотношение ядро:оболочка 1:1

100 мг абсцизовой кислоты добавляют небольшими порциями в суспензию каррагинана в гексане, содержащую указанного 100 мг полимера в присутствии 0,005 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании 1300 об/сек. Далее приливают 2 мл четыреххлористого углерода. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул абсцизовой кислоты в каррагинане, соотношение ядро:оболочка 5:1

400 мг абсцизовой кислоты добавляют небольшими порциями в суспензию каррагинана в бензоле, содержащую указанного 80 мг полимера в присутствии 0,005 г препарата Е472с при перемешивании 1300 об/сек. Далее приливают 4 мл четыреххлористого углерода. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,48 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул абсцизовой кислоты в каррагинане, соотношение ядро:оболочка 1:3

50 мг абсцизовой кислоты добавляют небольшими порциями в суспензию каррагинана в бензоле, содержащую указанного 150 мг полимера в присутствии 0,005 г препарата Е472с при перемешивании 1300 об/сек. Далее приливают 3 мл четыреххлористого углерода. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

Способ инкапсуляции препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используется абсцизовая кислота, в качестве оболочки - каррагинан, который осаждают из суспензии в бензоле или гексане путем добавления четыреххлористого углерода в качестве нерастворителя, с последующей сушкой при комнатной температуре.



 

Похожие патенты:
Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используются сельскохозяйственные препараты группы цитокининов, в качестве оболочки - альгинат натрия, который осаждают из суспензии в изопропаноле путем добавления четыреххлористого углерода в качестве нерастворителя, с последующей сушкой при комнатной температуре.
Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используются антибиотики, в качестве оболочки - конжаковая камедь, которую осаждают из суспензии в гексане путем добавления 1,2-дихлорэтана в качестве нерастворителя при температуре 25°С.

Изобретение относится к ветеринарии и может быть использовано для неинвазивной экспресс-диагностики воспалительного процесса в органах дыхания у телят по составу равновесной газовой фазы над пробами конденсата выдыхаемого воздуха.

Изобретение относится к наноразмерному катализатору на основе меди с размером частиц 1-50 нм и способу его получения, включающему: растворение в водном растворе первого компонента, содержащего исходную медь (Cu), второго исходного компонента, содержащего один или более металлов, отобранных из группы, включающей переходный металл, щелочноземельный металл и металл группы IIIb, и третьего исходного компонента, содержащего один или более элементов, отобранных из группы, включающей глинозем, кремнезем, кремнезем-глинозем, магнезию, двуокись титана, диоксид циркония и углерод, последующее перемешивание полученного раствора для получения перемешанного раствора смесей; осаждение перемешанного раствора смесей для осаждения исходного катализатора путем добавления Na2CO3 до достижения значения pH 4.0-5.0 и последующего добавления NaOH до достижения значения pH 7.0; и промывку и фильтрацию осажденного исходного катализатора.

Изобретение может быть использовано электронике, энергетике и медицине. Плёнку двумерно упорядоченного линейно-цепочечного углерода получают напылением методом импульсно-плазменного испарения графитового катода.

Изобретение относится к области бионического протезирования, а именно к искусственным мышцам, представляющим собой композиционные материалы, подверженные воздействию слабых электрических импульсов.

Изобретение относится к медицине и представляет собой биорезорбируемую полимерную клеточную матрицу для тканеинженерии. Матрица содержит каркас-носитель для клеточных культур и биологических агентов.

Изобретение относится к области микро- и наноэлектроники, а именно к конструкции диэлектрического слоя МДП структур, обладающих эффектом переключения проводимости.

Изобретение относится к электронной технике СВЧ. В мощном полевом транзисторе СВЧ на полупроводниковой гетероструктуре упомянутая полупроводниковая гетероструктура выполнена в виде последовательности следующих основных слоев, по меньшей мере, одного буферного слоя GaAs толщиной не менее 200 нм, группы проводящих слоев, формирующих канал полевого транзистора, в составе собственно канального слоя InyGa1-yAs толщиной 12-18 нм и, по меньшей мере, двух δn-слоев, легированных донорной примесью, и двух спейсерных i-слоев AlxGa1-xAs толщиной каждый 1-3 нм, попарно расположенных по обе стороны собственно канального слоя, двух групп барьерных слоев AlxGa1-xAs, каждая в виде i-p-i системы барьерных слоев, одна из которых расположена с одной стороны группы проводящих слоев - подложечная, другая - с противоположной стороны - затворная, при этом барьерные слои в каждой i-p-i системе имеют толщину (100-200, 4-15, 2-10) нм в подложечной, (2-10, 4-10, 4-15) нм в затворной соответственно, уровень легирования акцепторной примесью (4-20)×1018 см-2 соответственно, барьерного слоя i-GaAs толщиной 5-30 нм, слоя омического контакта n+-GaAs толщиной (10-60) нм электродов истока и стока, при этом электрод затвора выполнен длиной не более 0,5 мкм.

Изобретение относится к электронной технике. Полупроводниковая гетероструктура для мощного полевого транзистора СВЧ содержит на монокристаллической полуизолирующей подложке арсенида галлия последовательность полупроводниковых слоев каждый с заданными функциональными свойствами и техническими характеристиками - толщиной слоев, составом - качественным и количественным, концентрацией легирующей примеси.
Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используются сельскохозяйственные препараты группы цитокининов, в качестве оболочки - альгинат натрия, который осаждают из суспензии в изопропаноле путем добавления четыреххлористого углерода в качестве нерастворителя, с последующей сушкой при комнатной температуре.
Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используются антибиотики, в качестве оболочки - конжаковая камедь, которую осаждают из суспензии в гексане путем добавления 1,2-дихлорэтана в качестве нерастворителя при температуре 25°С.

Данное изобретение относится к области фармацевтики и представляет собой фармацевтическую композицию, содержащую суспендирующийся в воде совместный гранулят микрокапсул немедленного высвобождения и неактивных ингредиентов, где указанные микрокапсулы являются микрокапсулами с замаскированным вкусом и представляют собой фексофенадин, покрытый нерастворимым в воде полимерным покрытием; а также способ получения данной композиции и способ лечения состояния, связанного с воспалением, включающий введение пациенту данной композиции.
Изобретение относится к фармацевтической промышленности, в частности к способу получения микрокапсул ветеринарного препарата биопага-Д. Способ получения микрокапсул ветеринарного препарата биопага-Д заключается в том, что в качестве оболочки микрокапсул используют низкоэтерифицированный или высокоэтерифицированный яблочный или цитрусовый пектин, при этом к определенному количеству суспензии низкоэтерифицированного или высокоэтерифицированного яблочного или цитрусового пектина в этаноле прибавляют Е472с в качестве поверхностно-активного вещества, затем полученную смесь перемешивают на магнитной мешалке, после чего добавляют суспензию биопага-Д в диметилсульфоксиде, затем добавляют определенное количество толуола и воды, далее полученную суспензию микрокапсул отфильтровывают, промывают толуолом и сушат в эксикаторе над хлористым кальцием.
Изобретение относится к способу инкапсуляции сухого экстракта шиповника. Способ инкапсуляции сухого экстракта шиповника, заключается в том, что в качестве оболочки микрокапсул используют альгинат натрия, при этом сухой экстракт шиповника диспергируют в суспензию альгината натрия в бензоле в присутствии Е472с при перемешивании, затем приливают четыреххлористый углерод, после чего выпавший осадок отфильтровывают и сушат при комнатной температуре.
Изобретение относится к способу получения микрокапсул биопага-Д. Способ получения микрокапсул биопага-Д заключается в том, что в качестве оболочки микрокапсул используют низкоэтерифицированный или высокоэтерифицированный яблочный или цитрусовый пектин, при этом к суспензии низкоэтерифицированного или высокоэтерифицированного яблочного или цитрусового пектина в бензоле прибавляют Е472с в качестве поверхностно-активного вещества, затем полученную смесь перемешивают на магнитной мешалке, добавляют биопаг-Д, затем добавляют четыреххлористый углерод, далее полученную суспензию микрокапсул отфильтровывают, промывают четыреххлористым углеродом и сушат.

Изобретение относится к способу получения микрокапсул антиоксиданта с оболочкой из альгината натрия. В качестве указанного антиоксиданта используют кверцетин, который растворяют в метилкарбиноле и диспергируют полученную смесь в раствор альгината натрия в ацетоне в присутствии препарата Е472с при перемешивании, затем приливают карбинол и воду, полученную суспензию микрокапсул отфильтровывают и сушат.

Изобретение относится к способу получения микрокапсул аминокислот в ксантановой камеди. Указанный способ характеризуется тем, что аминокислоту растворяют в диметилсульфоксиде и диспергируют полученную смесь в суспензию ксантановой камеди в бутаноле в присутствии препарата Е472с при перемешивании 1000 об/сек, затем приливают ацетон и воду, полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом соотношение оболочка/ядро в микрокапсулах составляет 1:5 или 3:1.

Способ получения микрокапсул аминокислот в конжаковой камеди может быть использован в фармакологии, фармацевтике, медицине. Суспензию аминокислоты в диметилсульфоксиде диспергируют в суспензию конжаковой камеди в бутиловом спирте в присутствии препарата E472с при перемешивании 1300 об/сек.

Способ получения микрокапсул лозартана калия в оболочке из альгината натрия может быть использован в фармакологии, фармацевтике, медицине. Растворяют лозартан калия в хлороформе и диспергируют полученную смесь в присутствии препарата E472c при перемешивании 1000 об/с в суспензию альгината натрия в бензоле.

Изобретение относится к сельскому хозяйству. Осуществляют усиление роста растений путем обработки семян растения или растения, которое прорастает из семян, эффективным количеством по меньшей мере одного хитоолигосахарида (ХО), представленного формулой: в которой R1 означает водород или метил; R2 означает водород или метил; R3 означает водород, ацетил или карбамоил; R4 означает водород, ацетил или карбамоил; R5 означает водород, ацетил или карбамоил; R6 означает водород, арабинозил, фукозил, ацетил, сульфат, 3-0-S-2-0-MeFuc, 2-0-MeFuc или 4-0-AcFuc; R7 означает водород, маннозил или глицерин; R8 означает водород, метил или -CH2OH; R9 означает водород, арабинозил или фукозил; R10 означает водород, ацетил или фукозил; и n равно 0, 1, 2 или 3.
Наверх