Оксоацетатные соединения платины для изготовления гетерогенных катализаторов

Изобретение относится к получению ранее неизвестных оксоацетатных соединений трехвалентной платины M2Pt2O(CH3COO)5, где М=Li, K, Na, Rb, Cs. Они могут быть использованы для синтеза других соединений платины, в гомогенном и гетерогенном катализе в качестве предшественников катализаторов, а также в качестве исходных соединений для получения наноразмерных частиц платины. Соединения платины образуются либо при взаимодействии свежеприготовленного тетрагидрата двуокиси платины PtO2*4H2O с ацетатами щелочных металлов, выбранных из ряда: литий, натрий, калий, рубидий, цезий; либо при взаимодействии гидроксоплатинатов указанных щелочных металлов M2Pt(OH)6 с уксусной кислотой в обоих случаях при температурах от 90 до 118°C с образованием темномалинового раствора, из которого затем удаляют уксусную кислоту в вакууме при температуре не выше 100°C и получают твердые гигроскопичные соединения темнофиолетового цвета, отвечающие формуле M2Pt2O(CH3COO)5, где M=Li, Na, K, Rb, Cs. Предлагаемое изобретение позволяет получить устойчивые до температуры 150°C оксоацетатные соединения платины с выходом 90-98%, растворимые в воде и пригодные для изготовления гетерогенных платиновых катализаторов. 2 табл., 7 пр.

 

Изобретение относится к получению ранее неизвестных оксоацетатных соединений платины M2Pt2O(CH3COO)5, где M=Li, K, Na. Rb, Cs. Они могут быть использованы для приготовления гетерогенных платиновых катализаторов на носителях методом пропитки, а также для синтеза других соединений платины и в гомогенном катализе.

Для приготовления металлических нанесенных катализаторов используют пропитку носителей с развитой поверхностью типа силикагеля, окиси алюминия, двуокиси титана, сибунита и пр. растворами подходящих соединений этих металлов с последующими сушкой и восстановлением до металла. Основные требования к таким соединениям - доступность, хорошая растворимость (прежде всего в воде и полярных растворителях), устойчивость при хранении в сочетании со способностью легко восстанавливаться до металла. В составе таких соединений должны отсутствовать каталитические яды (галогены, сера, фосфор, мышьяк, ртуть и др.). Для получения гетерогенных платиновых катализаторов используют такие ионные соединения, как платинахлористоводородную кислоту H2PtCl6 и ее соли со щелочными металлами [И.П. Мухленов, Е.И. Добкина, В.И. Дерюжкина, В.Е. Сороко, Технология катализаторов, Л., Химия, 1989, с. 146; Симонов П.А., Романенко А.В., Бухтияров В.И., Воропаев И.Н., Собянин В.А., пат. РФ №2415707], аммиачные комплексы платины Pt(NH3)4Cl2 [И. Черкендорф, Х. Наймантсведрайт, Современный катализ и химическая кинетика, пер. с англ., Долгопрудный, Интеллект, 2010, с. 228], Pt(NH3)4(OH)2 [J.A.A. Van den Tilaart, J. Leyrer, S. Eckhoff, E.S. Lox, Appl. Catal., 1996, B10, p. 53] и Pt(NH3)6](NO3)4 [US Pat. 3 864284, РЖХим., 1975, 23Л215], основные нитраты четырехвалентной платины [А.В. Беляев, М.А. Федотов, C.H. Воробьева, Координационная химия, 2011, т. 37, №4, с. 278] и даже неустойчивые аллильные Pt(C3H5)2 и карбонильные комплексы [ N e t 4 ] 2 [ P t 3 ( C O ) 6 ] n 2 , n=2-5 [Г.В. Лисичкин, А.Я. Юффа, Гетерогенные металлокомплексные катализаторы, Л., Химия, 1989, с. 109 и 135]. Предложено использовать для пропитки коллоидные растворы наночастиц платины, стабилизированных катионными ПАВ [Миргород Ю.А., патент РФ №2386533, 2008 г.]. Среди различных соединений, применяемых для получения гетерогенных платиновых катализаторов, почему-то нет ацетатов платины, хотя некоторые ацетатные соединения вполне для этого пригодны - они достаточно устойчивы в растворах, легко восстанавливаются до металла и при этом не содержат каталитических ядов (галогенов). Это объясняется тем, что не существует простых и надежных методов лабораторного и промышленного получения ацетатов платины.

Ниже приводятся примеры известных из литературы синтезов ацетатов двух- и трехвалентной платины. Первая статья, в которой было описано получение ацетата двухвалентной платины последовательной обработкой Na2Pt(OH)6 азотной кислотой и смесью уксусной и муравьиной кислот, вышла еще в 1965 г. [Т.А Stephenson, S.M. Morehouse, A.R. Powell, J.P. Heffer, G. Wilkinson, Journal of Chemical Society, 1965, №6, p. 3652].

Недостатком этого метода является то, что реакция нередко завершается взрывом [J.M. Davidson, С. Triggs, Chemistry and Industry (London), 1966, N 2, p. 306], а в тех случаях, когда взрыва удается избежать, получают сложную смесь продуктов, из которой выделено нитрозильное производное Pt4(OAc)6(NO)2 [M.A.A.F. de С.Т. Carrondo, А.С. Scapski, Journal of Chemical Society, Chemical Communications, 1976, N 11, p. 410; Meester P., Skapski A.C., Journal of Chemical Society, Chemical Communications, 1972, № 18, p. 1039].

В патентной литературе описано получение ацетата платины реакцией хлорида четырехвалентной платины с избытком ацетата серебра в кипящей уксусной кислоте или в эфире с последующей обработкой выпавшего осадка смесью уксусной и муравьиной кислот. Выход технического продукта 73-75% [DE 1948837, 1970 (D. Wright, Chemical Abstracts, 1970, v. 72, 123514P)]:

PtCl4+CH3COOAg→Ag[PtCl4(CH3COO)2]→[Pt(CH3COO)2]n+Ag+AgCl+…

Качество продукта реакции вызывает сомнения: в патенте не приведены физико-химические характеристики продукта, а пурпурный цвет продукта слишком отличается от цвета чистого ацетата платины. При очистке технического продукта перекристаллизацией из ледяной уксусной кислоты получают желтый или коричневый ацетат платины Pt4(OAc)8 (выход не указан), строение двух кристаллических форм которого установлено рентгеноструктурным анализом [M.A.A.F. de С.Т. Carrondo, Skapski A.C. Acta Crystallogr. 1978, B34, N 6, p. 1857 и № 12, р. 3576]. Методом колоночной хроматографии из технического продукта выделяют чистый ацетат платины с выходом 20% [M. Basato, A. Biffis, G. Martinati, С. Tubaro, A. Venzo, P. Ganis, F. Benetollo, Inorganica Chimica Acta, 2003, v. 355, p. 399].

Недостатками метода являются невысокий выход ацетата платины, сложность его выделения и необходимость переработки отходов, содержащих как платину, так и серебро.

Более совершенный способ получения высших карбоксилатов платины [Th.H. Nappier, US Pat. 5149854 A, 1990 г.] основан на реакции хлорида четырехвалентной платины с солями щелочных или щелочноземельных металлов (М) и высших карбоновых кислот в органических растворителях, в которых образующиеся карбоксилаты платины растворимы, а хлориды щелочных и щелочноземельных металлов M нерастворимы:

PtCl4+M(RCOO)m→Pt(RCOO)2+MClm↓+…

m=1 или 2, алифатический остаток R содержит от 3 до 17 атомов углерода.

Однако этот метод не подходит для получения ацетата платины. Приготовленные растворы высших карбоксилатов платины используют непосредственно для пропитки носителей и приготовления катализаторов.

Известен метод получения ацетата платины [M. Basato, A. Biffis, G. Martinati, С. Tubaro, A. Venzo, P. Ganis, F. Benetollo, Inorganica Chimica Acta, 2003, v. 355, p. 399; T. Megues, S. Balint, I. Bako, T. Grosz, L. Kotai, G. Palinkas, Journal of Molecular Liquids, 2008, v. 143, № 1, p. 25], основанный на развитии подхода, изложенного в патенте [DE 1948837, 1970 (D. Wright, Chemical Abstracts, 1970, v. 72, 123514 P)], но для реакции обмена с ацетатом серебра используют хлорид двух-, а не четырехвалентной платины. При очистке продукта реакции выделены синие кристаллы состава Pt4(CH3COO)8·2CH3COOH, но сольват ацетата платины такого состава неизвестен - при кристаллизации из уксусной кислоты образуются две кристаллические формы Pt4(CH3COO)8 от желтого до коричневого цвета (см. выше). Скорее всего основной продукт Pt4(CH3COO)8 загрязнен смешанным олигомерным соединением двух- и трехвалентной платины [Pt(CH3COO)n]x (n~2,5, так называемой «платиновой синью»):

PtCl2+nAgOCOCH3→Pt4(CH3COO)8+[Pt(CH3COO)n]x+AgCl+Ag,

где x принимает значение свыше 100.

Выход продукта реакции составляет 45-55%, но содержание основного компонента не указано. Основные недостатки методики те же, что и в исходном патенте.

Реакцией нитритного комплекса K2Pt(NO2)4 с этанолом и уксусной кислотой получено кристаллическое производное ацетата двухвалентной платины Pt4(CH3COO)5(NO)(NO2)2 темноболотного цвета с выходом 50% [Г.Г. Александров, Г.Н. Кузнецова, Т.Н. Федотова, Журнал неорганической химии, 2006, т. 51, №12, с. 1989]. А при проведении реакции того же реагента K2Pt(NO2)4 с уксусной кислотой и водными растворами сильных кислот HX в отсутствие этанола получены с высоким выходом кристаллические биядерные ацетатные соединения трехвалентной платины [Pt2(CH3COO)4(H2O)2]X2 желтого и оранжевого цвета, где X=NO3, ClO4, CH3SO3. В ледяной уксусной кислоте при 20°C эти ионные соединения превращаются в неустойчивый биядерный ацетат трехвалентной платины [Pt2(CH3COO)4(H2O)2](CH3COO)2, самопроизвольно восстанавливающийся в растворе уже через 5 ч до «платиновой сини» [Appleton T.G., Byriel K.А., Garrett J.M., Hall J.R., Kennard C.H.L., Mathieson M.T., Stranger R., Inorg. Chem., 1995, v. 34, N 22, p. 5646]:

[Pt2(CH3COO)4(H2O)2]X2+CH3COOH→[Pt2(CH3COO)4(H2O)2](CH3COO)2+HX→Ptn(CH3COO)m, где m≈2,5 n.

Хотя, как сказано выше, в растворе ацетат трехвалентной платины неустойчив, описано его получение с выходом 50% в виде темнокоричневого с металлическим блеском порошка последовательной обработкой K2Pt(OH)6 уксусной и муравьиной кислотами при нагревании. Вещество с составом близким к Pt2(OAc)6 растворимо в воде, хлороформе, уксусной кислоте и диметилсульфоксиде и нерастворимо в эфире и углеводородах. [Р.И. Рудый, Н.В. Черкашина, Г.Я. Мазо, Я.В. Салынь, И.И. Моисеев, Изв. АН СССР, сер. Хим., 1980, №4, с. 754]. Растворимость в воде согласуется с ионной природой соединения и при условии устойчивости растворов могла бы служить достаточным основанием для его использования с целью получения гетерогенных катализаторов.

Недостаток методики - отсутствие гарантий чистоты получаемого продукта и сравнительно невысокий выход, связанные с тем, что ацетат трехвалентной платины в условиях синтеза является промежуточным неустойчивым продуктом в цепочке сложных химических превращений:

K2Pt(OH)6+CH3COOH+HCOOH→Pt2(CH3COO)6→Pt4(CH3COO)8→Ptn.

Однако решающим недостатком является доказанная неустойчивость растворов ацетата трехвалентной платины. Недавнее исследование этой реакции [N.V. Cherkashina, D.I. Kochubey, V.V. Kanazhevskiy, V.I. Zaikovsky, V.K. Ivanov, A.A. Markov, A.P. Klyagina, Zh.V. Dobrokhotova, N.Yu. Kozitsina, I.B. Baranovsky, O.G. Ellert, N.N. Efimov, S.E. Nefedov, M.N. Vargaftik, V.M. Novotortsev, I.I. Moiseev, Platinum Acetate Blue: Synthesis and Characterization, Inorganic Chemistry, 2014, v. 53, N 16, p. 8397-8406] показало, что при небольшом варьировании условий образуется не ацетат трехвалентной платины, а так называемые платиновые сини - олигомерные ацетатные соединения переменного состава, куда входят атомы двух- и трехвалентной платины, связанные между собой ацетатными мостиками. Это означает, что небольшие случайные отклонения от методики синтеза могут сильно сказываться на составе и свойствах продукта реакции.

Таким образом, все известные способы получения ацетатов платины имеют те или иные недостатки, препятствующие их практическому применению. В частности, ацетат двухвалентной платины нерастворим в воде, но может использоваться для пропитки носителей в виде растворов в органических растворителях. Нерастворимость в воде не мешает широкому использованию ацетата палладия, самого близкого по свойствам к платине металла платиновой группы, для приготовления гетерогенных катализаторов на основе палладия [Савостин Ю.А., Пчелякова Л.Е., Селицкий М.А., Троицкая И.Б., патент РФ №2050185, 1995] (прототип).

Недостатком ацетата палладия является то, что он растворяется лишь в полярных органических растворителях, но не в воде, что удорожает процессы изготовления гетерогенных катализаторов и делает их пожароопасными.

Среди растворимых в воде основных ацетатов платиновых металлов структурного типа M 3 O ( C H 3 C O O ) 6 L 3 + известны лишь соединения, где M=Ru, Rh, Ir; L=H2O, CH3OH, CH3COOH. [B.O. West, Polyhedron, v. 8, N 3, р. 225]. Для платины такие соединения неизвестны.

Настоящее изобретение направлено на получение оксоацетататных соединений платины, растворимых в воде и пригодных для использования в качестве исходных для приготовления гетерогенных пропиточных катализаторов.

Технический результат достигается тем, что предложены новые оксоацетатные соединения платины для изготовления геторогенных катализаторов, характеризующиеся растворимостью в воде, образующиеся либо при взаимодействии свежеприготовленного тетрагидрата двуокиси платины PtO2·4H2O с ацетатами щелочных металлов, выбранных из ряда: литий, натрий, калий, рубидий, цезий; либо при взаимодействии гидроксоплатинатов указанных щелочных металлов M2Pt(OH)6 с уксусной кислотой в обоих случаях при температурах от 90 до 118°C с образованием темномалинового раствора, из которого затем удаляют уксусную кислоту в вакууме при температуре не выше 100°C и получают твердые гигроскопичные соединения темнофиолетового цвета, отвечающие формуле M2Pt2O(CH3COO)5, где M=Li, Na, K, Rb, Cs, с выходом 90-98%, устойчивые до температуры 150°C.

Сущность изобретения заключается в том, что для получения новых оксоацетататных соединений платины используют кислотно-основную реакцию гидроксоплатинатов щелочных металлов и/или тетрагидрата двуокиси платины с ледяной уксусной кислотой в присутствии ацетатов щелочных металлов, причем промежуточно образующиеся соединения четырехвалентной платины из-за неустойчивости при нагревании превращаются в ионные смешанные оксоацетатные соединения двух- и трехвалентной платины постоянного состава:

2PtO2·4H2O+2MOCOCH3+CH3COOH→M2Pt2O(CH3COO)5+H2O+(CH3)2СО+CO2+CH4+…

Наличие в реакционной смеси катионов щелочных металлов ускоряет термораспад промежуточных продуктов и обеспечивает получение устойчивых анионных оксоацетатных комплексов, растворимых в воде.

Оксоацетатные соединения платины получают в виде гигроскопичных твердых веществ фиолетового цвета. Они устойчивы при комнатной температуре и разлагаются при температурах выше 150°C. Растворяются в воде с образованием глубоко окрашенных растворов от фиолетового до коричневого цвета. Растворы устойчивы при комнатной температуре. Легко восстанавливаются в растворах водородом при комнатной температуре с образованием металлической платины.

M2Pt2O(CH3COO)52→2Pt+CH3COOH+Н2О+2MOCOCH3

Пропиткой растворами этих соединений платины неорганических носителей, таких как окись алюминия и сибунит, с последующим восстановлением водородом получены гетерогенные катализаторы (примеры 4 и 5). Их каталитические свойства в реакциях гидрирования тройных и двойных связей углерод-углерод и окислительной этерификации пропилена проиллюстрированы примерами 6 и 7.

Химический анализ полученных соединений проводили на CHN-анализаторе ЕА3000 фирмы EuroVector. Содержание платины определяли весовым методом после восстановления навески соединения борогидридом натрия в водном растворе. Данные приведены в Таблице 1 «Условия синтеза и данные химического анализа».

Электронные спектры поглощения регистрировали в среде уксусной кислоты на спектрофотометре Саrу 50 Scan фирмы Varian.

ИК-спектры регистрировали на ИК-Фурье спектрофотометре Nexus фирмы Nicolet методом нарушенного полного внутреннего отражения (НПВО) в диапазоне 4000-550 см-1. Образец твердого вещества наносили на алмазный кристалл. Данные приведены в Таблице 2: «Волновые числа колебаний карбоксильных групп в ИК-спектрах нарушенного полного внутреннего отражения (НПВО)».

Масс-спектры (электрораспыление в ацетонитриле) получали на жидкостном хроматографе с масс-спектральным детектором LCMS 2020 (LC/MS) фирмы Shimadzu. Реакции гидрирования и окисления ненасыщенных органических соединений в присутствии катализаторов исследовали методом газовой хроматографии (хроматограф GC-17A Shimadzu с капиллярной колонкой 0,2 мм × 25 м, ДИП, фаза ХЕ-60).

Используемые в синтезе реактивы: 1) гидроксоплатинат K2Pt(OH)6 получали согласно методике из книги "Синтез комплексных соединений металлов платиновой группы" под ред. акад. И.И. Черняева, Москва, Наука, 1964, стр. 102; 2) гидрат двуокиси платины PtO2·4H2O(H2Pt(OH)6) получали согласно «Руководству по неорганическому синтезу» под ред. Г. Брауэра, т. 5, М., Мир, 1986, с. 1820; 3) ледяную уксусную кислоту квалификации «хч» производства Химмед (РФ) использовали без какой-либо очистки; 4) ацетаты MOCOCH3, где M=Li, K, Na квалификации «хч» и «осч», ацетаты рубидия и цезия получали реакцией уксусной кислоты с соотв. гидроксидами МОН в воде до достижения pH 7 с последующим удалением воды в вакууме.

Достижение заявленного технического результата подтверждается примерами 1-3. Примеры иллюстрируют, но не ограничивают предложенное техническое решение.

Пример 1. Получение M2Pt2O(CH3COO)5, где M=Li, Na, K, Rb, Cs из тетрагидрата двуокиси платины и ацетатов щелочных металлов.

Осажденный из водного раствора гидрат двуокиси платины PtO2·4H2O(H2Pt(OH)6) тщательно промывали метилацетатом или ацетоном и высушивали в вакууме над гидроксидом калия. Свежеприготовленный гидрат двуокиси платины PtO2·4H2O (0,2991 г, 1 ммоль) и ацетат щелочного металла CH3COOM, где M=Na, Li, K, Rb, Cs (1 ммоль) нагревали при 90-118°C в круглодонной колбе с обратным холодильником при перемешивании с 15 мл ледяной уксусной кислоты. Белый осадок полностью растворился в течение 1,5 ч с образованием темномалинового раствора. Реакционную смесь профильтровали через стеклянный фильтр. Растворитель из фильтрата удалили в вакууме 30 Торр при температуре 60-100°C, полученную вязкую массу выдерживали в вакуум-эксикаторе над щелочью до полного застывания. Получили твердое темнофиолетовое гигроскопичное вещество состава M2Pt2O(CH3COO)5·nCH3COOH (0<n<1). После измельчения и длительного выдерживания в вакуум-эксикаторе над щелочью вещество теряет сольватные молекулы уксусной кислоты и соответствует формуле M2Pt2O(CH3COO)5. Выход продуктов 90-98%. Данные хим. анализа: % C 20,02, % H 2,94, % Pt 45,64 (расч. для % С 19,69, % H 2,93, % Pt 45,72). Данные хим. анализа приведены в Таблице 1. Данные масс-спектроскопии (электрораспыление в ацетонитриле MeCN): отрицательные ионы 454 P t ( M e C N ) 2 ( C H 3 C O O ) 3 , 683 P t 2 O ( M e C N ) ( C H 3 C O O ) 4 , 725 Pt2(CH3COO)4(OH)-, 741 Pt2O(MeCN)2(CH3COO)4(OH)-. Данные ИК-спектров НПВО приведены в Таблице 2. Растворимость при 20°C соединений с различными катионами составляет от 2,5 до 4 г в 100 г воды. Соединения устойчивы до температуры 150°C.

Пример 2. Получение оксоацетатного соединения K2Pt2O(CH3COO)5 из тетрагидрата двуокиси платины и гидроксоплатината калия.

Кристаллический гидроксоплатинат калия K2Pt(OH)6 (0,3753 г, 1 ммоль) и свежеприготовленный PtO2·4H2O (0,2991 г, 1 ммоль) нагревали при 100°C в круглодонной колбе с обратным холодильником при перемешивании с 30 мл ледяной уксусной кислоты. При комнатной температуре K2Pt(OH)6 реагирует с уксусной кислотой с образованием ацетата калия и PtO2·4H2O, таким образом реакция сводится к взаимодействию гидрата двуокиси платины PtO2·4H2O и ацетата щелочного металла, приведенному в примере 1. Белый осадок оксо- и гидроксосоединений платины полностью растворялся в течение 1,5 ч с образованием темномалинового раствора. Реакционную смесь профильтровали через пористый стеклянный фильтр. Растворитель удалили из фильтрата в вакууме 30 торр при 60-100°C, полученную темную вязкую массу выдерживали в вакуум-эксикаторе над щелочью до полного застывания с образованием темнофиолетового гигроскопичного вещества состава K2Pt2O(CH3COO)·nCH3COOH (0<n<1). После измельчения и длительного выдерживания в вакуум-эксикаторе над щелочью вещество теряет сольватные молекулы уксусной кислоты и соответствует формуле K2Pt2O(CH3COO)5. Выход продукта 98%. Данные хим. анализа: % C 20,02, % H 2,94, % Pt 45,64 (расч. для % C 19,69, % H 2,93, % Pt 45,72). Электронный спектр поглощения в уксусной кислоте: λ 420 и 525 нм, ε 3539 и 3691 л·м-1·см-1 соответственно. Данные масс-спектроскопии (электрораспыление в ацетонитриле MeCN): отрицательные ионы 454 P t ( M e C N ) 2 ( C H 3 C O O ) 3 , 683 P t 2 O ( M e C N ) ( C H 3 C O O ) 4 , 725 Pt2(CH3COO)4(OH)-, 741 Pt2O(MeCN)2(CH3COO)4(OH)-. Волновые числа колебаний ацетатных групп в ИК-спектрах НПВО приведены в таблице №2. Растворимость при 20°C составляет 2,5 г в 100 г воды. Соединение устойчиво до температуры 150°C.

Пример 3. Получение K2Pt2O(CH3COO)5 из гидроксоплатината калия.

Кристаллический гидроксоплатинат калия K2Pt(OH)6 (0,3753 г, 1 ммоль) нагревали при 100°C в круглодонной колбе с обратным холодильником с 10 мл ледяной уксусной кислоты. Осадок гидроксосоединения в ходе реакции полностью растворяется в течение 15-20 мин с образованием темномалинового раствора. Уксусную кислоту из раствора удаляли в вакууме при 60-100°C, полученную вязкую массу выдерживали в вакуум-эксикаторе над щелочью до полного застывания. Получили гигроскопичное темнофиолетовое вещество, состоящее из смеси ацетата калия и соединения K2Pt2O(CH3COO)5·nCH3COOH (0<n<1). Выход продукта 90%. Данные химического анализа для смеси: % С 17,22; % Н 2,68, % Pt 46,92 (расчет для смеси % С 17,29; % Н 2,16, % Pt 46,84). Для выделения оксоацетатного соединения смесь растворили в 3 мл ацетонитрила и осадили оксоацетат 15 мл эфира. Осадок отделили декантацией, промыли эфиром и высушили на воздухе. Получен фиолетовый порошок состава K2[Pt2O(CH3COO)5]·(C2H5)2О, выход 97%. Эфир из этого соединения удаляли вакууме 0,1 торр при 100°C. Данные хим. анализа полученного K2Pt2O(CH3COO)5 приведены в таблице №1. Состав и свойства те же, что у соединения, полученного по методике, описанной в примере 2.

Примеры 4 и 5 иллюстрируют промышленную применимость заявленного технического решения.

Пример 4. Приготовление гетерогенного катализатора 0,3% Pt/Al2O3

Раствор 0,0300 г соединения Li2Pt2O(CH3COO)5 в 3-4 мл дистиллированной воды добавляли к 5,00 г гранулированной гамма-окиси алюминия марки МОА-25 в фарфоровой чашке и осторожно при перемешивании удаляли воду при нагревании на электроплитке. Полученные фиолетовые гранулы помещали в кварцевую трубку и в течение 1 ч восстанавливали водородом при 200°C, после чего охлаждали до комнатной температуры в токе водорода. Готовый катализатор черного цвета, активная фаза (платина) находится на поверхности гранул.

Пример 5. Приготовление гетерогенного катализатора 0,3% Pt/сибунит

Раствор 0,0300 г соединения K2Pt2O(CH3COO)5 в 3-4 мл дистиллированной воды добавляли к 5,00 г гранулированного сибунита в фарфоровой чашке и осторожно при перемешивании удаляли воду при нагревании на электроплитке. Пропитанные гранулы помещали в кварцевую трубку и в течение 1 ч восстанавливали водородом при 200°C, после чего охлаждали до комнатной температуре в токе водорода.

Примеры 6 и 7 иллюстрируют эффективность гетерогенных катализаторов, полученных по примерам 4 и 5.

Пример 6. Гидрирование фенилацетилена в присутствии катализатора 0,3% Pt/Al2O3

В стеклянном реакторе с магнитной мешалкой перемешивали при комнатной температуре суспензию 1,00 г катализатора в растворе 0,20 мл фенилацетилена в 5,00 мл метилацетата в атмосфере водорода при давлении 1 атм, периодически отбирая пробу жидкости, для хроматографического анализа. Постепенно в растворе накапливаются продукты гидрирования: стирол и этилбензол. При конверсии фенилацетилена 97% селективность по стиролу составляет 83%.

Пример 7. Окислительное ацетоксилирование пропилена в присутствии катализатора 0,3% Pt/C (сибунит)

В стеклянном реакторе с магнитной мешалкой энергично перемешивали суспензию 1,00 г катализатора в 5,00 мл ледяной уксусной кислоты, в которой растворено 0,50 г ацетата калия, при пропускании через реактор смеси пропилена с кислородом (2:1), при температуре 90°C, периодически отбирая пробу жидкости для хроматографического анализа. Постепенно в растворе накапливаются продукты окисления пропилена: аллилацетат и вода. За 24 ч концентрация аллилацетата достигает 10 вес. %. Селективность по аллилацетату составляет 99%.

Таким образом, предлагаемое изобретение позволяет получить устойчивые оксоацетатные соединения платины с выходом 90-98%, растворимые в воде и пригодные для изготовления гетерогенных платиновых катализаторов.

Оксоацетатные соединения платины для изготовления геторогенных катализаторов, характеризующиеся растворимостью в воде, образующиеся либо при взаимодействии свежеприготовленного тетрагидрата двуокиси платины PtO2·4H2O с ацетатами щелочных металлов, выбранных из ряда: литий, натрий, калий, рубидий, цезий; либо при взаимодействии гидроксоплатинатов указанных щелочных металлов M2Pt(OH)6 с уксусной кислотой в обоих случаях при температурах от 90 до 118°C с образованием темномалинового раствора, из которого затем удаляют уксусную кислоту в вакууме при температуре не выше 100°C и получают твердые гигроскопичные соединения темнофиолетового цвета, отвечающие формуле M2Pt2O(CH3COO)5, где M = Li, Na, K, Rb, Cs, с выходом 90-98%, устойчивые до температуры 150°C.



 

Похожие патенты:

Изобретение относится к дигидрату 1,2-циклогександиаминплатина(II)-бис(4-метилбензолсульфоната). Также предложены способ получения гидратов 1,2-циклогександиаминплатина(II)-бис(4-метилбензолсульфоната) и их применение.

Изобретение относится к области гомогенного катализа и касается производства катализатора метатезисной полимеризации дициклопентадиена. Рутениевый катализатор полимеризации дициклопентадиена представляет собой [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]хлоро(2-((2-(диметиламиноэтилметиламино)метил))бензилиден)рутений хлорид в катионной форме формулы (1).

Настоящее изобретение относится к способу получения комплексов рутения (0) с олефинами типа (арен)(диен)Ru(0). Способ осуществляется по реакции исходного соединения рутения формулы Ru(+II)(X)p(Y)q, в которой X представляет собой анионную группу, Y представляет собой незаряженный двухэлектронный донорный лиганд, p составляет 1 или 2, q представляет собой целое число от 1 до 6, с циклогексадиеновым производным или смесью диенов, включающей производное циклогексадиена, в присутствии основания.
Изобретение относится к способу получения катионных комплексов палладия общей формулы [(acac)Pd(L)]BF4, где acac - ацетилацетонат, L - дииминовые лиганды. Способ включает взаимодействие комплекса палладия с L в среде органического растворителя при комнатной температуре.

Изобретение относится к перфторкарбоксилатным соединениям четырехвалентной платины, характеризующимся устойчивостью при хранении без доступа воздуха. Соединения получают реакцией гидроксосоединения четырехвалентной платины K2[Pt(OH)6] или свежеприготовленного гидрата двуокиси платины РtO2·4Н2O с перфторкарбоновой кислотой RfCOOH, где Rf=CF3, C2F5, при температурах от 40 до 70°С для Rf=CF3 и от 70 до 90°С для Rf=C2F5 до получения гомогенного раствора, из которого затем удаляют остатки кислоты в вакууме при температуре не выше 60°С.

Настоящее изобретение относится к способу приготовления каталитического комплекса, имеющего формулу где R1, R2, R3 и R4 независимо выбраны из группы, состоящей из водорода, C1-C20алкила, C2-C20алкоксигруппы, галогена и аминогруппы, где если R1 или R3 представляет собой аминогруппу, то аминогруппа необязательно замещена одним или большим количеством фрагментов, представляющих собой алкил, если R2 или R4 представляет собой аминогруппу, то аминогруппа необязательно замещена одним или большим количеством фрагментов, представляющих собой C1-C20алкил.

Изобретение относится к лиганду координационного соединения металла. Лиганд имеет следующую структуру формулы Ia или Ib где Ζ представляет собой СН2=; m=0 или 1, n=0 или 1; при m=0, Υ представляет собой ΝΗ, С1-С20-алкилимино или С6-С20-арилимино; при m=1, X представляет собой СН2; Υ представляет собой ΝΗ или С1-С20-алкилимино; представляет собой одинарную связь; при n=1, X1 представляет собой СН2 или карбонил; Υ1 представляет собой кислород или карбонил; R1 представляет собой водород; R2 представляет собой С1-С20-алкил или С6-С20-арил; Ε представляет собой водород, галоген, нитро, С1-С4-алкокси, С1-С4-алкоксикарбонил или С1-С8-алкиламиносульфонил; Е1 и Е2 независимо представляют собой водород или галоген; Ε3 представляет собой водород; Е4 представляет собой водород или С1-С4-алкил; Е5 и Е6 представляют собой водород, галоген, С1-С4-алкил или C1-С6-алкокси; Е7 представляет собой водород или С1-С4-алкил.

Изобретение относится к области гомогенного катализа и касается производства катализаторов метатезисной полимеризации дициклопентадиена. Катализатор полимеризации дициклопентадиена в форме рутениевого комплекса представляет собой [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(2-((2-диметиламиноэтилметиламино)метил))бензилиден)рутений формулы (I).

Изобретение относится к области катализа и касается производства катализаторов полимеризации дициклопентадиена. Катализатор полимеризации имеет общую формулу (I), где новый заместитель выбран из группы аминостиролов.
Изобретение относится к способу получения полимерных карбоксилатов палладия. Способ включает растворение металлического палладия в концентрированной азотной кислоте, упаривание полученного раствора азотнокислого палладия.
Изобретение относится к способу получения катализируемого сажевого фильтра, который включает стадии: a) обеспечения пористого тела фильтра, имеющего распределяющую сторону и сторону фильтрата; b) обеспечения каталитического покрытия типа «washcoat», содержащего частицы первой катализаторной композиции, которая является активной в отношении селективного каталитического восстановления оксидов азота, вместе с частицами второй катализаторной композиции, которая является активной в отношении окисления монооксида углерода, углеводородов и аммиака, и частицами третьей катализаторной композиции, которая является активной в отношении селективного окисления аммиака в азот совместно со второй катализаторной композицией, где частицы первой катализаторной композиции имеют модальный размер частиц меньше, чем средний размер пор указанного сажевого фильтра, и где частицы второй и третьей катализаторной композиции имеют модальный размер частиц больше, чем средний размер пор указанного сажевого фильтра; с) нанесения на тело фильтра каталитического покрытия типа «washcoat» путем введения покрытия типа «washcoat» в выпускной конец стороны фильтрата; и d) сушки и термической обработки покрытого тела фильтра с получением катализируемого сажевого фильтра.

Изобретение относится к каталитическому нейтрализатору для снижения токсичности отработавших газов дизельных двигателей, прежде всего каталитическому нейтрализатору окислительного типа, который особо пригоден для снижения токсичности отработавших газов двигателей грузовых автомобилей большой грузоподъемности, когда после него по ходу потока отработавших газов предусмотрены другие устройства для снижения токсичности отработавших газов.

Изобретение относится к способу получения о-хлоранилина (варианты). В каждом из вариантов способа о-хлоранилин получают путем каталитического восстановления о-нитрохлорбензола молекулярным водородом в присутствии модифицированных палладийсодержащих наночастиц в жидкой дисперсионной среде.
Настоящее изобретение относится к способу селективной окислительной дегидрогенизации газовой смеси, содержащей водород и СО. Способ включает использование газовой смеси, содержащей водород и СО, в качестве сырья и пропускание указанного сырья через слой катализатора, имеющий постепенно увеличивающийся градиент активности в реакторе с мольным отношением кислорода к водороду в сырье от 0,5 до 5:1 при температуре реакции от 100 до 300°C, объемной скорости от 100 до 10000 ч-1 и давлении реакции от -0,08 до 5,0 МПа.

Изобретение относится к способу извлечения платины и/или палладия из отработанных катализаторов на носителях из оксида алюминия. Данный способ включает выщелачивание полученного огарка солянокислым раствором, содержащим окислитель или смесь окислителей, с извлечением платины и/или палладия из раствора выщелачивания.

Изобретение относится к каталитическим химическим процессам, а именно к реакциям гидрирования непредельных углеводородов и ароматических нитросоединений. Задачей изобретения является создание палладийсодержащего катализатора гидрирования, в котором частицы палладия имеют нанометровый размер и равномерно распределены на поверхности носителя.
Группа изобретений относится к области получения биотоплив, а именно к катализаторам и процессам получения компонентов реактивных и дизельных топлив из масложирового сырья, в том числе с улучшенными низкотемпературными свойствами.
Настоящее изобретение относится к химической технологии производства катализаторов селективного гидрирования ацетиленовых и диеновых углеводородов в C2-C5+-углеводородных фракциях.
Изобретение относится к способу приготовления катализатора для окисления водорода, состоящего из носителя с промежуточным покрытием из γ-оксида алюминия и активной части, содержащей каталитически активный металл - палладий.

Изобретение относится к способу получения соединения формулы (IA), в которой R представляет собой одну или более групп, независимо выбранных из атомов галогенов, и n составляет 1 или 2; или его фармацевтически приемлемых солей.

Изобретение относится к катализирующей монолитной основе, содержащей окислительный катализатор на монолитной основе для применения при обработке выхлопных газов, выпускаемых из двигателя внутреннего сгорания, работающего на обедненных топливных смесях. Данная катализирующая монолитная основа содержит первое покрытие из пористого оксида, имеющее длину L, и второе покрытие из пористого оксида, где второе покрытие из пористого оксида расположено в виде слоя поверх первого покрытия из пористого оксида на протяжении по меньшей мере части длины L, где первое покрытие из пористого оксида включает композицию катализатора, содержащую платину, и по меньшей мере один материал-носитель для платины, где второе покрытие из пористого оксида включает композицию катализатора, содержащую как платину, так и палладий, и по меньшей мере один материал-носитель для платины и палладия, и где массовое отношение платины к палладию во втором покрытии из пористого оксида составляет <2, причем массовое отношение Pt:Pd в объединенных обоих первом покрытии из пористого оксида и втором покрытии из пористого оксида составляет ≥2:1. Также изобретение относится к системе выпуска отработавших газов для двигателя внутреннего сгорания, к двигателю внутреннего сгорания, а также к способу снижения возможности или предотвращения отравления катализатора селективного каталитического восстановления (SCR) в системе выпуска отработавших газов двигателя внутреннего сгорания. Технический результат заключается в получении катализатора улучшенной активности для окислительной обработки углеводородов и монооксида углерода в выхлопных газах. 4 н. и 17 з.п. ф-лы, 7 ил., 3 табл., 10 пр.
Наверх