Фотолюминофорная смесь для изготовления фотолюминесцентной плёнки белых светодиодов



Фотолюминофорная смесь для изготовления фотолюминесцентной плёнки белых светодиодов
Фотолюминофорная смесь для изготовления фотолюминесцентной плёнки белых светодиодов
Фотолюминофорная смесь для изготовления фотолюминесцентной плёнки белых светодиодов
Фотолюминофорная смесь для изготовления фотолюминесцентной плёнки белых светодиодов
Фотолюминофорная смесь для изготовления фотолюминесцентной плёнки белых светодиодов
H01L33/26 - Полупроводниковые приборы по меньшей мере с одним потенциальным барьером или с поверхностным барьером, предназначенные для светового излучения, например инфракрасного; специальные способы или устройства для изготовления или обработки таких приборов или их частей; конструктивные элементы таких приборов (соединение световодов с оптоэлектронными элементами G02B 6/42; полупроводниковые лазеры H01S 5/00; электролюминесцентные источники H05B 33/00)

Владельцы патента RU 2565670:

федеральное государственное автономное образовательное учреждение высшего профессионального образования "Московский физико-технический институт (государственный университет) (RU)
Открытое акционерное общество "Научно-исследовательский институт "Платан" с заводом при НИИ" (RU)

Изобретение относится к области электронной техники и техники освещения на основе полупроводниковых светоизлучающих диодов (СИД), а именно к фотолюминофорной смеси для приготовления фотолюминесцентной пленки белых светодиодов. Смесь содержит связующее, пластификатор, растворитель и порошок фотолюминофора желто-оранжевого свечения на основе активированного церием редкоземельного граната (ΣLn)3Al5O12, где Ln - лантаноиды, включающие иттрий, церий, гадолиний. При этом соотношении компонентов следующее, мас. %: указанный порошок фотолюминофора - 3,0-30,0; связующее - 3,0-15,0; пластификатор - 0,08-1,0; растворитель - остальное. Указанный порошок фотолюминофора имеет гранулометрический состав кристаллитов в диапазоне от 3 до 20 мкм. Изобретение позволяет получить состав фотолюминофорной смеси для изготовления фотолюминесцентной пленки белых светодиодов с пониженной цветовой температурой, увеличенной световой отдачей и высокой однородностью свечения. 4 ил., 1 табл.

 

Изобретение относится к области электронной техники и техники освещения на основе полупроводниковых светоизлучающих диодов (СИД) и может быть использовано при изготовлении фотолюминесцентных пленок (ФЛП) белых светодиодов.

Из уровня техники известен фотолюминофор (ФЛ) желто-оранжевого свечения на основе редкоземельного граната, активированного церием, в состав основы которого дополнительно введены атомы лития, кремния, магния, азота и фтора, образующие общую стехиометрическую формулу соединения (ΣLn)3Al5-x-y-LiyMgx/2Six/2Fq/2O12-qNÅ, где 0.001≤x≤0.005; 0.0001<y<0.0005; 0.0001≤q≤0.001; Ln - лантаноиды, включающие: иттрий, гадолиний, лютеций, церий или иттрий, гадолиний, лютеций, церий и празеодим, излучающего при возбуждении от λ=440 до 475 нм в диапазоне от λ=542 до 598 нм с квантовым выходом Q>0.9 и имеющего кубическую структуру граната с пространственной группой Ia3d [1].

Однако известный фотолюминофор не адаптирован под применение в пленках с толщиной от 20 мкм, являющейся оптимальной для фотолюминесцентных пленок белых светодиодов. Кроме того, достигнутые в прототипе показатели хоть и являются достаточно высокими, однако могут быть улучшены в отношении светоотдачи и теплоты света благодаря отсечению низкоэффективной фракции менее 3 мкм.

Наиболее близкой к предлагаемому техническому решению является люминофорная смесь для нанесения на стеклянные колбы источников оптического излучения, содержащая порошок люминофора, связующее и наполнитель, в которой не менее 60 мас. % порошка люминофора имеет гранулометрический состав до 20 мкм [2].

В известном техническом решении, направленном на достижение высокого уровня светового потока источников излучения, в том числе посредством использования 60 мас. % порошка люминофора с гранулометрическим составом до 20 мкм, однако, не ограничивается гранулометрический состав оставшихся 40 мас. % порошка люминофора. Кроме того, ограничение не затрагивает нижней границы размера люминофора, которая является наиболее значимой с точки зрения повышения интенсивности фотолюминесценции и наибольшего смещения в длиннолновую часть спектра.

Задачей предлагаемого изобретения является усовершенствование состава фотолюминофорной смеси для изготовления фотолюминесцентной пленки белых светодиодов с пониженной цветовой температурой, увеличенной световой отдачей и высокой однородностью свечения.

Технический результат достигается тем, что в фотолюминофорной смеси для изготовления фотолюминесцентной пленки белых светодиодов, содержащей связующее, пластификатор, растворитель и порошок фотолюминофора желто-оранжевого свечения на основе активированного церием редкоземельного граната (Σln)3Al5O12, где Ln - лантаноиды, включающие иттрий, церий, гадолиний, при следующем соотношении компонентов, мас. %: порошок фотолюминофора - 3,0-30,0; связующее - 3,0-15,0; пластификатор - 0,08-1,0; растворитель - остальное, порошок фотолюминофора имеет гранулометрический состав кристаллитов в диапазоне от 3 до 20 мкм.

Сущность изобретения поясняется графическими материалами, где на фиг. 1 представлено распределение кристаллитов исходного порошка по размеру, на фиг. 2 - распределение кристаллитов мелкоразмерной фракции порошка по размеру, на фиг. 3 - сравнение интенсивности фотолюминесценции исходной и мелкоразмерной фракции, на фиг. 4 - зависимость смещения спектра люминесценции кристаллитов от их размера.

Из порошка фотолюминофора с распределением кристаллитов, показанным на фиг. 1, была выделена мелкоразмерная фракция с распределением кристаллитов, показанным на фиг. 2.

Исходный порошок и мелкоразмерная фракция сравнивались по интенсивности фотолюминесценции. Из результатов сравнения, показанных на фиг. 3, видно, что интенсивность фотолюминесценции мелкоразмерной фракции примерно в 2 раза ниже интенсивности фотолюминесценции исходной фракции (для одинаковых масс навески), из чего делается вывод о необходимости ее удаления из исходного порошка.

Кроме того, исходный порошок фотолюминофора был исследован с помощью снятия спектров катодолюминесценции (аналогичен фотолюминесценции) отдельных кристаллитов. Было обнаружено, что в зависимости от размера кристаллита меняется вид спектра катодолюминесценции. Была снята зависимость среднего медианного спектра от размера, показанная на фиг. 4. Показано, что для частиц менее 3 мкм характерно смещение спектра в нежелательную коротковолновую часть.

Кроме того, проведенный элементный анализ исходной и мелкоразмерной фракции показал, что в мелкоразмерной фракции наблюдается пониженное на 15-20% содержание Ce и Gd в сравнении с исходной, с чем, вероятно, и связаны наблюдаемое понижение интенсивности и смещение спектра, соответственно.

Таким образом, продемонстрировано понижение интенсивности фотолюминесценции и нежелательное смещение спектра для кристаллитов размером менее 3 мкм, чем и обосновывается необходимость их исключения из исходного порошка фотолюминофора.

Ограничение гранулометрического состава частиц 20 мкм основано на том, что частицы свыше указанного размера из-за чрезмерной седиментационной способности создают неоднородность распределения материала фотолюминофора при помещении его на оптическом пути излучения синего светодиода. Кроме того, указанное ограничение связано с тем, что оптимальный размер фотолюминесцентных пленок, комбинация которых с синим светодиодом дает белый свет приемлемого качества, начинается от 20 мкм, в связи с чем частицы фотолюминофора большего размера оказываются несовместимы с пленкой при требовании однородного распределения плотности материала фотолюминофора в пленке.

Предлагаемую фотолюминофорную смесь готовят следующим образом.

Из порошка фотолюминофора желто-оранжевого свечения (Y0,92Gd0,07Ce0,01)3Al5O12 была отобрана фракция в диапазоне от 3 мкм до 20 мкм. Отбор производился в два этапа, последовательно отсекающих фракции кристаллитов порошка фотолюминофора: сначала до 3 мкм, затем более 20 мкм. Для отсечения использовались различие в седиментационной способности в гравитационном поле, характерное для частиц одного материала разного размера. Скорость седиментации при этом по известной формуле считалась пропорциональной квадрату диаметра кристаллита. В качестве среды для седиментации использовалась деионизованная вода. Для обеспечения сепарации по размеру именно неагрегированных кристаллитов активно применялось ультразвуковое диспергирование в комбинации с постоянным механическим взбалтыванием и проточным охлаждением без непосредственного контакта зонда диспергатора с суспензией.

Суспензия порошка фотолюминофора 5 мас. % в деионизованной воде в комбинации с постоянным механическим взбалтыванием и проточным охлаждением в течение часа подвергалась ультразвуковому диспергированию. Затем, в зависимости от геометрии используемого для седиментации сосуда, давалось определенное время на седиментацию частиц крупнее 3 мкм, после чего с помощью дозатора извлекалось и удалялось сверху ¾ от первоначального объема суспензии. Оставшаяся суспензия вновь разбавлялась деионизованной водой до первоначально объема, после чего процедура повторялась до тех пор, пока наличие мелкоразмерной фракции порошка люминофора после определенного времени седиментации не окажется визуально не фиксируемым.

Оставшаяся суспензия взбалтывается, дается определенное время для седиментации частиц крупнее 20 мкм, после чего ¾ от первоначального объема суспензии извлекается и разбавляется до первоначального объема. Данная процедура повторяется трижды.

Полученная суспензия сушится, оставшийся порошок фотолюминофора применяется в следующих операциях.

Литьевая суспензия готовится путем диспергирования порошка в растворе поливинилбутираля (ПВБ). Диспергирование проводят в мельнице типа УБ787 «пьяная бочка» (ПБ).

Порошок подвергают ультразвуковой диспергации и гомогенизации в изопропиловом спирте. В пластмассовые емкости «карманы» загружают предварительно взвешенные компоненты: порошок и керамические шары (соотношение порошок/шары = 1/4). Диспергирование производят в ПБ при 21°C и 60 об/мин. Время диспергирования указано в таблице 1. Контроль вязкости производят с помощью воронки с диаметром отверстия 2,5 мм. Требуемая вязкость указана в таблице 1. Требуемую вязкость получают либо испарением растворителя, либо добавлением растворителя (изопропиловый спирт). Контроль осуществляют после 2 часов обработки в ПБ. Выстаивание суспензии после ПБ производят в течение 30 минут.

Пример приготовления смеси.

Состав суспензии порошка фотолюминофора с гранулометрическим составом в диапазоне от 3 до 20 мкм:

указанный порошок фотолюминофора 17,8%
связующее (ПВБ) 10,1%
пластификатор (ТГМ) 0,8%
растворитель (изопропиловый спирт) остальное

В предварительно взвешенную банку вливается суспензия порошка ФЛ в изопропиловом спирте 166,1 грамма, в которой содержится 45,39 грамма порошка ФЛ. Вливается 16% по массе раствор ПВБ 32,8 г (5,25 г по сухому). Вливается триэтиленгликольдиметилакрилат (ТГМ) - 1,84 грамма, перемешивается шпателем и вносятся керамические шары - 206 грамм. Банка закрывается и ставится в ПБ для перемешивания, которое ведется при 21°С в течении 215 часов. Вязкость контролируется по воронке с диаметром отверстия 2,5 мм. Вязкость доводится до заданного значения путем испарения растворителя (таблица 1).

Таким образом, в соответствии с техническим решением согласно предлагаемому изобретению экспериментально подобранный состав фотолюминофорной смеси и проверка эффективности его использования при получении ФЛП на основе ФЛ в полимерной матрице ПВБ методом литья пленок на лавсановую подложку, при оптимальной толщине ФЛП - 20-40 мкм, обеспечивающей получение белого света при использовании синего светодиода (476 нм), показывает, что за счет применения в составе смеси ФЛ смеси порошка фотолюминофора с гранулометрическим составом кристаллитов от 3 до 20 мкм и посредством исключения кристаллитов с размером, ниже которого наблюдается значительное падение интенсивности свечения люминесценции и/или медианного значения длины волны спектра люминесценции, и кристаллитов с размером, выше которого наблюдается значительная неоднородность распределения плотности фотолюминофорного материала по объему фотолюминесцентной пленки обеспечивается достижение пониженной цветовой температуры, увеличенной световой отдачи и высокой однородности свечения конечного изделия.

Источники информации.

1. RU 2455335, Фотолюминофор желто-оранжевого свечения и светодиод на его основе, опубл. 2012.

2. RU 2201636, Люминофорная смесь для нанесения на стеклянные колбы источников оптического излучения, опубл. 2003.

Фотолюминофорная смесь для приготовления фотолюминесцентной пленки белых светодиодов, содержащая связующее, пластификатор, растворитель и порошок фотолюминофора желто-оранжевого свечения на основе активированного церием редкоземельного граната (ΣLn)3Al5O12, где Ln - лантаноиды, включающие иттрий, церий, гадолиний, при следующем соотношении компонентов, мас. %:
указанный порошок фотолюминофора - 3,0-30,0;
связующее - 3,0-15,0;
пластификатор - 0,08-1,0;
растворитель - остальное,
причем указанный порошок фотолюминофора имеет гранулометрический состав кристаллитов в диапазоне от 3 до 20 мкм.



 

Похожие патенты:

Изобретение относится к области светотехники. Техническим результатом является повышение эффективности теплоотвода и упрощение конструкции.

Подложка для оптической системы снабжена тонкоструктурным слоем, включающим в себя точки, состоящие из множества выпуклых или вогнутых участков, проходящих в направлении от главной поверхности подложки наружу поверхности, причем тонкоструктурный слой имеет множество точечных линий, в которых множество точек размещено с шагом Py в первом направлении на главной поверхности подложки, в то же время имея множество точечных линий, в которых множество точек размещено с шагом Px во втором направлении, ортогональном первому направлению, на главной поверхности подложки, один из шага Py и шага Px является постоянным интервалом нанометрового диапазона, тогда как другой является непостоянным интервалом нанометрового диапазона, или оба они являются непостоянными интервалами нанометрового диапазона.

Изобретение может использоваться как для изготовления энергосберегающих ламп, так и светосильных светодиодных излучателей. Оптическое согласующее устройство состоит из оптического согласующего элемента, излучающего полупроводникового светодиода и расположенным между ними промежуточного слоя, причем оптический согласующий элемент выполнен из оптически прозрачного материала, показатель преломления которого подобен показателю преломления излучающего полупроводникового светодиода, при этом промежуточный слой выполнен туннельно-прозрачным, с модулем упругости более низким по сравнению с модулями упругости полупроводникового светодиода и оптического согласующего элемента.

Настоящее изобретение относится к области получения наноструктур на поверхности карбида кремния. Cпособ получения наноструктур на поверхности карбида кремния содержит этапы, на которых устанавливают твердую мишень в рабочую кювету с жидкостью, устанавливают рабочую кювету с твердой мишенью на координатный столик, осуществляют лазерную абляцию при помощи Nd:YAG лазера, работающего в импульсном режиме, при этом Nd:YAG лазер осуществляет облучение твердой мишени ультрафиолетовым излучением на длине волны 355 нм, с длительностью импульса 10 пс, с частотой повторения импульса 50 кГц и со средней мощностью 3,5 Вт, и в качестве жидкости используют воду, прошедшую этап очистки в системе обратного осмоса.

Изобретение относится к активным электронным компонентам. Согласно изобретению в отличие от обычного светотранзистора с одним излучающим p-n-переходом в светотиристоре в открытом состоянии два перехода являются излучающими, а один переход поглощает тепловую энергию.

Изобретение относится к осветительной технике, а именно к светодиодным осветительным устройствам, в которых в качестве источников света использованы светоизлучающие диоды.

Данный нитридный полупроводниковый ультрафиолетовый светоизлучающий элемент обеспечивается: базовой секцией структуры, которая включает в себя сапфировую подложку (0001) и слой AlN, сформированный на подложке; и секцией структуры светоизлучающего элемента, которая включает в себя слой покрытия n-типа полупроводникового слоя AlGaN n-типа, активный слой, имеющий полупроводниковый слой AlGaN, и слой покрытия p-типа полупроводникового слоя AlGaN p-типа, при этом упомянутый слой покрытия n-типа, активный слой и слой покрытия p-типа сформированы на базовой секции структуры.

Изобретение относится к светодиодной технике и может быть использовано в устройствах автоблокировки на перегоне и на железнодорожных станциях. Устройство содержит печатную плату 1, линзу 2 с квадратным или круглым основанием 3, снабженную светоприемной полусферической поверхностью 4 и светоизлучающей асферической поверхностью 5, направляющие штыри 6, излучатель света 7 с присоединительными выводами, слой антибликового силикона 8, слой силикон-люминофорной композиции 9, слой корректирующего силиконового обрамления 10.

Полупроводниковое светоизлучающее устройство согласно изобретению содержит многослойную подложку, которая содержит основу; и затравочный слой, связанный с основой; и полупроводниковую структуру, выращенную поверх затравочного слоя, причем полупроводниковая структура содержит светоизлучающий слой, расположенный между областью n-типа и областью p-типа; при этом вариация показателя преломления в направлении, перпендикулярном направлению роста полупроводниковой структуры, находится между основой и светоизлучающим слоем.

Полупроводниковая структура для фотопреобразующего и светоизлучающего устройств состоит из полупроводниковой подложки (1) с лицевой поверхностью, разориентированной от плоскости (100) на (0,5-10) градусов и, по меньшей мере, одного р-n перехода (2), включающего, по меньшей мере, один активный полупроводниковый слой (3), заключенный между двумя барьерными слоями (4) с шириной запрещенной зоны Eg0.

Изобретение относится к технике индикации и может быть использовано при создании цветных газоразрядных индикаторных панелей постоянного и переменного тока. .
Изобретение относится к областям техники, в которых используется трафаретная печать, например, при изготовлении электродов и диэлектрических барьеров газоразрядных индикаторных панелей (ГИП).

Изобретение относится к системам отображения на экранах цветных электронно-лучевых трубок, а также цветных дисплеев различных типов. .

Изобретение относится к области технической физики. .

Изобретение относится к электронной технике, в частности к электролюминесцентным экранам, индикаторам и т.п. .

Изобретения могут быть использованы в системах освещения. Смесь люминофоров состоит из редкоземельного люминофора красного свечения, например YOE, редкоземельного люминофора зеленого свечения, например одного из LAP, CAT или CBT, и редкоземельного люминофора синего свечения, например одного из BAM и SCAp.
Наверх