Способ получения 6-(м,n-галогенфенил)-1,11-диокса-4,8-дитиа-6-азациклотридеканов

Изобретение относится к способу получения 6-(м,n-галогенфенил)-1,11-диокса-4,8-дитиа-6-азациклотридеканов общей формулы (1):

в котором N,N-бис(метоксиметил)-N-арил(м-хлорфенил, n-хлорфенил, м-бромфенил, n-бромфенил, м-фторфенил, n-фторфенил)амины подвергают взаимодействию с 3,6-диокса-1,8-октандитиолом в присутствии катализатора CuCl при мольном соотношении N,N-бис(метоксиметил)-N-ариламин:3,6-диокса-1,8-октандитиол:CuCl=1:1:(0,03-0,07) в хлористом метилене в качестве растворителя, при комнатной температуре (~20°C) и атмосферном давлении в течение 6-8 ч. Технический результат: получение 6-(м,n-галогенфенил)-1,11-диокса-4,8-дитиа-6-азациклотридеканов с высоким выходом. 1 табл., 1 пр.

 

Предлагаемое изобретение относится к области органической химии, конкретно, к способу получения 6-(м,п-галогенфенил)-1,11-диокса-4,8-дитиа-6-азациклотридеканов общей формулы (1):

Циклические азот-, кислород- и серусодержащие макроциклы перспективны в качестве селективных лигандов (Eds. Y. Inoue, G.W. Gokel. Cation Binding by Macrocycles. Marcel Dekker, New York. 1990. R.M. Izatt, K. Pawlak, J.S. Bradshaw, R.L. Bruening. Chem. Rev., 1991, 91, 1721 p.), применяются для экстракции и разделения катионов металлов (A.T. Yordanov, D.M. Roundhill. Coord. Chem. Rev. 1998. 170, 93 p. K. Gloe, H. Graubaum, M. Wust, T. Rambusch, W. Seichter. Coord. Chem. Rev. 2001. 222. 103 p.), для транспорта ионов через мембраны (P. Bushlmann, E. Pretsch, E. Bakker. Chem. Rev. 1998, 98, 1593 p), в фоточувствительных системах (B. Valeur, I. Leray. Coord. Chem. Rev. 2000. 205. 3 p.), выступают в роли межфазных катализаторов, моделирующих ферментативную активность (M.C. Feiters. In comprehensive Supramolecular Chemistry. Pergamon Press. Oxford. 1996, 9. 267 p.).

Известен способ (В.Р. Ахметова, З.Т. Ниатшина, Г.Р. Хабибуллина, И.С. Бушмаринов, А.О. Борисова, З.А. Старикова, Л.Ф. Коржова, Р.В. Кунакова. Синтез, кристаллическая структура и взаимные превращения новых N-арил-1,3,5-дитиазинанов, 1,3,5-тиадиазинанов и 1,5-дитиа-3,7-диазациклооктанов // Изв. АН. Сер. хим., 2010, 5, с. 980-986) получения восьмичленных N,S-содержащих гетероциклов, а именно N,N-дифенил-1,5-дитиа-3,7-диазациклооктанов (2), взаимодействием анилина, водного формальдегида (37%) и сероводорода при температуре 0°C по схеме:

Известным способом не могут быть получены 6-(м,п-галогенфенил)-1,11-диокса-4,8-дитиа-6-азациклотридеканы (1) общей формулы (1).

Известен способ (Р.Р. Хайруллина, Б.Ф. Акманов, Р.В. Кунакова, А.Г. Ибрагимов, У.М. Джемилев. Эффективное каталитическое тиометилирование гидразидов карбоновых кислот // Изв. АН. Сер. хим., 2013, 1, с. 98-103) получения N-(1,5,3-дитиазонан-3-ил)амидов (3) взаимодействием N1,N1,N8,N8-тетраметил-2,7-дитиаоктан-1,8-диамина с гидразидами карбоновых кислот в хлороформе в присутствии SmCl3·6H2O по схеме:

Известным способом не могут быть получены 6-(м,n-галогенфенил)-1,11-диокса-4,8-дитиа-6-азациклотридеканы (1) общей формулы (1).

Известен способ (Н.Н. Мурзакова, К.И. Прокофьев, Т.В. Тюмкина, А.Г. Ибрагимов. Синтез N-арил-1,5,3-дитиазепинанов и N-арил-1,5,3-дитиазоцинанов с участием Sm- и Co-содержащих катализаторов // ЖОрХ. 2012. Т. 48. Вып. 4. С. 590) получения 3-арил-1,5,3-дитиазепинанов или 3-арил-1,5,3-дитиазоцинанов общей формулы (4) взаимодействием ариламинов с N-трет-бутил-1,5,3-дитиазепинаном или N-трет-бутил-1,5,3-дитиазоцинаном в присутствии катализатора Sm(NO3)3·6H2O с выходом 63-86% по схеме:

По известному способу 6-(м,n-галогенфенил)-1,11-диокса-4,8-дитиа-6-азациклотридеканы общей формулы (1) не образуются.

Предлагается новый способ получения 6-(м,n-галогенфенил)-1,11-диокса-4,8-дитиа-6-азациклотридеканов (1) общей формулы (1).

Сущность способа заключается во взаимодействии N,N-бис(метоксиметил)-N-арил(м-хлорфенил, п-хлорфенил, м-бромфенил, n-бромфенил, м-фторфенил, n-фторфенил)амина с 3,6-диокса-1,8-октандитиолом в присутствии CuCl, взятыми в мольном соотношении N,N-бис(метоксиметил)-N-ариламин:3,6-диокса-1,8-октандитиол:CuCl=1:1:(0,03-0,07), предпочтительно 1:1:0,05, при комнатной (~20°C) температуре и атмосферном давлении в хлористом метилене в качестве растворителя в течение 6-8 ч, предпочтительно 7 ч. Выход соответствующих 6-(м,n-галогенфенил)-1,11-диокса-4,8-дитиа-6-азациклотридеканов общей формулы (1) составляет 78-91%. Реакция протекает по схеме:

6-(м,n-Галогенфенил)-1,11-диокса-4,8-дитиа-6-азациклотридеканы общей формулы (1) образуются только лишь с участием бис(метоксиметил)-N-ариламинов и 3,6-диокса-1,8-октандитиола, взятых в стехиометрических количествах. При другом соотношении исходных реагентов снижается выход целевых продуктов (1). Без катализатора реакция не идет.

Проведение указанной реакции в присутствии катализатора CuCl больше 7 мол.% в расчете на исходный N,N-бис(метоксиметил)-N-ариламин не приводит к существенному увеличению выхода целевого продукта (1). Использование катализатора CuCl менее 3 мол.% снижает выход (1), что связано, возможно, со снижением каталитически активных центров в реакционной массе. Реакции проводили при температуре 20°C. При температуре выше 20°C (например, 60°C) увеличиваются энергозатраты, а при температуре ниже 20°C (например, 10°C) снижается скорость реакции. Опыты проводили в этиловом эфире уксусной кислоты, т.к. в нем хорошо растворяются исходные реагенты и целевые продукты.

Существенные отличия предлагаемого способа:

В известном способе реакция идет с образованием 3-арил-1,5,3-дитиазепинанов и 3-арил-1,5,3-дитиазоцинанов общей формулы (4) взаимодействием ариламинов с N-трет-бутил-1,5,3-дитиазепинаном или трет-бутил-1,5,3-дитиазоцинаном в присутствии катализатора Sm(NO3)3·6H2O с выходами 63-86%.

В предлагаемом способе в качестве исходных реагентов применяются N,N-бис(метоксиметил)-N-арил(м-хлорфенил, n-хлорфенил, м-бромфенил, п-бромфенил, м-фторфенил, n-фторфенил)амины и 3,6-диокса-1,8-октандитиол, а в качестве катализатора CuCl. В отличие от известных предлагаемый способ позволяет синтезировать 6-(м,n-галогенфенил)-1,11-диокса-4,8-дитиа-6-азациклотридеканы общей формулы (1) с выходом 78-91%.

Способ поясняется следующими примерами:

ПРИМЕР 1. В сосуд Шленка, установленный на магнитной мешалке, в атмосфере аргона помещают 0,21 г (1 ммоль) N,N-бис(метоксиметил)-N-(м-хлорфенил)амина и 0,18 г (1 ммоль) 4,7-диокса-1,10-декандитиола, 5 мл хлористого метилена, 0,005 г (5 мол.% в расчете на N,N-бис(метоксиметил)-N-o-хлорфениламин) CuCl, перемешивают при комнатной (~20°C) температуре 7 ч, выделяют N-(м-хлорфенил)-1,11-диокса-4,8-дитиа-6-азациклотридекан (1) с выходом 85%.

Другие примеры, подтверждающие способ, приведены в табл. 1.

Спектральные характеристики N-(м-хлорфенил)-1,11-диокса-4,8-дитиа-6-азациклотридекана:

Спектр ЯМР 1Н (5, м.д., CDCl3, J/Гц): 2.68 (т., 4Н, СН2 (6,13) J=4.8); 3.70 (с, 4Н, СН2 (9,10)); 3.90 (т, 4Н, СН2 (12,7) 7=4.5); 5.08 (с, 4Н, СН2 (2,4)); 6.88 (д.д., 1Н, СН (19) J=8.5); 7.00 (т., 1Н, СН (15) J=2); 6.79 (д.д., 1H, СН (17) J=8.5); 7.18 (т, 1Н, СН (18) J=8.25). Спектр ЯМР 13С (δ, м.д., J/Гц): 29.34 (С-6,13); 54.98 (С-2,4); 70.30 (С-9,10); 74.74 (С-12,7); 111.67 (С-19); 113.51 (С-15); 118.20 (С-17); 130.05 (С-18); 135.04(С-16); 146.96 (С-14).

Спектральные характеристики N-(n-хлорфенил)-1,11-диокса-4,8-дитиа-6-азациклотридекана:

Спектр ЯМР 1Н (δ, м.д., CDCl3, J/Гц): 2.69 (т., 4Н, СН2 (6,13) J=4.4); 3.70 (с, 4Н, СН2 (9,10)); 3.90 (т, 4Н, СН2 (12,7) J=4.8); 5.09 (с, 4Н, СН2 (2,4)); 6.92-6.95 (м, 2Н, СН (15,19)); 7.20-7.27 (м, 4Н, СН (16,18)). Спектр ЯМР 13С (5, м.д., J/Гц): 29.30 (С-6,13); 54.90 (С-2,4); 70.30 (С-9,10); 74.74 (С-12,7); 114.07 (С-15,19); 129.50 (С-16,18); 123.20 (С-17); 147.06 (С-14).

Спектральные характеристики N-(м-бромфенил)-1,11-диокса-4,8-дитиа-6-азациклотридекана:

Спектр ЯМР 1Н (δ, м.д., CDCl3, J/Гц): 2.67 (т., 4Н, СН2 (6,13) J=4.8); 3.70 (с, 4Н, СН2 (9,10)); 3.88 (т, 4Н, СН2 (12,7) J=4.5); 5.06 (с, 4Н, СН2 (2,4)); 6.90-6.93 (м, 1Н, СН (15)); 6.90-6.92 (м, 1H, СН (19)); 7.11 (т, 1Н, СН (18) J=8.0)); 7.15 (т, 1Н, СН (17) J=2.0)). Спектр ЯМР 13С (δ, м.д., J/Гц): 29.34 (С-6,13); 54.71 (С-2,4); 70.30 (С-9,10); 74.74 (С-12,7); 112.10 (С-19); 116.30 (С-17); 121.05 (С-15); 123.31 (С-16); 130.34 (С-18); 147.13 (С-14).

Спектральные характеристики N-(n-бромфенил)-1,11-диокса-4,8-дитиа-6-азациклотридекана:

Спектр ЯМР 1Н (δ, м.д., CDCl3, J/Гц): 2.668 (т., 4Н, СН2 (6,13) J=4.8); 3.70 (с, 4Н, СН2 (9,10)); 3.90 (т, 4Н, СН2 (12,7) J=4.8); 5.07 (с, 4Н, СН2 (2,4)); 6.91-6.94 (м, 2Н, СН (15,19)); 7.10-7.15 (м, 2Н, СН (17,18)). Спектр ЯМР 13С (δ, м.д., J/Гц): 29.32 (С-6,13); 54.92 (С-2,4); 70.31 (С-9,10); 74.75 (С-12,7); 112.08 (С-19); 116.32 (С-15,19); 121.10 (С-16,18); 123.19 (С-17); 147.11 (С-14).

Спектральные характеристики N-(м-фторфенил)-1,11-диокса-4,8-дитиа-6-азациклотридекана:

Спектр ЯМР 1Н (δ, м.д., CDCl3, J/Гц): 2.69 (т., 4Н, СН2 (6,13) J=4.5); 3.71 (с, 4Н, СН2 (9,10)); 3.91 (т, 4Н, СН2 (12,7) J=4.75); 5.09 (с, 4Н, СН2 (2,4)); 6.52 (т., 1H, СН (17) J=8.25); 6.72-6.77 (м., 2Н, СН (15,19)); 7.21 (к., 1Н, СН (18) J=8.0). Спектр ЯМР 13С (δ, м.д., J/Гц): 29.37 (С-6,13); 55.13 (С-2,4); 70.30 (С-9,10); 74.74 (С-12,7); 100.91 (д, С-15, J=21); 104.91 (д, С-17, J=16.9); 109.12 (С-19); 130.19 (д, С-18, J=8.0); 147.56 (С-14); 162.99, 164.91 (С-16, J=192.8).

Спектральные характеристики N-(n-фторфенил)-1,11-диокса-4,8-дитиа-6-азациклотридекана:

Спектр ЯМР 1Н (δ, м.д., CDCl3, J/Гц): 2.69 (т., 4Н, СН2 (6,13) J=4.75); 3.70 (с, 4Н, СН2 (9,10)); 3.90 (т, 4Н, СН2 (12,7) J=4.5); 5.09 (с, 4Н, СН2 (2,4)); 6.94-7.00 (м., 4Н, СН (15,16,18,19)). Спектр ЯМР 13С (δ, м.д., J/Гц): 29.39 (С-6,13); 55.70 (С-2,4); 70.30 (С-9,10); 74.73 (С-12,7); 114.37 (С-15,19); 115.60 (д, С-16,18, J=17.6); 142.15 (С-14); 155.51, 157.39 (С-17, J=188.5).

Способ получения 6-(м,n-галогенфенил)-1,11-диокса-4,8-дитиа-6-азациклотридеканов общей формулы (1):

отличающийся тем, что N,N-бис(метоксиметил)-N-арил(м-хлорфенил, n-хлорфенил, м-бромфенил, n-бромфенил, м-фторфенил, n-фторфенил)амины подвергают взаимодействию с 3,6-диокса-1,8-октандитиолом в присутствии катализатора CuCl при мольном соотношении N,N-бис(метоксиметил)-N-ариламин:3,6-диокса-1,8-октандитиол:CuCl=1:1:(0,03-0,07) в хлористом метилене в качестве растворителя, при комнатной температуре (~20°C) и атмосферном давлении в течение 6-8 ч.



 

Похожие патенты:

Изобретение относится к способу получения алкил 2-(1,11-диокса-4,8-дитиа-6-азациклотридекан-6-ил)алканоатов общей формулы I: Технический результат: получены новые алкил 2-(1,11-диокса-4,8-дитиа-6-азациклотридекан-6-ил)алканоаты, которые могут найти применение в качестве селективных комплексообразователей, ионофоров и эффективных сорбентов для выделения и очистки драгоценных металлов. 1 табл., 1 пр.

Изобретение относится к способу получения (1,11-диокса-4,8-дитиа-6-азациклотридекан-6-ил)-хинолинов общей формулы (1): которые могут найти применение в качестве сорбентов и экстрагентов драгоценных металлов, а также селективных комплексообразователей. Технический результат: разработан новый способ получения (1,11-диокса-4,8-дитиа-6-азациклотридекан-6-ил)-хинолинов, позволяющий селективно получать индивидуальные соединения. 1 табл., 1 пр.

Изобретение относится к способу получения 6-[4-гидрокси(тио,карбокси)фенил]-1,11-диокса-4,8-дитиа-6-азациклотридеканов общей формулы (1): . Технический результат: разработан новый способ получения соединений общей формулы (1), которые могут найти применение в качестве сорбентов и экстрагентов драгоценных металлов, а также селективных комплексообразователей, заключающийся во взаимодействии 4-аминофенола, или 4-аминотиофенола, или 4-аминобензойной кислоты с 1,6,9-триокса-3,12-дитиациклотридеканом в присутствии катализатора Sm(NO3)3⋅6H2O. 1 табл., 1 пр.
Наверх