Способ определения единичного импульса твердого топлива и устройство для его осуществления

Группа изобретений относится к ракетной технике, а именно к измерению характеристик новых композиций твердого ракетного топлива. Способ включает сжигание образца исследуемого топлива в объеме газа, измерение реактивной силы истекающих продуктов сгорания, причем сжигание образца топлива проводят в потоке кислородсодержащего высокотемпературного газа с параметрами, соответствующими обдуву заряда твердого топлива натурного двигателя, одновременно с образцом исследуемого топлива обдувают таким же расходом газа в противоположном направлении геометрически одинаковый с ним инертный имитатор, при этом образец исследуемого топлива и имитатор размещают в отдельных одинаковых модулях, каждый из которых выполнен с возможностью моделирования камеры дожигания натурного двигателя. Также представлено устройство для осуществления данного способа. Достигается повышение достоверности определения. 2 н. и 2 з.п. ф-лы, 1 пр., 1 ил.

 

Изобретение относится к ракетной технике, а именно к измерению характеристик новых композиций твердого ракетного топлива, в частности для гиперзвуковых воздушно-реактивных двигателей (ГПВРД).

Из уровня техники известен способ определения единичного импульса твердого топлива, принятый за прототип для заявляемого способа по патенту РФ №2494394 (опубл. 27.09.2013 г), включающий сжигание образца исследуемого топлива в объеме газа, измерение реактивной силы истекающих продуктов сгорания.

К недостаткам прототипа заявляемого способа следует отнести невозможность моделирования процесса горения заряда твердого топлива в натурном двигателе в связи с отсутствием обдува образца исследуемого топлива высокоскоростным, высокотемпературным кислородсодержащим газом. Использование малоразмерных образцов топлива не позволяет учесть потери единичного импульса, которые могут возникнуть при работе натурного двигателя. Перечисленные недостатки снижают достоверность определения величины единичного импульса (основной энергетической характеристики твердого топлива).

Известна газодинамическая дифференциальная установка, принятая за прототип заявляемого устройства (Вестник МГТУ им. Н.Э. Баумана. Серия «Машиностроение», 2006 г., №2, с. 54-59), содержащая установленную горизонтально с возможностью осевого перемещения форкамеру, контактирующую с силоизмерительным элементом и снабженную узлом ввода кислородсодержащего газа и двумя сменными цилиндрами, пристыкованными к ней соосно и оснащенными расходными соплами.

Известная установка предназначена для проведения сравнительных испытаний газодинамического совершенства различных деталей, например, сопел реактивных двигателей в высокоскоростном потоке холодного кислородсодержащего газа (воздуха). Ее конструкция не предусматривает возможности моделирования процесса горения заряда твердого топлива в реальном двигателе. В ней отсутствуют конструктивные элементы (в частности, элемент нагрева кислородсодержащего газа и средства, предотвращающие перемещение исследуемого образца и инертного имитатора в направлении выходных сопел потоком газа), позволяющие размещать в ней и сжигать образец исследуемого топлива.

Задачей предлагаемой группы изобретений является создание более эффективных способа определения единичного импульса твердого топлива и устройства для его осуществления, позволяющих повысить достоверность измерения основной энергетической характеристики исследуемого топлива за счет обеспечения возможности моделирования условий горения заряда твердого топлива в реальном двигателе.

Поставленная задача достигается предлагаемым способом определения единичного импульса твердого топлива, включающим сжигание образца исследуемого топлива в объеме газа, измерение реактивной силы истекающих продуктов сгорания. Особенность заключается в том, что сжигание образца топлива проводят в потоке кислородсодержащего высокотемпературного газа с параметрами, соответствующими обдуву заряда твердого топлива натурного двигателя, одновременно с образцом исследуемого топлива обдувают таким же расходом газа в противоположном направлении геометрически одинаковый с ним инертный имитатор, при этом образец исследуемого топлива и имитатор размещают в отдельных одинаковых модулях, каждый из которых выполнен с возможностью моделирования камеры дожигания натурного двигателя.

В частности, нагрев кислородсодержащего газа до высокой температуры проводят его смешением с продуктами сгорания безметального топлива, при этом параметры кислородсодержащего газа и продуктов сгорания безметального топлива выбирают из условия соответствия параметров полученной смеси параметрам газа, обдувающего заряд твердого топлива натурного двигателя.

По замеряемой разности реактивных сил, возникающих при истечении высокотемпературного газа в одном направлении и высокотемпературного газа с продуктами горения исследуемого образца твердого топлива в противоположном направлении, определяют значение единичного импульса исследуемого образца.

Проведенный сопоставительный анализ показывает, что заявляемый способ определения единичного импульса твердого топлива отличается от прототипа иным используемым газом - кислородсодержащим (в прототипе - инертный газ); иной организацией процесса сжигания исследуемого образца твердого топлива - в потоке высокотемпературного газа (в прототипе - статичное состояние газа).

Поставленная задача достигается предлагаемым устройством для определения единичного импульса твердого топлива, содержащим установленную горизонтально с возможностью осевого перемещения форкамеру, контактирующую с силоизмерительным элементом и снабженную узлом ввода кислородсодержащего газа и двумя сменными цилиндрами, пристыкованными к ней соосно и оснащенными расходными и выходными соплами. Особенность заключается в том, что цилиндры представляют собой одинаковые модули, каждый из которых выполнен с возможностью моделирования камеры дожигания натурного двигателя, причем расходные и выходные сопла, расположены во внутреннем объеме каждого цилиндра, в одном из цилиндров размещен образец исследуемого топлива, а в другом - геометрически одинаковый с ним инертный имитатор, каждый цилиндр снабжен средством, предотвращающим перемещение исследуемого образца и инертного имитатора в направлении выходного сопла, при этом форкамера снабжена элементом нагрева кислородсодержащего газа.

В частности, в качестве элемента нагрева кислородсодержащего газа используют газодинамически сообщенный с форкамерой газогенератор на безметальном топливе.

Проведенный сопоставительный анализ показывает, что заявляемое устройство для определения единичного импульса твердого топлива отличается от прототипа приданием сменным цилиндрам функции камер дожигания (в прототипе такая возможность не предусматривается), наличием образца исследуемого твердого топлива, наличием инертного имитатора, наличием средства, предотвращающего перемещение исследуемого образца и инертного имитатора в направлении выходного сопла; наличием элемента нагрева кислородсодержащего газа; иным размещением выходных и расходных сопел - во внутреннем объеме каждого цилиндра (в прототипе - за пределами внутреннего объема).

Предлагаемая группа изобретений иллюстрируется графическим изображением.

На чертеже схематически показан продольный разрез устройства для определения единичного импульса твердого топлива с твердотопливным газогенератором, в качестве элемента нагрева кислородсодержащего газа.

Устройство для определения единичного импульса твердого топлива содержит форкамеру 1, пристыкованные (присоединенные любым известным специалисту в данной области техники способом) к ней геометрически одинаковые цилиндры 2 и 3, штуцер 4 подачи кислородсодержащего газа. Цилиндры 2 и 3 снабжены расходными соплами 5 и 6 соответственно. В цилиндре 2 размещен образец 7 исследуемого топлива, а в цилиндре 3 - инертный имитатор 8. Цилиндры 2 и 3 представляют собой одинаковые модули, каждый из которых выполнен с возможностью моделирования камеры дожигания ракетного двигателя, снабжены выходными соплами 9 и 10 соответственно. Каждый цилиндр снабжен средством 11, предотвращающим перемещение исследуемого образца 7 и инертного имитатора 8 в направлении выходного сопла 9 и 10 соответственно потоком газа, выполненного в виде, например, одного сплошного или нескольких одиночных выступов на внутренней поверхности. Форкамера 1 снабжена элементом 12 нагрева кислородсодержащего газа, представляющим собой, например, твердотопливный газогенератор, содержащий корпус 13, теплозащитное покрытие 14, заряд 15 твердого безметального топлива, или, например, плазменный генератор. Корпус 13 взаимодействует с дифференциальным датчиком силы 16. Устройство за цилиндры 2 и 3 подвешено на гибких элементах 17, например, полосах из углеродистой стали (ГОСТ 7419-90).

Предлагаемое устройство для определения единичного импульса твердого топлива работает следующим образом.

Сначала в форкамеру 1 через штуцер 4 подают кислородсодержащий газ. Состав газа подбирают таким образом, чтобы после его смешения с продуктами сгорания безметального заряда 15 твердого топлива (а возможно и дожигания) в смеси газов находилось требуемое для газификации образца 7 исследуемого топлива содержание кислорода. Затем инициируют работу элемента 12 нагрева кислородсодержащего газа. Высокотемпературный газ из форкамеры 1 через расходные сопла 5 и 6 поступает в цилиндры 2 и 3.

Количество высокотемпературного газа, поступающего в цилиндры 2 и 3 одинаково и обеспечивается равенством диаметров отверстий расходных сопел 5 и 6.

Высокотемпературный газ, истекая из цилиндра 3 через выходное сопло 10, создает реактивную силу, равную произведению массы поступившего в цилиндр 3 газа на единичный импульс этого газа.

Высокотемпературный газ, поступив из форкамеры 1 через расходное сопло 5 в цилиндр 2, приведет к газификации образца 7 исследуемого твердого топлива и дожиганию продуктов газификации в потоке высокотемпературного газа, продолжающего поступать из форкамеры 1.

Сгоревшие продукты газификации образца 7 имеют собственное значение единичного импульса, отличное от единичного импульса высокотемпературного газа из форкамеры 1.

Совместное истечение продуктов газификации образца 7 и высокотемперного газа через выходное сопло 9 цилиндра 2 создает реактивную силу, равную сумме произведения массы продуктов газификации образца 7 на единичный импульс этих продуктов и произведения массы высокотемпературного газа на его единичный импульс.

Так как массы и единичные импульсы высокотемпературного газа, поступившего из форкамеры 1 в цилиндры 2 и 3, равны и противоположно направлены, то дифференциальным датчиком силы 16 будет зафиксирована только разность реактивных сил, равная произведению массы продуктов газификации образца 7 на единичный импульс этих продуктов.

Зафиксированную датчиком 16 разность реактивных сил за время горения исследуемого образца 7 твердого топлива интегрируют по времени.

Единичный импульс продуктов сгорания исследуемого образца 7 определяют как отношение интеграла разности реактивных сил за время горения образца 7 к изменению его массы.

Размещение инертного имитатора 8 в цилиндре 3 создает идентичные условия движения высокотемпературного газа в цилиндрах 2 и 3.

Пример конкретного выполнения.

В качестве безметального топлива для газогенератора использовали твердое топливо на основе каучука СКИ-НЛ-М, перхлората аммония и октогена.

Использовали образец исследуемого топлива в виде цилиндрической канальной шашки со следующими размерами: наружный диаметр - 36 мм, внутренний диаметр - 10 мм, длина - 70 мм.

Масса заряда исследуемого топлива - 0,0985 кг.

Использовали сменные цилиндры (камеры дожигания) диаметром 40 мм и длиной 400 мм каждый.

В форкамеру подавали газ с содержанием кислорода 50%, что обеспечило его концентрацию в обдувающем газе после дожигания продуктов сгорания топлива газогенератора на уровне 22% при температуре 1670°К. Длительность эксперимента составила 14,3 с.

Интеграл разности реактивных сил, определенный по результатам измерения дифференциальным датчиком Q11 (производитель - компания НВМ GmbH, Германия), составил 28,13 кг·с.

Значение единичного импульса исследуемого образца топлива составило 28,13:0,0985=285,6 с.

Проведенные испытания показали работоспособность заявляемого способа и устройства для его осуществления.

Таким образом, предлагаемый способ определения единичного импульса твердого топлива и устройство для его осуществления практически реализуемы, позволяют удовлетворить давно существующую потребность в решении поставленной задачи.

1. Способ определения единичного импульса твердого топлива, включающий сжигание образца исследуемого топлива в объеме газа, измерение реактивной силы истекающих продуктов сгорания, отличающийся тем, что сжигание образца топлива проводят в потоке кислородсодержащего высокотемпературного газа с параметрами, соответствующими обдуву заряда твердого топлива натурного двигателя, одновременно с образцом исследуемого топлива обдувают таким же расходом газа в противоположном направлении геометрически одинаковый с ним инертный имитатор, при этом образец исследуемого топлива и имитатор размещают в отдельных одинаковых модулях, каждый из которых выполнен с возможностью моделирования камеры дожигания натурного двигателя.

2. Способ по п. 1, отличающийся тем, что нагрев кислородсодержащего газа до высокой температуры проводят его смешением с продуктами сгорания безметального топлива, при этом параметры кислородсодержащего газа и продуктов сгорания безметального топлива выбирают из условия соответствия параметров полученной смеси параметрам газа, обдувающего заряд твердого топлива натурного двигателя.

3. Устройство для определения единичного импульса твердого топлива, содержащее установленную горизонтально с возможностью осевого перемещения форкамеру, контактирующую с силоизмерительным элементом и снабженную узлом ввода кислородсодержащего газа и двумя сменными цилиндрами, пристыкованными к ней соосно и оснащенными расходными и выходными соплами, отличающееся тем, что цилиндры представляют собой одинаковые модули, каждый из которых выполнен с возможностью моделирования камеры дожигания натурного двигателя, причем расходные и выходные сопла расположены во внутреннем объеме каждого цилиндра, в одном из цилиндров размещен образец исследуемого топлива, а в другом - геометрически одинаковый с ним инертный имитатор, каждый цилиндр снабжен средством, предотвращающим перемещение исследуемого образца и инертного имитатора в направлении выходного сопла, при этом форкамера снабжена элементом нагрева кислородсодержащего газа.

4. Устройство по п. 3, отличающееся тем, что в качестве элемента нагрева кислородсодержащего газа используют газодинамически сообщенный с форкамерой газогенератор на безметальном топливе.



 

Похожие патенты:

Изобретение относится к области технической физики и касается способа и устройства для исследования воздушной взрывной волны. В исследуемой среде создают насыщенный пар, близкий к критической точке фазового перехода.

Изобретение относится к химмотологии применительно к химическим индикаторам на твердофазных носителях для определения нефтепродуктов. Индикаторный элемент содержит подложку, индикатор и закрепленный на подложке белый впитывающий материал, а индикатор выполнен из мелкодисперсного красителя, растворимого в жидком углеводородном топливе, но не растворимого в воде, и размещен между подложкой и белым впитывающим материалом, при этом в качестве подложки индикаторный элемент содержит гидроизоляционную непрозрачную пленку с липким слоем.

Изобретение относится к области аналитической химии, а именно к экспресс-обнаружению агрессивных химических веществ кислого характера на горизонтальных, наклонных и вертикальных поверхностях.

Группа изобретений относится к контролю (мониторингу) содержания механических примесей в потоках жидких сред. Способ контроля содержания механических примесей в рабочих жидкостях, в частности в жидком углеводородном топливе, заключается в том, что поток топлива пропускают, поддерживая постоянный расход, через систему фильтрующих перегородок с последовательно уменьшающимися размерами пор, при этом измеряют давление перед каждой фильтрующей перегородкой и давление за ней, вычисляют на основании изменения разности давлений гидравлическое сопротивление фильтрующей перегородки по времени, затем по полученным данным определяют степень засорения фильтрующей перегородки путем сравнения с имеющимися тарировочными данными, показывающими изменение гидравлического сопротивления фильтрующей перегородки в зависимости от содержания механических примесей, и на основе этих данных определяют количество в топливе механических примесей определенного размера.

Изобретения могут быть использованы в коксохимической промышленности. Способ оценки термопластичности углей или спекающих добавок включает набивку угля или спекающей добавки в емкость с получением образца, размещение слоя набивки из частиц на образце, нагрев образца с поддержанием при этом образца и слоя набивки при постоянном объеме или с приложением постоянной нагрузки на слой набивки, измерение расстояния проникновения, представляющее собой термопластичность угля, на которое расплавленный образец проникает в полости слоя набивки, и оценку термопластичности образца с использованием измеренного значения.
Изобретение относится к области исследования качества применения эксплуатационных материалов в баках систем силовой установки и трансмиссии. Способ определения показателей качества применяемых топлив и масел на военной гусеничной машине, заключается в определении температуры застывания, цетанового числа, количества серы, температуры помутнения, температуры застывания, плотности, наличия воды для топлива.

Изобретение относится к методам индикаторного выявления следовых количеств взрывчатых веществ и компонентов взрывчатых составов на основе трех групп классов соединений: нитроароматических соединений; нитраминов и нитроэфиров; ионных нитратов.
Изобретение относится к области аналитической химии, а именно к экспресс-обнаружению взрывчатых веществ (ВВ) на основе органических пероксидов. Способ основан на фиксации индикаторным методом пероксида водорода, выделившегося при разложении взрывчатых веществ.
Группа изобретений относится к контролю параметров качества углеводородных топлив. Индикаторное тестовое средство для определения содержания N-метиланилина в углеводородных топливах представляет собой нейтральный оксид алюминия с иммобилизованным на его поверхности гексацианоферратом (III) калия, сформированный в виде таблеток.
Изобретение может быть использовано для оценки моющей способности бензина и дизельного топлива и влияния их моющей способности на технико-экономические и экологические (ТЭ) характеристики двигателя (Д).

Изобретение относится к области дезинфекции, дезактивации поверхностей объектов и обнаружения следов взрывчатых веществ на основе полинитроароматических соединений типа динитротолуола. При этом для комплексного проведения дезактивации, дезинфекции и обнаружения следов взрывчатых веществ на основе динитротолуола проводят аэрозольное распыление на поверхность многофункционального индикаторного состава, включающего мас. %: дидецилдиметилбензиламмоний хлорид - 25,0-30,0; алкилдиметиламин - 1,0; алкилбензолсульфонат - 5,5-7,0; глутаровый альдегид - 1,0; метиловый спирт - 2,0-5,0; неионогенное поверхностно-активное вещество (ОП-7) - 0,5-1,5; щавелевая кислота - 0,5-2,0; гексаметафосфат натрия - 0,5-1,0; дитизон - 0,04-0,07; вода - до 100%. Многофункциональный индикаторный состав наносится путем орошения анализируемой поверхности с помощью аэрозольного устройства с расстояния 0,1-0,2 м от нее с подветренной стороны с расходом 0,3-0,5 л/кв.м. Дезактивация и дезинфекция обеспечивается спустя не менее 0,5 ч после проведения обработки, а обнаружение следов взрывчатых веществ на основе динитротолуола осуществляется по появлению характерного индикационного эффекта - коричневого окрашивания на поверхности объекта, спустя 3-5 минут после нанесения многофункционального индикаторного состава, сохраняющегося длительное время. Достигается повышение эффективности и надежности обработки. 1 табл.

Изобретение относится к области дезинфекции и предназначено для дезактивации поверхностей объектов с одновременным обнаружением следов взрывчатых веществ на основе тринитротолуола. Для осуществления способа проводят аэрозольное распыление на поверхность комбинированного индикаторного состава, включающего бензалконий хлорид, алкилдиметиламин, алкилбензолсульфонат, формальдегид, этиловый спирт, неионогенное поверхностно-активное вещество (ОП-7), лимонную кислоту, ортофосфорную кислоту, дитизон и воду. Состав наносят путем орошения анализируемой поверхности с помощью аэрозольного устройства с расстояния 0,1-0,2 м от нее с подветренной стороны с расходом 0,4-0,6 л/м2. Дезактивация и дезинфекция обеспечивается спустя не менее 0,6 ч после проведения обработки. Обнаружение следов взрывчатых веществ на основе тринитротолуола осуществляется по появлению коричневого окрашивания на поверхности объекта, спустя 5-6 мин после нанесения комбинированного индикаторного состава. Изобретение позволяет обеспечить комплексное проведение дезактивации, дезинфекции и обнаружения следов взрывчатых веществ. 1 табл.

Использование: для определения объемного содержания воды в нефти. Сущность изобретения заключается в том, что способ основан на определении изменений параметров электромагнитного поля в потоке исследуемой жидкой среды при изменении ее компонентного состава, поток жидкости в зоне измерений разбивают на множество изолированных потоков, каждый из которых взаимодействует с резонатором электромагнитного поля через выделенный участок поверхности контакта, в результате чего в резонаторе формируется электромагнитное поле, обобщающее влияния всех изолированных потоков жидкости, параметры которого принимают за среднее взвешенное для совокупности потоков в изолированных каналах и сопоставляют с соответствующими показателями продукта-аналога, обладающего известными свойствами, которые могут быть эмпирически идентифицированы как доля воды в смеси с углеводородной жидкостью. Технический результат: обеспечение возможности повышения эффективности влагомера и повышения точности определения содержания воды в нефти, перекачиваемой по трубопроводу. 2 н. и 4 з.п. ф-лы, 8 ил.

Изобретение относится к области исследования характеристик высокоэнергетических материалов (ВЭМ) и может быть использовано для определения времени задержки зажигания ВЭМ лучистым тепловым потоком. Способ заключается в непосредственном измерении времени задержки зажигания ВЭМ, на поверхность которого подается лучистый тепловой поток через собирающую линзу, перемещающуюся с заданной скоростью относительно образца в процессе измерения. Зависимость теплового потока от времени рассчитывается по алгебраическим формулам для заданных геометрических параметров оптической системы. Технический результат - повышение точности определения времени задержки зажигания при воздействии на образец ВЭМ динамического теплового потока с возрастающей или убывающей интенсивностью. 5 ил.

Группа изобретений относится к испытанию топлив и масел и может быть использована для оценки их эксплуатационных свойств. Способ оценки диспергирующих и солюбилизирующих свойств топлив и масел включает испытание пробы исследуемого материала при оптимальной температуре в замкнутой циркуляционной системе, при котором осуществляют контакт циркулирующего оцениваемого масла или топлива с поверхностью растворяемого контрольного вещества, предварительную подготовку которого осуществляют путем его постепенного нагрева до температуры 360°C с последующей выдержкой в течение 4 часов, растворяют это вещество в процессе контакта с потоком циркулирующего масла или топлива, периодически фиксируют параметры его растворения в зависимости от температуры циркулирующего масла или топлива, интенсивности их циркуляции, величины поверхности контакта контрольного вещества с потоком циркулирующего масла или топлива, времени контакта циркулирующего масла или топлива с поверхностью контрольного вещества, при этом диспергирующие и солюбилизирующие свойства масла или топлива оценивают по скорости растворения контрольного вещества, которую оценивают по убыли веса контрольного вещества по мере его контактирования с потоком масла или топлива и по содержанию контрольного вещества в составе циркулирующего потока масла или топлива. Также представлено устройство для осуществления указанного способа. Достигается повышение надежности оценки. 2 н. и 4 з.п. ф-лы, 3 ил.

Изобретения могут быть использованы в коксохимической промышленности. Способ производства кокса включает формирование смеси углей путем смешения двух или более типов угля и карбонизацию указанной смеси углей. При этом предварительно выводится соотношение между межфазным натяжением смеси углей, состоящей из двух или более типов угля, и прочностью кокса, который произведен путем карбонизации указанной смеси углей. Межфазное натяжение указанной смеси углей получают с использованием поверхностного натяжения каждого из типов углей и определения относительных содержаний каждого из указанных типов угля с использованием указанного соотношения между межфазным натяжением и прочностью кокса, которое было предварительно выведено, таким образом, чтобы межфазное натяжение смеси углей находилось в таком интервале, в котором кокс имел бы желаемую прочность. Изобретения позволяют смешивать различное угольное сырье и производить доменный кокс с высокой прочностью. 2 н. и 13 з.п. ф-лы, 7 ил., 13 табл., 6 пр.

Изобретение относится к лабораторным методам оценки эксплуатационных свойств моторных топлив, в частности позволяет оценить стойкость к окислению бензинов, содержащих антиокислительную присадку Агидол-1, и рассчитать оптимальную дозировку присадки для получения бензина с требуемым индукционным периодом. Оценку осуществляют по интервалу времени окисления с использованием в качестве информационного показателя пробы содержания непредельных углеводородов. Зависимость для оценки индукционного периода бензинов, содержащих в своем составе антиокислительную присадку Агидол-1, имеет следующий вид: где Сn - содержание непредельных углеводородов в пробе анализируемого автомобильного бензина, об.%; K1, K2 и K3 - постоянные коэффициенты, полученные экспериментально; K1=0,000222; K2=0,000609; K3=11,8; Са - концентрация Агидола-1, ppm. Достигается эффективность управления технологическим процессом, своевременное внесение изменений в процесс смешения, обеспечение стабильно высокого качества бензинов, экспрессность оценки. 2 ил., 2 табл.

Изобретение относится к области дезинфекции, дезактивации поверхностей объектов и обнаружения следов взрывчатых веществ на основе полинитроароматических соединений типа тетранитротолуола. Согласно способу комплексной обработки объектов,производят аэрозольное распыление на анализируемую поверхность комбинированного состава, включающего: алкилдиметилбензиламмония хлорид, алкилдиметиламин, алкилбензолсульфонат, формальдегид, этиловый спирт, неионогенное поверхностно-активное вещество (ОП-7), щавелевую кислоту, ортофосфорную кислоту, дитизон, воду. Состав наносят путем орошения анализируемой поверхности с помощью аэрозольного устройства с расстояния 10 см от нее с подветренной стороны с расходом 0,7 л/кв.м. Наличие следов взрывчатых веществ определяют по появлению характерного коричневого окрашивания спустя 7 минут после нанесения состава, сохраняющегося длительное время. Технический результат заключается в расширении эксплуатационных возможностей способа комплексной обработки объектов за счет одновременного проведения дезактивации, дезинфекции и экспресс-обнаружения следов взрывчатых веществ на основе полинитроароматических соединений типа тетранитротолуола. 1 табл.

Изобретение относится к способам оценки склонности автомобильных бензинов к образованию отложений на инжекторах двигателей внутреннего сгорания. Согласно предложенному способу осуществляют прокачку испытываемого бензина через нагретый до температуры 180±3°С инжектор в течение не более четырех суток, в каждые сутки из которых в течение 18 часов осуществляют впрыск топлива через нагретый инжектор в течение 0,2 с, с интервалом между впрысками 300 с, а в течение последующих 6 часов этих суток, при выключенном нагреве, инжектор выдерживают в нерабочем состоянии. По окончании испытания фиксируют цвет поверхности донышка инжектора, который сравнивают с цветовой шкалой, а склонность испытываемого бензина к образованию отложений оценивают в баллах, при этом каждые сутки после нерабочего состояния инжектора дополнительно оценивают герметичность его запорной иглы, при разгерметизации которой бензин считают некондиционным. Технический результат - сокращение продолжительности и повышение точности результатов испытаний. 1 табл., 2 ил.

Изобретение относится к области определения октановых чисел н-алканов исследовательским методом. Согласно способу проводят измерение такого информационного параметра, как удельная магнитная восприимчивость и последующий расчет соответствующего значения октанового числа по эмпирической зависимости вида где Z - октановое число по исследовательскому методу, ед.; χ - удельная магнитная восприимчивость, 106, г-1. Достигается ускорение и повышение надежности определения. 1 пр., 1 табл.
Наверх