Способ и установка адаптивного изменения интервала между импульсами при измерении содержания воды на основе ядерного магнитного резонанса (ямр)

Использование: для измерения содержания воды на основе ядерного магнитного резонанса. Сущность изобретения заключается в том, что подвергают образец действию магнитного поля постоянного тока, образец под действием магнитного поля постоянного тока подвергают действию последовательности импульсов возбуждения на радиочастоте с интервалом между импульсами для возбуждения ядер водорода, и измеряют ЯМР-сигнал возбужденных ядер водорода, при этом оценивают время спин-решеточной релаксации для каждого образца на основе отклика на последовательность импульсов возбуждения, и регулируют интервал между импульсами как минимальный при поддержании интервала между импульсами, превышающим оцененное время спин-решеточной релаксации. Технический результат: обеспечение возможности оптимизации частоты повторения импульсов для различных уровней влажности образца. 2 н. и 17 з.п. ф-лы, 4 ил.

 

Область техники

Изобретение относится к способу адаптивного изменения интервала между импульсами при измерении содержания воды на основе ЯМР согласно преамбуле пункта 1 формулы изобретения.

Изобретение также относится к установке адаптивного регулирования интервала между импульсами при измерении содержания воды на основе ЯМР.

Предшествующий уровень техники

ЯМР-технология (ядерный магнитный резонанс) используется для определения влагосодержания материалов. Например, FR 2786567 описывает этот тип системы. Настоящие системы являются громоздкими и дорогими, и, следовательно, редко используются в коммерческих вариантах применения.

Задача настоящего изобретения заключается в том, чтобы предоставлять новый тип измерения содержания воды на основе ЯМР, выполненного с возможностью преодоления, по меньшей мере, некоторых проблем технологии предшествующего уровня техники, описанной выше.

Краткое изложение сущности изобретения

Изобретение основано на принципе использования таких последовательностей импульсов, в которых частота повторения импульсов оптимизируется для различных уровней влажности образца, который должен быть измерен. Упомянутая оптимизация преимущественно основана на оценке так называемой постоянной времени спин-решеточной релаксации.

Кроме того, также измерительное оборудование отличается использованием низкоэнергетического магнитного поля и взвешивающей установки.

Более конкретно, способ согласно изобретению отличается тем, что формулируется в отличительной части по п.1.

Кроме того, установка согласно изобретению отличается тем, что формулируется в отличительной части по п.11.

Изобретение предлагает значительные преимущества.

Во-первых, время измерения может быть минимизировано для всех влажностей и образцов материалов.

Во-вторых, измерительное оборудование является легким и недорогим без негативного влияния на точность измерения.

Краткое описание чертежей

Далее изобретение подробно рассматривается с помощью примерных вариантов осуществления, изображенных на прилагаемых чертежах, на которых:

Фиг. 1 схематично представляет базовую концепцию оборудования для ЯМР-измерения влажности, подходящего для изобретения.

Фиг. 2 графически представляет типичные ЯМР-сигналы с временами релаксации.

Фиг. 3 представляет типичную последовательность импульсов в соответствии с изобретением.

Фиг. 4 графически изображает пример влияния интервала между импульсами на сумму амплитуды большого числа импульсов.

Описание предпочтительного варианта воплощения

В соответствии с фиг. 1, при ЯМР-измерении влажности однородное магнитное поле постоянного тока формируется посредством магнита 2 в образце 1, который должен быть измерен, в таком случае взаимодействие магнитного поля с водородом в образце 1 приводит к возникновению небольшого намагничивания в образце 1. Затем, образец 1 подвергается короткому интенсивному радиочастотному импульсу 3 возбуждения (фиг. 2 и 3) посредством приемо-передающего устройства 5, который возбуждает ядра водорода. На следующем этапе измерительный инструмент 5 записывает ЯМР-сигнал (известный как свободное индуктивное затухание, или FID) за период порядка нескольких миллисекунд. В течение этого времени, некоторые части образца подвергаются ЯМР-релаксации и возвращаются в исходное состояние. Амплитуда 10 сигнала (фиг. 2) в предварительно определенное время (десятки микросекунд после первого радиочастотного импульса) является пропорциональной общему объему водорода из влаги образцов. Следовательно, максимальное значение ЯМР-сигнала определяет влагосодержание. На практике это максимальное значение 10 зачастую экстраполируется из измерения, выполняемого через некоторое время после действительного максимума 10.

Инструмент на основе ядерного магнитного резонанса может легко быть сконфигурирован с возможностью давать в результате электрический сигнал, который является пропорциональным содержанию водорода, содержащему жидкости в твердом материале. ЯМР - устройство, в частности, хорошо подходит для измерения содержания воды в биомассе. Когда образец, который должен измеряться, является очень сухим, что типично означает то, что содержание воды меньше 20 масс%, отношение "сигнал-шум" является низким, что типично компенсируется посредством увеличения числа последовательных измерений и их усреднения. Это естественным образом приводит к большому времени измерения. Ограничение на время между последовательными измерениями главным образом задается посредством так называемого времени спин-решеточной релаксации (далее называется T1). Оно представляет собой время, требуемое для того, чтобы вектор отклоненной средней намагниченности восстанавливал свое первоначальное значение. Восстановление обеспечивается посредством рассеяния энергии из протонов в решетку. Если импульс возбуждения применяется до полной релаксации, наблюдается уменьшенная амплитуда сигнала, и изменяется коэффициент корреляции между содержанием воды и амплитудой сигнала, и тем самым калибровка не является допустимой.

T1 по существу представляет собой функцию взаимодействия между ядерным спином и решеткой. В общем, чем более сухой материал, тем меньше соответствующее T1. Это явление может быть использовано при оптимизации интервала между импульсами, что означает то, что отношение "сигнал-шум" для сухих образцов может быть значительно повышено для заданного полного времени измерения.

T1 представляет собой время, которое требуется для того, чтобы ядерное намагничивание восстанавливало приблизительно 63%[1-(1/e)] от начального значения после переворота в поперечную магнитную плоскость. Различные материалы имеют различные значения T1. Например, текучие среды имеют большое T1 (1500-2000 мс), и материалы на водной основе имеют диапазон в 400-1200 мс.

В соответствии с фиг. 2, T2 характеризует скорость, с которой компонент Mxy вектора намагниченности затухает в поперечной магнитной плоскости. Оно представляет собой время, которое требуется для того, чтобы поперечное намагничивание достигало 37% (1/e) от начальной абсолютной величины после переворота в поперечную магнитную плоскость. Следовательно, соотношение:

Затухание T2 типично происходит в 5-10 раз быстрее восстановления T1, и различные виды материалов имеют различные T2. Например, текучие среды имеют самые длинные T2 (700-1200 мс), а материалы на водной основе имеют диапазон в 40-200 мс.

Способ типично состоит из двух этапов:

1. Оценка времени T1 для образца.

Она может проводиться в соответствии с фиг. 2 и 3, например, посредством измерения амплитуды 10 сигнала отклика с использованием следующих друг за другом последовательностей 2 импульсов возбуждения с постоянным числом импульсов 3 и пошагового увеличения интервала T3 между импульсами и определения минимального интервала T3, требуемого для того, чтобы сигнал отклика оставался на постоянном (максимальном) уровне 10. Как указано выше, максимальное значение 10 может быть определено посредством экстраполяции из задержанного измерения. Оценка T1 может выполняться за несколько секунд.

Другой способ оценки T1 заключается в том, чтобы измерять время T2 спин-спиновой релаксации и оценивать T1 по T2. Типично оба из них снижаются, когда снижается содержание воды в образце. Фактически T2 обычно оценивается на основе измеренного значения T2*, которое является комбинированным результатом спин-спиновых релаксаций и эффекта декогерентности, вызываемого неоднородностью первичного магнитного поля, являющегося конкретным для устройства. Третий способ оценки T1 содержит использование двух следующих друг за другом последовательностей импульсов возбуждения, каждой из которых предшествует так называемая последовательность импульсов насыщения. Интервал между импульсами в упомянутых последовательностях импульсов возбуждения преимущественно превышает T2*, но предпочтительно немного меньше T1. Две следующих друг за другом последовательности импульсов возбуждения должны иметь различные интервалы t1 и t2 между импульсами, например, t1=T1 и t2=(2*T1). Отношение амплитуд сигналов A1/A2, полученное с интервалом t1 и t2 между импульсами, соответственно, может быть вычислено из следующего уравнения:

,

которое может численно решаться для T1.

Еще одно другое средство оценки T1 состоит в том, чтобы использовать амплитуду сигнала в воде на единицу массы образца: чем меньше упомянутое отношение (чем более сухой образец), тем меньше T1. Этот способ оценки является допустимым только для ограниченного диапазона образцов, например, для твердых видов биотоплива.

Еще один другой способ оценки T1 содержит использование двух следующих друг за другом последовательностей импульсов возбуждения, каждой из которых необязательно предшествует так называемая последовательность импульсов насыщения.

Без последовательностей импульсов насыщения оценка T1 может численно вычисляться из уравнения:

Способы, описанные выше, являются только примерами возможных средств оценки T1.

2. Выполнение фактического измерения с использованием минимального интервала между импульсами, который дает в результате постоянную (максимальную) амплитуду с достаточной, например, 1%-ной точностью.

Типично, такой минимальный интервал T3 между импульсами составляет 5*T1. Таким образом, число усредненных импульсов в пределах периода времени измерения в 20 с может быть увеличено приблизительно с 10 (длинный интервал между импульсами, требуемый для влажных образцов) до приблизительно 200 (короткий интервал между импульсами, предоставляемый для очень сухих образцов), тем самым повышая “сигнал-шум” на коэффициент √(200/10)=4,5.

Низкое ЯМР-отношение "сигнал-шум", типично полученное из сухих образцов, может повышаться посредством более короткого интервала измерений и в силу этого большего числа отдельных измерений. Оптимальный интервал между импульсами определяется с использованием последовательности зондирующих импульсов для того, чтобы оценивать постоянную T1 времени спин-решеточной релаксации, которая преимущественно может быть использована в качестве ввода для вычисления нижнего предела для интервала между импульсами. Раскрытый способ позволяет повышать отношение "сигнал-шум" очень сухих образцов на коэффициент пять.

Как видно из фиг. 4, образец со средним влагосодержанием может измеряться с более коротким интервалом между импульсами, чем влажный образец.

1. Способ на основе ядерного магнитного резонанса (ЯМР) для определения влагосодержания образца (1), содержащий этапы, на которых:
- подвергают образец (1) действию магнитного поля постоянного тока,
- образец (1) под действием магнитного поля постоянного тока подвергают действию последовательности (2) импульсов (3) возбуждения на радиочастоте с интервалом (T3) между импульсами для возбуждения ядер водорода, и
- измеряют ЯМР-сигнал возбужденных ядер водорода,
отличающийся этапами, на которых:
- оценивают время (T1) спин-решеточной релаксации для каждого образца (1) на основе отклика на последовательность импульсов (3) возбуждения, и
- регулируют интервал (T3) между импульсами как минимальный при поддержании интервала между импульсами, превышающим оцененное время (T1) спин-решеточной релаксации.

2. Способ по п.1, отличающийся тем, что интервал (T3) между импульсами регулируют так, что он более чем в пять раз превышает время (T1) спин-решеточной релаксации.

3. Способ по п.1 или 2, отличающийся тем, что оценку времени (T1) спин-решеточной релаксации выполняют посредством измерения ЯМР-сигнала (10) (амплитуды) с использованием следующих друг за другом последовательностей (2) импульсов возбуждения с постоянным числом импульсов (3) и пошагового увеличения интервала (T3) между импульсами и детектирования минимального интервала, требуемого для того, чтобы сигнал оставался по существу равным своему максимальному значению.

4. Способ по п.1, отличающийся тем, что время (T2) спин-спиновой релаксации определяют прямо или косвенно, и время (T1) спин-решеточной релаксации оценивают по времени (T2) спин-спиновой релаксации.

5. Способ по п.4, отличающийся этапом, на котором оценивают время (T2) спин-спиновой релаксации на основе измеренного значения T2*, которое является комбинированным результатом спин-спиновых релаксаций и эффекта декогерентности, вызываемого неоднородностью первичного магнитного поля.

6. Способ по п.1, отличающийся этапом, на котором используют две следующие друг за другом последовательности (2) импульсов возбуждения, каждой из которых предшествует так называемая последовательность импульсов насыщения, в которых интервал между импульсами превышает измеренное время (T2*) спин-спиновой релаксации, но, преимущественно, незначительно меньше времени (T1) спин-решеточной релаксации, так что две следующих друг за другом последовательности (2) импульсов возбуждения должны иметь различные интервалы t1 и t2 между импульсами, где t1 меньше t2,
- формируют время (T1) спин-решеточной релаксации на основе отношения амплитуд сигналов A1/A2, где A1 основана на интервале t1 между импульсами, и A2 основана на интервале между импульсами t2.

7. Способ по п.1, отличающийся этапом, на котором выполняют измерение влажности с использованием минимального интервала между импульсами, который дает в результате постоянную (максимальную) амплитуду с достаточной, например, 1%-ой точностью.

8. Способ по п.6, отличающийся этапом, на котором используют в качестве минимального интервала T3 между импульсами значение 5*T1.

9. Способ по п.1, отличающийся тем, что оптимальный интервал (T3) между импульсами определяют с использованием последовательности зондирующих импульсов для того, чтобы оценивать постоянную времени (T1) спин-решеточной релаксации, которая, преимущественно, может быть использована в качестве ввода для вычисления нижнего предела для интервала между импульсами.

10. Способ по п.6, отличающийся тем, что последовательность импульсов насыщения исключена, и оценка T1 численно вычисляется из уравнения:
,
где n является числом импульсов, и ∑A1, ∑A2 являются суммами амплитуд сигналов, полученными с интервалами t1, t2 между импульсами, соответственно.

11. Устройство на основе ядерного магнитного резонанса для определения влагосодержания, причем устройство содержит:
- пространство, зарезервированное для образца (1),
- магнит (2) постоянного тока, окружающий пространство, зарезервированное для образца (1),
- средство (5) для генерирования последовательности (2) импульсов (3) возбуждения на радиочастоте для образца (1) под действием магнитного поля постоянного тока,
- средство для измерения ЯМР-сигнала (10) возбужденных ядер водорода,
отличающееся средством для:
- оценки времени (T1) спин-решеточной релаксации для каждого образца (1) на основе отклика на последовательность импульсов (3) возбуждения, сгенерированную посредством упомянутого средства (5), и
- регулирования интервала (T3) между импульсами как минимального при поддержании интервала между импульсами, превышающим оцененное время (T1) спин-решеточной релаксации.

12. Устройство по п.11, отличающееся тем, что оно включает в себя средство для выполнения оценки времени спин-решеточной релаксации посредством измерения ЯМР-сигнала (амплитуды) (10) с использованием следующих друг за другом последовательностей (2) импульсов возбуждения с постоянным числом импульсов (3) и пошагового увеличения интервала (T3) между импульсами и детектирования минимального интервала, требуемого для того, чтобы сигнал оставался по существу равным своему максимальному значению.

13. Устройство по п.11 или 12, отличающееся тем, что оно включает в себя средство для определения времени (T2) спин-спиновой релаксации прямо или косвенно, и время (T1) спин-решеточной релаксации оценивается по времени (T2) спин-спиновой релаксации.

14. Устройство по п.13, отличающееся тем, что оно включает в себя средство для оценки времени (T2) спин-спиновой релаксации на основе измеренного значения T2*, которое является комбинированным результатом спин-спиновых релаксаций и эффекта декогерентности, вызываемого неоднородностью первичного магнитного поля.

15. Устройство по п.11, отличающееся тем, что оно включает в себя средство для использования двух следующих друг за другом последовательностей (2) импульсов возбуждения, каждой из которых предшествует так называемая последовательность импульсов насыщения, в которых интервал между импульсами превышает измеренное время (T2*) спин-спиновой релаксации, но незначительно меньше времени (T1) спин-решеточной релаксации, так что две следующих друг за другом последовательности (2) импульсов возбуждения должны иметь различные интервалы t1 и t2 между импульсами,
- где t1 меньше t2,
формирования времени (T1) спин-решеточной релаксации на основе отношения амплитуд сигналов A1/A2, где A1 основана на интервале t1 между импульсами, и A2 основана на интервале между импульсами t2.

16. Устройство по п.11, отличающееся тем, что оно включает в себя средство для выполнения измерения влажности с использованием минимального интервала между импульсами, который дает в результате постоянную (максимальную) амплитуду с достаточной, например, 1%-ой точностью.

17. Устройство по п.15, отличающееся тем, что оно включает в себя средство для использования в качестве минимального интервала (T3) между импульсами значения 5*T1.

18. Устройство по п.11, отличающееся тем, что оно включает в себя средство для определения оптимального интервала (T3) между импульсами с использованием последовательности зондирующих импульсов, чтобы оценивать постоянную (T1) времени спин-решеточной релаксации, которая задает нижний предел для интервала между импульсами.

19. Устройство по п.15, отличающееся тем, что в нем исключают средство для последовательности импульсов насыщения, и оно включает в себя средство для численной оценки T1 из уравнения:
,
где n является числом импульсов, и ∑A1, ∑A2 являются суммами амплитуд сигналов, полученными с интервалами t1, t2 между импульсами, соответственно.



 

Похожие патенты:

Изобретение относится к анализам количественного определения содержания изотопа дейтерия в жидкостях различной природы с использованием методов ядерного магнитного резонанса.

Использование: для осуществления динамической контрастной улучшенной магнитно-резонансной визуализации объекта. Сущность изобретения заключается в том, что способ содержит получение наборов данных магнитного резонанса в k-пространстве с использованием сбора Диксона в пространстве кодирования химического сдвига и динамического временного разрешения в динамическом временном пространстве, причем сбор набора данных осуществляют с использованием субдискретизации, причем способ дополнительно содержит применение способа реконструкции сжатого измерения в k-пространстве, пространстве кодирования химического сдвига и динамическом временном пространстве, указанная реконструкция сжатого измерения дает в результате реконструированные наборы данных, осуществление реконструкции Диксона в отношении реконструированных наборов данных и анализ динамического контраста в отношении реконструированных наборов данных Диксона.

Использование: для обработки импульсных сигналов на основе ядерного спинового эха. Сущность изобретения заключается в том, что возбуждают ядерное спиновое эхо в магнитоупорядоченном рабочем веществе радиочастотными информационными и управляющими импульсами, при этом к рабочему веществу прикладывают импульсное магнитное поле, действующее на протяжении интервала времени, в течение которого на вещество поступают возбуждающие радиочастотные импульсы и возникают отклики рабочего вещества в виде полезных эхо-сигналов, при этом амплитуду импульсного магнитного поля задают из условия смещения доменных границ, при котором происходит подавление паразитных откликов.

Изобретение относится к медицине, травматологии и ортопедии и может быть использовано для диагностики контрактуры Дюпюитрена (КД) пальцев кисти. Методом МРТ со спектроскопией высокого разрешения в зоне интереса ладонного апоневроза кисти регистрируют время ядерной магнитной релаксации Т2 * на ядрах водорода изотропной составляющей сигнала СН2 группы липидов.

Использование: для визуализации химических соединений. Сущность изобретения заключается в том, что собирают первые и вторые данные эхо-сигналов с разными временами появления эхо-сигнала, приводящими к первому и второму собранным комплексным наборам данных, моделируют первый и второй собранные наборы данных с использованием спектральной модели сигнала, по меньшей мере, одного из химических соединений, причем упомянутое моделирование приводит к первому и второму смоделированным комплексным наборам данных, причем упомянутые первый и второй смоделированные наборы данных содержат первую и вторую фазовые погрешности и раздельные наборы данных сигналов для двух химических соединений, определяют по первому и второму собранным наборам данных и первому и второму смоделированным наборам данных разделенные наборы данных сигналов для двух химических соединений.

Использование: для определения газохроматографичеких индексов удерживания соединений ряда О-алкилметилфторфосфонатов (ОАМФФ) по данным ЯМР 13С. Сущность изобретения заключается в том, что выполняют построение корреляционных уравнений для известной выборки изомеров и последующее определение значения индексов удерживания неизвестных изомеров по установленной зависимости, при этом в качестве спектральной характеристики используется суммарное значение химических сдвигов ядер 13C атомов углерода, находящихся в разветвлении углеродного скелета О-алкильного радикала рассчитанных по спектрам ЯМР 13C.

Использование: для разделения изображений воды и жира в магнитно-резонансной томографии. Сущность изобретения заключается в том, что осуществляют получение двух комплексных изображений I1 и I2 с различными временами эха, в которых сигналы от воды и жира находятся соответственно в фазе и в противофазе, вычисление значений фазы 2φ комплексного вектора I 2 = ( I 2 I 1 * / | I 1 | ) 2 для каждого пиксела матриц изображений, построение матрицы "развернутой" фазы 2φ и в диапазоне главных значений -180°…180° определение знака комплексного вектора Ie-iφu в каждом пикселе матрицы, формирование изображения по воде как полусуммы абсолютного значения изображения в фазе и изображения в противофазе, умноженного на знак Ie-iφu, изображения жира как полуразности абсолютного значения изображения в фазе и изображения в противофазе, умноженного на знак Ie-iφu, при этом оценивают усредненные градиенты изменения фазы полученных изображений жира и воды по формулам: GF=(|I1|-|I2|)2/NF при Ie-iφu<0 GW=(|I1|-|I2|)2/NW при Ie-iφu<0, сравнивают значения GF и GW и, в случае, если GF<GW, пиксели изображений жира и воды обменивают местами.

Использование: для измерения состава и расхода многокомпонентных жидкостей методом ядерного магнитного резонанса. Сущность изобретения заключается в том, что устройство для измерения состава и расхода многокомпонентных жидкостей с использованием метода ядерного магнитного резонанса (ЯМР) включает релаксометр ЯМР с датчиком, имеющим трубку, для облучения потока жидкости и получения сигналов спин-эхо ЯМР, по которым определяются параметры жидкости, систему пробоотбора, содержащую измерительную трубу, соединенную трубкой пробоотбора с релаксометром ЯМР, при этом измерительная труба имеет конический расширитель, а в трубке пробоотбора установлен патрубок, имеющий возможность перемещения по сечению конического расширителя, при этом конический расширитель расположен вертикально, в измерительной трубе, перед входом потока жидкости в конический расширитель, установлена защитная сетка, в коническом расширителе установлены тензометрические датчики давления, а в полости нижней части конического расширителя по периметру размещены зубчатые кольца, на трубке пробоотбора размещены электромагнитные катушки управления перемещением патрубка, при этом контроль перемещения патрубка по сечению конического расширителя осуществляется введенным контроллером, соединенным с электромагнитными катушками.

Изобретение относится к радиоспектроскопии ЯКР и может быть использовано для измерения размеров микрокристаллов, содержащих квадрупольные ядра. Способ включает регистрацию сигналов квадрупольного спинового эха, определение времени релаксации T 2 * посредством инверсии преобразования Лапласа, расчет эквивалентного радиуса гранул с помощью полученной формулы и предварительно измеренных констант, характерных для данного вещества.

Использование: для дистанционного обнаружения вещества посредством магнитного резонанса. Сущность изобретения заключается в том, что выполняют поляризационную селекцию и фазовый анализ для поиска и обнаружения запрещенных веществ, упакованных в неметаллическую оболочку.

Использование: для измерения содержания воды в твердых веществах и суспензиях посредством ядерного магнитного резонанса. Сущность изобретения заключается в том, что устройство содержит средство для создания постоянного магнитного поля, емкость для вмещения образца в пределах упомянутого постоянного магнитного поля, средство для возбуждения измеряемой радиочастотной намагниченности в образце, помещенном в упомянутую емкость для вмещения образца, при рабочей частоте, определяемой упомянутым постоянным магнитным полем, средство для измерения радиочастотного сигнала, производимого возбужденным образцом, и средство для определения содержания воды в образце на основании радиочастотного сигнала. Согласно настоящему изобретению емкость для вмещения образца способна вмещать образец, у которого объем составляет, по меньшей мере, 0,5 дм3, и средство для создания постоянного магнитного поля содержит резистивный электромагнит, который выполнен с возможностью создавать постоянное магнитное поле, соответствующее рабочей частоте от 400 до 2000 кГц. Технический результат: обеспечение возможности измерения сильно связанной воды в образцах сухой массы, имеющих большой объем, при низкой ларморовской частоте. 3 н. и 12 з.п. ф-лы, 1 табл., 5 ил.

Использование: для идентификации соевого лецитина. Сущность изобретения заключается в том, что отбирают пробу лецитина массой (10±0,02) г, подготовку пробы проводят путем ее термостатирования при температуре 60°C в течение 1 ч, после чего пробу лецитина помещают в датчик импульсного ЯМР-анализатора и измеряют время спин-спиновой релаксации первой компоненты лецитина (T21) в миллисекундах, при этом лецитин относят к соевому, если время спин-спиновой релаксации первой компоненты лецитина (T21) находится в диапазоне от 169 до 188 мс. Технический результат: сокращение времени осуществления способа и исключение применения органических растворителей и токсичных химических реактивов. 1 табл.

Использование: для идентификации подсолнечного лецитина. Сущность изобретения заключается в том, что отбирают пробу лецитина массой (10±0,02) г, подготовку пробы проводят путем ее термостатирования при температуре 60°C в течение 1 часа, после чего пробу лецитина помещают в датчик импульсного ЯМР-анализатора и измеряют время спин-спиновой релаксации первой компоненты лецитина (T21) в миллисекундах, при этом лецитин относят к подсолнечному, если время спин-спиновой релаксации первой компоненты лецитина (T21) находится в диапазоне от 189 до 205 миллисекунд. Технический результат: сокращение времени осуществления способа и исключение применения органических растворителей и токсичных химических реактивов. 1 табл.

Изобретение относится к способам анализа качества рапсовых лецитинов и может быть использовано в масложировой промышленности. Способ определения содержания ацетоннерастворимых веществ (фосфолипидов) в рапсовом лецитине включает отбор пробы лецитина, подготовку пробы путем термостатирования, помещение пробы в датчик импульсного ЯМР-анализатора, измерение амплитуд сигналов ядерно-магнитной релаксации протонов третьей (А3) и четвертой (А4) компонент лецитинов в условных единицах и расчет содержания ацетоннерастворимых веществ (фосфолипидов) в лецитине. При этом измеряют амплитуды сигналов ядерно-магнитной релаксации протонов первой (A1) и второй (А2) компонент лецитинов в условных единицах, определяют сумму амплитуд (Асис) сигналов первой (A1), второй (А2), третьей (А3) и четвертой (А4) компонент в условных единицах. Затем рассчитывают долю амплитуд сигналов третьей (А3) и четвертой (А4) компонент в процентах как отношение значения А3 к значению Асис, умноженное на 100, и отношение значения А4 к значению Асис, умноженное на 100, а содержание ацетоннерастворимых веществ (фосфолипидов) в рапсовом лецитине (Фр) рассчитывают в процентах по формуле Фр=0,6992(А3+А4)+17,09. Техническим результатом является создание эффективного способа определения содержания ацетоннерастворимых веществ (фосфолипидов) в рапсовом лецитине, обеспечивающего высокую точность и воспроизводимость результатов определения.

Использование: для идентификации рапсового лецитина. Сущность изобретения заключается в том, что выполняют отбор пробы и ее подготовку, при этом отбирают пробу лецитина массой (10±0,02) г, подготовку пробы проводят путем ее термостатирования при температуре 60°C в течение 1 ч, после чего пробу лецитина помещают в датчик импульсного ЯМР-анализатора и измеряют время спин-спиновой релаксации первой компоненты лецитина (T21) в миллисекундах, при этом лецитин относят к рапсовому, если время спин-спиновой релаксации первой компоненты лецитина (T21) находится в диапазоне от 158 до 168 мс. Технический результат: сокращение времени осуществления идентификации, исключение сложной подготовки пробы и исключение применения органических растворителей и токсичных химических реактивов. 1 табл.

Изобретение относится к способам анализа качества подсолнечных лецитинов и может быть использовано в масложировой промышленности. Способ определения содержания ацетоннерастворимых веществ (фосфолипидов) в подсолнечном лецитине включает отбор пробы лецитина, подготовку пробы путем термостатирования, помещение пробы в датчик импульсного ЯМР-анализатора, измерение амплитуд сигналов ядерно-магнитной релаксации протонов третьей (А3) и четвертой (А4) компонент лецитинов в условных единицах и расчет содержания ацетоннерастворимых веществ (фосфолипидов) в лецитине. При этом измеряют амплитуды сигналов ядерно-магнитной релаксации протонов первой (A1) и второй (А2) компонент лецитинов в условных единицах. Затем определяют сумму амплитуд (Асис.) сигналов первой (A1), второй (А2), третьей (А3) и четвертой (А4) компонент в условных единицах. Затем рассчитывают долю амплитуд сигналов третьей (A3) и четвертой (А4) компонент в процентах как отношение значения А3 к значению Асис., умноженное на 100, и отношение значения А4 к значению Aсис., умноженное на 100, а содержание ацетоннерастворимых веществ (фосфолипидов) в подсолнечном лецитине (Фп.) рассчитывают в процентах по формуле: Фп.=0,8484(А3+А4)+7,35. Техническим результатом является повышение точности и воспроизводимости результатов определения содержания ацетоннерастворимых веществ (фосфолипидов) в подсолнечном лецитине. 2 пр.

Изобретение относится к способам анализа качества соевых лецитинов и может быть использовано в масложировой промышленности. Способ определения содержания ацетоннерастворимых веществ (фосфолипидов) в соевом лецитине включает отбор пробы лецитина, подготовку пробы путем термостатирования, помещение пробы в датчик импульсного ЯМР-анализатора, измерение амплитуд сигналов ядерно-магнитной релаксации протонов третьей (A3) и четвертой (А4) компонент лецитинов в условных единицах и расчет содержания ацетоннерастворимых веществ (фосфолипидов) в лецитине. При этом измеряют амплитуды сигналов ядерно-магнитной релаксации протонов первой (A1) и второй (А2) компонент лецитинов в условных единицах. Далее определяют сумму амплитуд (Асис.) сигналов первой (A1), второй (А2), третьей (A3) и четвертой (А4) компонент в условных единицах. Затем рассчитывают долю амплитуд сигналов третьей (A3) и четвертой (А4) компонент в процентах, как отношение значения А3 к значению Асис., умноженное на 100, и отношение значения А4 к значению Асис., умноженное на 100, а содержание ацетоннерастворимых веществ (фосфолипидов) в соевом лецитине (Фс.) рассчитывают в процентах по формуле: Фс.=0,8177(А3+А4)+2,52. Техническим результатом является повышение точности и воспроизводимость результатов определения содержания ацетоннерастворимых веществ (фосфолипидов) в соевом лецитине. 2 пр.
Использование: для мониторинга загрязнений морского нефтегазового промысла. Сущность изобретения заключается в том, что система обнаружения и мониторинга загрязнений морского нефтегазового промысла включает в себя сеть дистанционных детекторов загрязнений, программируемый контроллер с системами сбора, предварительной обработки и передачи данных, а также единую автоматизированную информационную систему (ИС) с функциями сбора, обработки и хранения данных, передаваемых на интерфейсы ИС дистанционными детекторами загрязнений, при этом система обнаружения и мониторинга загрязнений морского нефтегазового промысла дополнительно содержит биосенсор для непрерывного контроля тяжелых металлов в воде, датчик ядерно-магнитного резонанса, датчик электронного парамагнитного резонанса, реактор на тепловых нейтронах ИР-100 с откатным коробом в активной зоне (нейтронный поток 2×1012 н/(см2·с)) и стационарной установкой гамма-излучения с мощностью дозы до 1000 Р/ч, спектрометрическую установку с системой поддержания пластового давления (ППД), радиометрическую низкофоновую установку, генераторы СВЧ-излучений различных частот от 0,1-60 ТГц, образцовые голографические матрицы с записанными спектрами ЯМР атомов веществ (металлов и органических веществ) и идентифицируемых веществ, информационный блок морских карт и цветных космических фотоснимков районов поиска, электромагнитную камеру (Кирлиан-камеру) для визуализации затопленных объектов на аэрокосмических снимках и переноса их на морскую карту района поиска с помощью видеокамеры, совмещенных с ПЭВМ, приемно-фазовые антенны широкого обзора, приемник GPS map-60, программный комплекс ПЭВМ для определения координат затопленных объектов и отображения их на морской карте района, атомно-абсорбционный спектрофотометр, а также другие конструкционные элементы. Технический результат: обеспечение возможности создания надежной системы раннего обнаружения и мониторинга аварийного разлива нефти на объектах морского нефтегазового промысла.

Изобретение относится к способам измерения магнитных характеристик образца, в частности к способам измерения намагниченности. При реализации способа определения намагниченности вещества образец правильной геометрической формы помещают в магнитное поле, измеряют индукцию В образца в точке, где линии индукции нормальны поверхности образца, напряженность Н в точке, где линии напряженности параллельны поверхности образца, и определяют намагниченность образца по формуле M=B/μo-H. При этом значения намагниченности M1 и М2 измеряют для двух отличающихся на 180 градусов относительно направления индукции внешнего магнитного поля ориентаций образца. Далее вычисляют намагниченность Зеемана по формуле Мз=(М1+М2)/2 и намагниченность Нееля по формуле Мн=(М1-М2)/2. Техническим результатом изобретения является возможность контроля намагниченностей Зеемана и Нееля ферромагнитных наночастиц в порошках, применяемых для производства магнитных жидкостей. 1 ил.

Настоящее изобретение относится к способу для отделения катализаторной пыли от потока топливного масла, содержащему этапы: отделения катализаторной пыли от входящего потока топливного масла в центробежном сепараторе для генерирования потока очищенного топливного масла; получения сигнала NMR-отклика из NMR-устройства, относящегося к количеству катализаторной пыли в потоке очищенного топливного масла и/или во входящем потоке топливного масла и к началу добавления или повышения количества сепарационной добавки к входящему потоку топливного масла, когда сигнал NMR-отклика указывает на повышенное количество катализаторной пыли в потоке очищенного топливного масла и/или во входящем потоке топливного масла, например, для повышения производительности отделения катализаторной пыли от потока топливного масла. 2 н. и 15 з.п. ф-лы, 1 ил.
Наверх