Способ оценки структурно нарушенных и удароопасных массивов горных пород

Изобретение относится к горному делу и может быть использовано при оценке структурно нарушенных и удароопасных массивов горных пород и прогноза развития деформационных процессов. Способ включает оборудование гипсово-скважинной наблюдательной станции в подземной горной выработке. По контуру сечения выработки наносят гипсовый слой шириной 20-50 см, толщиной 0,5-3 см, слой наносят на борта выработки, кровлю и на почву выработки. В гипсовом слое закрепляют съемные маячки по определенной сетке. Одновременно с нанесением гипсового слоя на расстоянии 1-2 м от него пробуривают скважины по контуру сечения выработки в радиальных направлениях глубиной, необходимой для определения зоны влияния выработки. По характеру деформирования выработки определяют направление действия главных нормальных напряжений σ1 в массиве горных пород. По пробуренным наблюдательным скважинам определяют расположение трещин в массиве, добиваясь тем самым картирования - натурного отображения скважины в пространстве. По съемным маякам в гипсовом слое определяют конвергенцию горной выработки, а по результатам картирования скважин определяют направление действия главных напряжений и глубину распространения зоны повреждения пород, устанавливая тем самым механизм деформирования выработки и массива горных пород. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к горному делу и может быть использовано при разработке твердых полезных ископаемых подземным способом, в частности для решения различных геомеханических задач, в частности для обеспечения устойчивости обнажений горных выработок при подземной разработке рудных месторождений, сокращении затрат на возведение крепи и продление срока ее службы.

Известен способ оценки предельного напряженного состояния горных пород и устройство для его осуществления. Сущность его заключается в следующем: осуществляют бурение скважины из горной выработки в зоне опорного давления, проводят измерения радиальных и осевых смещений пород и интерпретацию замеров. Скважину бурят в зоне опорного давления относительно элементов залегания пласта, измеряют радиальные и осевые смещения пород. В качестве характеристик напряженного состояния выбирают первый инвариант тензора деформаций и второй инвариант девиатор деформаций, после чего строят график зависимости первого инварианта тензора деформаций от времени и по точке перехода первого инварианта через максимум определяют момент времени наступления предельно о состояния горных пород, а соответствующее ему значение относительной энергетической прочности материала рассчитывают по известной формуле. Устройство для измерения деформаций горных пород снабжено передвижным репером, дополнительным преобразователем для измерения смещений пород вдоль оси скважины, сердечник которого связан с торцом передвижного репера через подвижную головку устройства и направляющим устройством относительно оси скважин, при этом передвижной репер размещен на оси скважины за корпусом устройства, а дополнительный преобразователь встроен в торце устройства, причем передвижной репер и направляющее устройство образуют базу устройства при определении деформации пород вдоль оси скважины [Патент RU 2106493 С1, М. Кл. Е21С 39/00 от 26.09.1995 г.].

Однако внедрение данного способа сдерживается из-за наличия громоздкого математического аппарата, специального оборудования и сложной интерпретации результатов.

Наиболее близким по технической сущности и достигаемому результату является способ выявления сейсмически опасного горного массива, включающий керновое бурение скважин, извлечение керна и оценку характера разрушения кернов скальных пород. Способ применяется для определения удароопасности участков горного массива в горных выработках. При определении степени удароопасности горных пород учитывается лишь количество выпукло-вогнутых дисков толщиной 1-2 см в метровом интервале скважины и не учитываются вообще интервалы, где керн разрушен до щебня или дресвы. Интервалы, где керн был полностью разрушен на щебень, дресву или песок при бурении, характеризуются наибольшей напряженностью [см. «Указания по безопасному ведению горных работ при строительстве и эксплуатации шахт на месторождениях Североуральского бокситового бассейна, подверженных горным ударам», Ленинград, ВНИМИ, 1988, с. 62-64 (прототип)].

Недостатком данного способа являются большие трудозатраты для его реализации и данный способ представляет собой лишь качественную, а не количественную оценку напряженно-деформированного состояния горных выработок.

Целью изобретения является повышение эффективности и безопасности ведения горных работ при освоении месторождений твердых полезных ископаемых путем оценки структурно нарушенных и удароопасных массивов горных пород, прогноза развития деформационных процессов и своевременного принятия эффективных мероприятий по обеспечению устойчивости горных выработок.

Указанная цель достигается использованием гипсово-скважинной схемы оценки структурно нарушенных и удароопасных массивов горных пород для определения направления действия главных нормальных напряжений и установления механизма разрушения горных выработок.

Сущность изобретения поясняется чертежами, где на Фиг. 1 показана типовая схема расположения гипсово-скважинной станции; на Фиг. 2 приведена схема деформирования горной выработки; на Фиг. 3 показана схема расположения наблюдательной станции в горной выработке, два ряда отбуренных скважин; на Фиг. 4 показана схема расположения наблюдательной станции в горной выработке, три ряда отбуренных скважин.

На Фиг. 1 показаны нанесенный по контуру сечения выработки гипсовый слой - 1, в гипсовом слое закреплены съемные маячки - 2, пробурены наблюдательные скважины - 3 и нанесена координатная сетка - 4.

Способ оценки структурно нарушенных и удароопасных массивов горных пород реализуется следующим образом.

При подземной разработке структурно нарушенных и удароопасных массивов горных пород выбирают характерную горную выработку для наблюдений. В ней оборудуют гипсово-скважинную станцию для наблюдений (фиг. 1). По контуру сечения выработки наносят гипсовый слой - 1 (фиг. 1) шириной 20-50 см, толщина слоя 0,5-3 см. Слой наносят на борта выработки, кровлю и на почву выработки. В гипсовом слое закрепляют съемные маячки - 2, выступающие на 2-5 см от основания, по координатной сетке - 4 (фиг. 1). Одновременно с нанесением гипсового слоя - 1 на расстоянии 1-2 метра от него пробуривают скважины - 3 по контуру сечения выработки в радиальных направлениях глубиной, необходимой для определения зоны влияния выработки (фиг. 1).

При следующих замерах, для определения конвергенции выработки, первоначально измеряют размеры сечения гипсового слоя - 1 относительно установленных съемных маячков - 2, расположенных в гипсовом слое. Определяют смещение съемных маячков - 2, относительно друг друга и по пробуренным наблюдательным скважинам - 3 производят картирование массива с помощью оборудования натурно отображающего положения скважины в пространстве.

Гипсовый слой - 1 при малейших деформациях начинает разрушаться после деформирования выработки и, как следствие, перераспределения напряжений в массиве, в той же последовательности производят следующий цикл наблюдений (фиг. 2).

По перемещению съемных маячков - 2 составляют схему смещения и деформирования выработки. По характеру деформирования выработки и разрушения гипсового слоя - 1 определяют направление действия главных максимальных нормальных напряжений σ1 в массиве горных пород на данном участке. Также исследуются наблюдательные скважины - 3 и устанавливаются зоны повреждения пород (ЗПП) и сдвиговый характер массива.

По характеру деформирования выработки определяют направление действия главных нормальных напряжений σ1 в массиве горных пород. По пробуренным наблюдательным скважинам - 3, например с помощью рулетки или другого специального оборудования, определяют расположение трещин в массиве, добиваясь тем самым картирования - натурного отображения скважины в пространстве.

После определения действий главных напряжений σ1 наблюдательные скважины - 3 допускается бурить только в направлении, перпендикулярном действию главных напряжений.

Для более детального изучения перераспределения напряжений в массиве горных пород одновременно с нанесением гипсового слоя - 1 на контур сечения выработки пробуривают несколько рядов скважин (фиг 3, 4), по вышеизложенной методике производят первоначальный цикл наблюдений (фиг. 3 [а, б]; фиг. 4 [а, б]), через определенный промежуток времени выполняют следующий цикл наблюдений, определяя направление действия главных напряжений, механизм деформирования горной выработки и состояние массива горных пород. Определение глубины зоны разрушения дает возможность определять необходимые параметры крепления выработок - тип, длину и несущую способность анкеров.

Данный способ позволяет повысить безопасность и эффективность ведения горных работ путем оценки состояния структурно нарушенных и удароопасных массивов горных пород по наблюдениям за гипсовым слоем, нанесенным на контур сечения выработки, и по отображению скважин, отбуренных в радиальных направлениях.

1. Способ оценки структурно нарушенных и удароопасных массивов горных пород, включающий оборудование гипсово-скважинной наблюдательной станции в подземной горной выработке, отличающийся тем, что по контуру сечения выработки наносят гипсовый слой шириной 20-50 см, толщина слоя 0,5-3 см, слой наносят на борта выработки, кровлю и на почву выработки в гипсовом слое закрепляют съемные маячки, выступающие на 2-5 см от основания, по определенной сетке, одновременно с нанесением гипсового слоя на расстоянии 1-2 м от него пробуривают скважины по контуру сечения выработки в радиальных направлениях глубиной, необходимой для определения зоны влияния выработки, по характеру деформирования выработки определяют направление действия главных нормальных напряжений σ1 в массиве горных пород, по пробуренным наблюдательным скважинам с помощью рулетки или другого специального устройства определяют расположение трещин в массиве, добиваясь тем самым картирования - натурного отображения скважины в пространстве, по съемным маякам в гипсовом слое определяют конвергенцию горной выработки, а по результатам картирования скважин определяют направление действия главных напряжений и глубину распространения зоны повреждения пород, устанавливая тем самым механизм деформирования выработки и массива горных пород.

2. Способ оценки структурно нарушенных и удароопасных массивов горных пород по п.1, отличающийся тем, что одновременно с нанесением гипсового слоя на контур сечения выработки пробуривают несколько рядов скважин по вышеизложенной методике, производят первоначальный цикл наблюдений, через определенный промежуток времени выполняют следующий цикл наблюдений, определяя направление действия главных напряжений, механизм деформирования горной выработки и состояние массива горных пород.



 

Похожие патенты:

Изобретение относится к горному делу, в частности к средствам контроля состояния анкерной крепи и смещений вмещающих пород горизонтальных и наклонных подземных горных выработок, закрепленных анкерной крепью.

Изобретение относится к технике горного дела, добыче полезных ископаемых, в частности к устройствам для изучения физико-механических свойств горных пород, и может быть использовано в геологии, горной, газовой и нефтяной промышленности для расчета предельной величины давления гидроразрыва пласта.

Предложенная группа изобретений относится к измерительной технике, в частности к технике создания скважинных инклинометрических систем, и может быть использована в горном деле для контроля деформационных процессов горных пород и закладочного массива.

Изобретение относится к горному делу и может быть использовано для определения напряжений в массиве горных пород. Техническим результатом изобретения является определение факта превышения значением максимального главного напряжения критического уровня, равного или превышающего 0,9 от предела прочности при сжатии σсж, что свидетельствует о переходе породы в стадию предразрушения.

Изобретение относится к горному делу и предназначено для определения направления максимального напряжения в конструктивных элементах систем разработки относительно пробуренных в них контрольных скважин.

Изобретение относится с горному делу, преимущественно к угольной промышленности. Предложен способ определения газоносности массива угля в зоне его разрушения, включающий сменный режим работы очистного забоя по добыче угля, отработку пласта продольными полосами, измерение интенсивности газовыделения из отрабатываемого пласта в добычную смену и установление показателя нарастания интенсивности газовыделения в призабойное пространство лавы при разрушении угля.

Изобретение относится к способу и устройству для повышения добычи на месторождении, содержащем породу, которая включает в себя по меньшей мере один раскрываемый путем размельчения породы минерал ценного материала и по меньшей мере один другой минерал, причем минерал ценного материала имеет более высокую плотность, чем по меньшей мере один другой минерал.

Изобретение относится к способу и устройству для определения локальной величины зерна минерала для минерала ценного материала в породе месторождения или залежи, причем порода включает в себя по меньшей мере один другой минерал, и при этом минерал ценного материала имеет более высокую плотность, чем по меньшей мере один другой минерал.

Изобретение относится к испытательной технике, в частности к области инженерных изысканий, и может быть использовано для определения напряженно-деформированного состояния пород, а именно определения стадии развития деформационных процессов в массиве материала (в горном массиве, грунтов под инженерным сооружением и т.п.).

Группа изобретений относится к горной промышленности и строительству, а именно к прогнозу динамических проявлений в массиве горных пород при изменении его напряженно-деформированного состояния.
Изобретение относится к горному делу, преимущественно к угольной промышленности, и может быть использовано для рекомендаций по выбору способов и параметров дегазации сближенных угольных пластов. Предложен способ определения зоны дегазирующего влияния очистных работ на углепородные массивы, включающий установление предельных расстояний дегазирующего влияния очистных работ на породы кровли и почвы, в котором инструментально устанавливают уровень дегазации отрабатываемого и сближенных пластов угля и зависимость его изменения в подрабатываемом и надрабатываемом углепородных массивах в зоне влияния очистных работ. При этом предельные расстояния дегазирующего влияния очистных работ на сближенные пласты угля определяют по расстояниям - отрезкам, отсекаемым найденными зависимостями на оси геометрического местоположения величин максимального газовыделения из сближенных пластов угля относительно линии очистного забоя. А показатель естественной дегазации сближенного пласта находят по зависимости линейного вида, включающей показатели дегазирующего влияния очистных работ на разрабатываемый и сближенные пласты угля, местоположение максимального газовыделения из сближенных пластов угля относительно линии очистного забоя и коэффициент, учитывающий количественное снижение дегазирующего влияния очистных работ на удаленные от отрабатываемого пласта сближенные пласты угля. Внедрение предложенного способа позволит получать достоверные величины зон влияния очистных работ на степень дегазации сближенных подрабатываемых и надрабатываемых пластов угля и предельные величины подработки и надработки углевмещающих толщ на участках ведения очистных работ, что в свою очередь будет способствовать более точному прогнозу газообильности лавы и определению параметров дегазации сближенных пластов угля на участках с высокими скоростями подвигания очистных забоев.

Изобретение относится к области горного дела и может быть использовано для исследования сыпучих свойств геоматериалов. Устройство представляет собой сварную конструкцию башенного типа, устанавливаемую на верхней предварительно спланированной площадке отработанного карьера с обеспечением вертикальной устойчивости. В ее верхней части размещены приемный бункер, затем колосниковый виброгрохот, секторный затвор, перфорированная качающаяся дека, воздухораспределительный контур и два приемных бункера. Технический результат - повышение достоверности определения фракционного и вещественного состава защитной подушки. 1 ил.

Изобретение относится к горному делу и может быть использовано для оценки напряженно-деформированного состояния массива горных пород, выявления местоположения зон повреждения пород и характера их распространения для обеспечения устойчивости обнажений горных выработок и очистного пространства при подземной разработке месторождений полезных ископаемых. Технический результат заключается в повышении эффективности и обеспечении безопасности ведения горных работ при освоении месторождений твердых полезных ископаемых путем оценки структурно нарушенных и удароопасных массивов горных пород, прогноза развития деформационных процессов. Внутрискважинный способ определения зон повреждения горных пород включает бурение скважин и шпуров в подземных горных выработках диаметром ⌀40÷100 мм и более, длиной 5÷10 м и более. На стенки скважин наносят слой извести, водоэмульсионной краски или гипса. Используя оборудование фотовидеофиксации, получают негативное отображение скважины, по которому определяют структурную нарушенность исследуемого массива, распространение зон повреждения пород, и регистрируют процессы сдвижения и деформирования массива горных пород. 3 ил.

Изобретение относится к испытательной технике, к устройствам для исследования энергообмена при деформировании и разрушении блочного горного массива. Стенд содержит опорную раму, размещенные в ней захват для образца и захват для контробразца, гидравлический механизм взаимного поджатия образцов, связанный с захватом для образца, гидравлический механизм взаимного перемещения образцов, связанный с захватом для контробразца, гидравлические аккумуляторы энергии, связанные с механизмами поджатия и перемещения, источники давления, связанные с соответствующими аккумуляторами, пульсаторы давления, соединенные с соответствующими аккумуляторами и выполненные в виде гидроцилиндров со штоками, подпоршневая полость которых соединена с соответствующими аккумуляторами, эксцентриков, кинематически связанных со штоками гидроцилиндров, валов вращения эксцентриков и приводов вращения валов. Валы установлены соосно, а стенд снабжен электромагнитными муфтами для соединения валов с соответствующими приводами и электромагнитной муфтой для соединения валов между собой. Технический результат: расширение объема информации при исследовании энергообмена путем обеспечения испытаний как при независимой пульсации поджимающей и перемещающей нагрузок, так и при синхронной пульсации с плавным и ступенчатым изменением частоты пульсаций с возможностью регулирования смещения циклов пульсаций в ходе испытаний. 1 ил.

Изобретение относится к исследованию механических свойств горных пород. Технический результат заключается в упрощении процесса проведения измерения энергоемкости за счет возможности удаления фракций разрушенной горной породы посредством вращения перфорированного стакана. Устройство для определения энергоемкости разрушения горных пород включает станину, перфорированный стакан для помещения в него испытуемых образцов горной породы, пуансон и нагрузочный гидроцилиндр. При этом перфорированный стакан установлен относительно станины через упорный и радиальный подшипники, а через шлицевое соединение связан с рукоятью для вращения стакана. 1 ил.

Группа изобретений относится к горному делу и может быть использована для оценки напряженного состояния горных пород в породном массиве и различных сооружений, например плотин. Технический результат - контроль с одного места пространственного распределения напряжений, снижение трудоемкости эксплуатации устройства и упрощение его конструкции. Способ включает установку в породном массиве через скважину устройства для реализации способа. Определение в заданной плоскости значений напряжений по трем направлениям, ориентированным под углом 120° относительно друг друга, по которым находят распределение напряжений в заданной плоскости и оценивают напряженное состояние горных пород. В породном массиве через скважину создают шаровую полость, которую заполняют раствором, отвердевающим и расширяющимся при отвердении. Устройство для реализации способа устанавливают в центре шаровой полости. Распределение напряжений определяют еще в двух плоскостях, которые вместе с первой образуют три ортогональные плоскости, проходящие через центр шаровой полости. Затем представляют распределения напряжений на ортогональных плоскостях в виде эллипсов, по которым, как по трем проекциям на ортогональные плоскости, строят эллипсоид. После этого напряженное состояние горных пород оценивают по ориентациям и численным значениям полуосей эллипсоида. Устройство включает измерительную систему с датчиками силы и регистратор. Измерительная система выполнена в виде шара с радиальными отверстиями, расположенными в ортогональных плоскостях, проходящих через центр шара. Радиальные отверстия расположены под углом 120° относительно друг друга в каждой из указанных плоскостей. В эти отверстия вставлены стержни. Датчики силы установлены между стержнями и дном этих отверстий. 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности, горных пород при исследовании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений. Стенд для исследования энергообмена в блочном массиве горных пород, содержащий раму, размещенные на ней платформу для образца, механизм перемещения платформы, захват для контробразца и связанный с ним механизм взаимного поджатия образца и контробразца, согласно изобретению он снабжен опорной площадкой Г-образной формы, дополнительным захватом для дополнительного контробразца и дополнительным механизмом для взаимного поджатия дополнительного контробразца и образца, связанным с дополнительным захватом для контробразца, при этом каретка имеет Г-образную форму и установлена на опорной площадке с обеспечением взаимодействия с обеими стенками опорной площадки. Предлагаемый стенд обеспечивает проведение испытаний в новых условиях - при действии поджимающей нагрузки как по одному, так и по двум направлениям, ориентированным под углом друг к другу, что позволяет моделировать энергообмен при действии как гравитационной, так и тектонической силы. Это существенно расширяет объем информации при исследовании энергообмена в блочном массиве горных пород. 2 ил.

Группа изобретений относится к измерительной технике и может быть использована для оценки качества железорудного материала при добыче с помощью горных погрузочных средств, преимущественно экскаваторов и фронтальных погрузчиков. Технический результат направлен на повышение эффективности работы горного погрузочного средства за счет оценки качества железорудного материала непосредственно в ковше погрузочного средства с точностью, обеспечивающей отнесение материала к руде или породе. В способе контроля качества железорудного материала формируют в стенке ковша отверстие, которое с внутренней стороны ковша закрывают заглушкой из немагнитного материала. Создают в зоне образовавшейся полости магнитное поле с помощью постоянного магнита с осевой намагниченностью. Измерение изменения магнитного поля при наполнении ковша породой производят с помощью двух цифровых магнитометров, установленных симметрично относительно магнита в плоскости, перпендикулярной оси магнита и проходящей через его центр, с ориентированными встречно измерительными осями. Суммарный сигнал магнитометров, передают по проводному или беспроводному каналу связи на расположенное в кабине горного погрузочного средства и/или в пункте контроля приемное устройство, в котором согласно таблице соответствия показаний магнитометров и процентного содержания железа определяют содержание железа в материале, находящемся в ковше. Если содержание железа не менее заданного, то материал в ковше относят к руде и только тогда он идет на погрузку. 2 н. и 15 з.п. ф-лы, 5 ил.

Изобретение относится к горному делу и может быть использовано для определения направления действия и значений главных напряжений в горном массиве, оценки напряженно-деформированного состояния массива горных пород, выявления местоположения зон повреждения пород и характера их распространения при подземной разработке месторождений полезных ископаемых. Технический результат заключается в повышении точности определения направления главных напряжений, обеспечении безопасности и эффективности освоения месторождения. Способ включает бурение скважин или шпуров в подземных горных выработках длиной от 5 м, диаметром от 40 мм. На внутреннюю поверхность скважин наносят метки в виде окружности маркером или краской. Определяют положения камеры видеоэндоскопа относительно горизонта, направления деформирования горизонтальных и наклонных скважин, сдвигов и ориентации трещин с помощью видеоэндоскопа обследуют скважины. По полученным снимкам оперативно определяют наименьший диаметр скважины, направление которого соответствует направлению действия максимальных напряжений в массиве. На снимках определяют параметры обозначенных контуров d1, d2, при этом направления максимального сжатия скважины указывает на направление действие максимальных напряжений σ1. Определяют угол α - между вертикалью и направлением действия максимальных напряжений, угол β - между вертикалью снимка и направлением действия максимальных напряжений, величину сдвига ΔH. Строят графическое изображение исследуемых участков с нанесением, например, схемы деформирования участка или сдвига. Деформации скважины определяют в зависимости от d1 - начального диаметра скважины, d2 - наименьшего диаметра деформируемой скважины и K1 - эмпирического коэффициента, учитывающего физико-механические свойства горных пород и структурную нарушенность массива в направлении действия максимальных напряжений. 3 ил.
Изобретение относится к горной промышленности и может быть использовано при открытой разработке карбонатных месторождений с целью комплексной подготовки для переработки минерального сырья. Технический результат заключается в повышении производительности и комплексности добычи карбонатного минерального сырья, дифференциации получаемой продукции с увеличением ее товарной стоимости, повышении безопасности, надежности ведения работ и снижении капитальных затрат. С учетом предварительной оценки на основе акустического показателя трещиноватости дополнительно по каждому блоку определяют удельную компоненту трансформации путем выделения зон по направлению и глубине трещин посредством профилирования участков с определением скорости распространения продольных, поперечных упругих волн в блоках и в зависимости от плотности, дифференцируемых прочностных и теплофизических параметров выделенных зон посредством программного обеспечения для уточнения направления слоистости, типа карбонатных пород и прогнозирования энергетических параметров воздействия на выделенные зоны блоков, затем проводят, с оставлением в целости блоков прочной породы, вначале селективную выемку выделенных зон блоков для получения щебня различных марок и карбонатного сырья с помощью стрелового карьерного комбайна, затем выемку блоков прочной породы.
Наверх