Способ создания рабочего газа в импульсной аэродинамической трубе

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока углекислого газа в высокоэнтальпийных установках кратковременного действия типа импульсных аэродинамических труб с целью газотермодинамических исследований. Согласно способу осуществляют наполнение форкамеры исходным газом с заданными температурой и давлением, состоящим из смеси газов, в которой электродуговым разрядом инициируют экзотермическую реакцию. При этом концентрации оксида углерода и кислорода находятся в стехиометрическом соотношении, а изменением числа молей «n» углекислого газа обеспечивают регулирование температуры и давления образующегося рабочего газа с последующим его истечением из форкамеры после завершения реакции и принудительного вскрытия диафрагмы. Технический результат заключается в уменьшении энергозатрат на нагрев исходного газа, снятии ограничения по удельной энергии, вкладываемой в нагрев исходного газа, и снижении загрязнения полученного рабочего газа. 3 ил.

 

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока углекислого газа в высокоэнтальпийных установках кратковременного действия типа импульсных аэродинамических труб с целью газотермодинамических исследований.

Практическое применение углекислого газа CO2 в качестве рабочего газа импульсной аэродинамической трубы возникает при изучении ряда задач:

1. Для исследования тонких физических процессов при обтекании тел высокотемпературным гиперзвуковым потоком газа, состоящего из трехатомных молекул CO2;

2. При исследовании аэродинамических характеристик аппаратов, осуществляющих полет над поверхностью Венеры и Марса, поскольку атмосфера этих планет состоит в основном из углекислого газа;

3. Для моделирования отношения удельных теплоемкостей k=cp/cv=1,15-1,25 воздуха при температурах Τ>4000 K углекислым газом с умеренными значениями Т=500-2000 K, что позволяет проводить исследования при существенно более низких температурах с целью уменьшения тепловых нагрузок на модели и конструкцию аэродинамической трубы.

Известна импульсная аэродинамическая труба [4], где нагрев рабочего газа в форкамере осуществляют электрической дугой и предусматривают использование в качестве химического источника нагрева рабочего газа реакцию сжигания в форкамере водорода или пропана с воздухом, реакцию разложения Ν2Ο в смеси с азотом, воздухом, водородом, пропаном.

Недостатком данного изобретения является отсутствие возможности использования углекислого газа в качестве рабочего газа импульсной аэродинамической трубы из-за ограничения удельной энергии конденсаторной батареи (отношение запасенной энергии батареи к массе газа в форкамере).

Применение химических источников энергии для расширения возможностей высокоэнтальпийных установок кратковременного действия предусматривается в ряде работ. Так в адиабатических трубах с тяжелым поршнем [1], [2], [3] предлагается использовать энергию разложения закиси азота Ν2Ο, в том числе в смеси с различными газами. В импульсной аэродинамической трубе [5] рассматриваются реакции сжигания в форкамере водорода или пропана с воздухом, реакции разложения N2O в смеси с азотом, воздухом, водородом, пропаном.

В перечисленных работах не предполагается использование в форкамере углекислого газа как рабочего газа аэродинамической трубы.

Наиболее близким из известных технических решений к заявляемому техническому решению является способ прямого нагрева углекислого газа с помощью электрической дуги [6], заключающийся в том, что форкамера аэродинамической трубы наполняется углекислым газом при комнатной температуре и давлении порядка нескольких десятков бар. Далее осуществляют электродуговой разряд, в результате которого за счет подвода тепла в изохорном процессе параметры углекислого газа в форкамере повышаются до необходимых температур и давлений.

Недостатком использования указанного способа получения высокоэнтальпийного углекислого газа является то, что в связи с электроотрицательностью углекислого газа затруднено образование электродугового разряда при разряде конденсаторной батареи: например, в импульсной аэродинамической трубе ИТ-302М ИТПМ СО РАН наблюдалось большое остаточное напряжение на конденсаторах (до 2 кВ при максимально возможных значениях напряжения на конденсаторной батарее U ~ 5 кВ). При уменьшении давления в форкамере в процессе истечения из нее углекислого газа конденсаторная батарея повторно разряжалась, сбрасывая остаточное напряжение, что приводило к нештатному режиму работы установки.

Кроме того, для реализации высокотемпературных режимов при нагреве CO2 (Т>2000 K) в форкамере объемом ~ 10 дм3 только за счет электродугового разряда накопленной энергии батареи было недостаточно даже при напряжении 5 кВ.

Другим недостатком является повышенное загрязнение рабочего газа продуктами эрозии электродов при вкладах электрической энергии близких к максимальным. Загрязнение рабочего газа затрудняет применение оптических методов для исследования физических процессов при обтекании моделей гиперзвуковым потоком. Например, исключается применение тепловизионных систем для определения температуры поверхности моделей, так как сплошной фон от нагретых частиц забивает излучение от нагретых участков модели.

Задачей предлагаемого технического решения является способ создания рабочего газа, а именно высокоэнтальпийного углекислого газа в импульсной аэродинамической трубе, в широком диапазоне температур и давлений, при минимальном вкладе энергии электродугового разряда и уменьшение загрязнения рабочего газа продуктами эрозии электродов.

Поставленная задача решается благодаря тому, что в способе создания рабочего газа в импульсной аэродинамической трубе, заключающемся в наполнении форкамеры исходным газом, содержащим углекислый газ (СО2) с заданными температурой и давлением, воздействии на него электродуговым разрядом с последующим разрушением диафрагмы и истечением газа из форкамеры через сопло, новым является то, что в качестве исходного газа в форкамере используют смесь газов СО, О2, СО2, в которой электродуговым разрядом инициируют экзотермическую реакцию, согласно формуле:

СО + 0,5 O2 + n CO2 = (1+n) CO2,

где «n» - число молей углекислого газа в формуле реакции, при этом концентрации оксида углерода (СО) и кислорода (О2) находятся в стехиометрическом соотношении, а изменением числа молей «n» углекислого газа обеспечивают регулирование температуры и давления образующегося рабочего газа с последующим его истечением из форкамеры после завершения реакции и принудительного вскрытия диафрагмы.

Электродуговой разряд в данном случае необходим лишь для инициирования экзотермической реакции, что позволяет снизить удельную энергию конденсаторной батареи.

Основной подвод тепла при нагреве углекислого газа CO2 осуществляется не за счет электродугового разряда, а за счет экзотермической реакции.

Принудительное вскрытие диафрагмы задерживают до завершения в объеме форкамеры всех стадий реакций, применяя электронный блок управления вскрытия диафрагмы, который обеспечивает регулируемую задержку с последующим вскрытием диафрагмы через заданное время задержки.

Техническим результатом настоящего изобретения является уменьшение энергозатрат на нагрев исходного газа, снятие ограничения по удельной энергии, вкладываемой в нагрев исходного газа и снижение загрязнения полученного рабочего газа.

Предлагаемый способ поясняется чертежами, на которых изображены:

на фиг. 1 - схема импульсной аэродинамической трубы для осуществления предложенного способа;

на фиг. 2 и фиг. 3 показаны зависимости температуры Т0 и давления р0 рабочего газа от числа молей углекислого газа «n» и давления рф(н) наполнения форкамеры исходными газами СО, О2, CO2, где кривые 1 - рф(н) = 10 бар; 2 - рф(н) = 30 бар; 3 - рф(н) = 90 бар.

На (фиг. 1) показана схема импульсной аэродинамической трубы, включающая форкамеру 1, блок наполнения исходных газов 2, конденсаторную батарею 3, электронный блок управления вскрытием диафрагмы 4, диафрагменный узел с диафрагмой 5, сверхзвуковое сопло 6.

Способ осуществляется следующим образом.

В форкамеру 1 (фиг. 1) импульсной аэродинамической трубы из блока с исходным газом 2 производят наполнение исходными газами СО, О2, CO2, при этом концентрации газов СО и О2 находятся в стехиометрическом соотношении.

Варьирование количеством углекислого газа в исходной смеси позволяет изменять температуру и давление образующегося рабочего газа CO2 (продукта экзотермической реакции).

Инициирование реакции осуществляется с помощью электродугового разряда при разряде конденсаторной батареи 3. Начало реакции, совпадающее с разрядом, и принимается за начало подвода тепла в форкамере 1 в изохорном процессе. После чего между компонентами смеси газов в форкамере 1 будет протекать экзотермическая реакция.

В импульсных аэродинамических трубах с подводом тепла только за счет электродугового разряда вскрытие диафрагмы 5 происходит автоматически из-за потери прочности при многократном нарастании давления в форкамере 1 в изохорном процессе и считается, что процесс подвода тепла и разрушение диафрагмы 5 практически происходят мгновенно и совпадают. Для подвода тепла только за счет электродугового разряда это оправдано, так как длительность разряда меньше миллисекунды.

При протекании экзотермической реакции вскрытие диафрагмы 5 необходимо задерживать до завершения в объеме форкамеры 1 всех стадий реакций. Поэтому в предлагаемом способе используют электронный блок управления вскрытием диафрагмы 4, который обеспечивает регулируемую задержку с последующим принудительным вскрытием диафрагмы 5 через заданное время задержки.

После принудительного вскрытия диафрагмы 5 рабочий газ СО2, образовавшийся после завершения экзотермической реакции в форкамере 1, вытекает через сопло 6, образуя на выходе из него гиперзвуковой поток углекислого газа.

Пример.

Авторами был проведен расчет продуктов реакции исходного газа, состоящего из компонент СО, О2, CO2, при n=0-1,5 и рф(н) = (10-90) бар.

Для определения параметров углекислого газа после завершения экзотермической реакции в форкамере импульсной трубы (температуры Т0 и давления р0) при заданных давлении накачки рф(н) исходной смеси и числа молей «n» углекислого газа, из графика на фиг. 2 определяют температуру Т0=f(n, рф(н)), а из графика на фиг. 3 давление р0=f(n, рф(н)). При этом парциальные давления исходных газов СО, О2, CO2, вводимых в форкамеру до эксперимента, будут определены как: pCO = рф(н)/(1+0,5+n), pO2 = 0,5рф(н)/(1+0,5+n), pCO2 = nрф(н)/(1+0,5+n).

Так, например, если задают давление рф(н) = 10 бар и n=0, то температура CO2 Т0 = 3720 K, р0=104 бар - этот режим на фиг. 2 и 3 отмечен на кривой 1 «треугольником»; парциальные давления исходных газов, вводимых в форкамеру, pCO = 6,67 бар, pO2 = 3,33 бар.

Для давления наполнения форкамеры рф(н) = 30 бар и n=0,6 значения температуры CO2 Т0 = 3190 K, р0 = 266 бар - этот режим отмечен на кривой 2 «квадратом»; парциальные давления исходных газов, вводимых в форкамеру pCO = 14,3 бар, pCO2 = 7,1 бар, pCO2 = 8,6 бар.

Для давления наполнения форкамеры рф(н) = 90 бар и числа молей n=1,5 значения температуры Т0 = 2580 K, р0 = 666 бар - этот режим отмечен на кривой 3 «кругом»; парциальные давления исходных газов, вводимых в форкамеру pCO = 30 бар, pCO2 = 15 бар, PCO2 = 45 бар.

На практике зависимости между исходным составом, температурами, давлениями и продуктами реакции определяются не из фиг. 2 и 3, которые приведены для иллюстрации способа, а рассчитываются программно с учетом равновесных свойств продуктов реакции.

Из приведенных примеров видно, что варьирование числом молей «n» в химической формуле и величиной давления рф(н) позволяет получать рабочий газ CO2 импульсной трубы в широком диапазоне давлений р0 до 1000 бар и температур Т0 до 4000 K.

Использование предлагаемого изобретения позволяет обеспечить уменьшение энергозатрат на нагрев исходного газа, снятие ограничения по удельной энергии, вкладываемой в нагрев исходного газа, а также уменьшить загрязнение полученного рабочего газа.

Источники информации

1. Патент РФ №2093716, МПК F15D 1/00, F15B 19/00, G01M 9/00 (опубл. 20.10.1997).

2. Авторское свидетельство СССР №366761 A1, МПК G01M 9/00 (опубл. 10.10.2008).

3. Авторское свидетельство СССР №460794 А2, МПК G01M 9/00 (опубл. 10.10.2008).

4. Патент РФ №2439523, МПК G01M 9/02 (опубл. 10.01.2010).

5. Шумский В.В., Ярославцев М.И. Химический нагрев рабочего тела высокоэнтальпийной установки кратковременного режима. // Физика горения и взрыва. 2007. Т. 43, №5. С. 31-43.

6. Королев А.С. Получение и исследование в импульсной аэродинамической трубе гиперзвуковых течений углекислого газа // Труды ЦАГИ. Выпуск 1643. 1975 - прототип.

Способ создания рабочего газа в импульсной аэродинамической трубе, заключающийся в наполнении форкамеры исходным газом, содержащим углекислый газ (CO2) с заданными температурой и давлением, воздействии на него электродуговым разрядом с последующим разрушением диафрагмы и истечением газа из форкамеры через сопло, отличающийся тем, что в качестве исходного газа в форкамере используют смесь газов CO, O2, CO2, в которой электродуговым разрядом инициируют экзотермическую реакцию, согласно формуле
CO+0,5O2+nCO2=(1+n)CO2,
где «n» - число молей углекислого газа в реакции, при этом концентрации оксида углерода (CO) и кислорода (O2) находятся в стехиометрическом соотношении, а изменением числа молей «n» углекислого газа обеспечивают регулирование температуры и давления образующегося рабочего газа CO2 с последующим его истечением из форкамеры после завершения реакции и принудительного вскрытия диафрагмы.



 

Похожие патенты:

Изобретение относится к испытаниям реактивных двигателей. Стенд для определения подъемной силы крыла, установленного на корпусе реактивного двигателя, содержит расположенную в аэродинамической трубе опорную стойку с подвижной платформой.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. Рабочая часть аэродинамической трубы включает камеру давления, перфорированные стенки на границах потока и шумоглушащие сетки.

Изобретение относится к области машиностроения и авиационно-космической отрасли промышленности и может быть использовано при проведении испытаний конструкции летательных аппаратов и их узлов (головных обтекателей) из неметаллических материалов на тепловые, а также комплексные термовибрационные и термовакуумные воздействия.

Изобретение относится к области тепловых испытаний и может быть использовано при наземных испытаниях элементов летательных аппаратов. Способ тепловых испытаний керамических обтекателей ракет включает нагрев и контроль температуры обтекателя в зоне узла соединения керамической оболочки со шпангоутом.
Изобретение относится к области стендовых тепловых испытаний и может быть использовано для диагностики характеристик термопрочности и термостойкости эксплуатируемых металлов.

Изобретение относится к области авиации, в частности к технике экспериментов в аэродинамических трубах кратковременного (импульсного) действия с продолжительностью пуска порядка 40 миллисекунд, работающих при высоких давлениях и температурах газа.

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на обтекатель ракеты в наземных условиях и может быть использовано при наземных испытаниях элементов летательных аппаратов.

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам с регулируемыми соплами. Устройство состоит из силового механизма, изменяющего его контур по заданной программе, и командного устройства, управляющего этой программой.

Изобретение касается систем управления в экспериментальной аэродинамике, в частности к аэродинамическим трубам с регулируемыми соплами. Устройство содержит контроллер управления приводами ведомых рядов гибких стенок сопла, приводы управления гибкими стенками сопла, цифровые датчики обратной связи, а также командное устройство, цифровой блок вычисления заданного положения ведомых рядов в функции измеренного положения ведущего ряда, а также цифровой датчик положения ведущего ряда и переключатель режима работы.

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам с регулируемыми соплами. Способ заключается в том, что управление гибкими стенками сопла осуществляют автоматическими приводными механизмами по заданной программе.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА) и может быть использовано для проектирования аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях. Предлагаемый способ воспроизведения аэродинамического нагрева дает возможность задать температурное поле элементов ЛА типа тел вращения с минимальными энергетическими затратами и с равномерным тепловым нагружением в сечениях изделия. Отличительными признаками способа является возможность задания температурного поля по высоте изделия, если известно значение температуры в одном сечении и геометрические размеры изделия. Способ включает условное разбиение поверхности изделия на сектора по окружности изделия, определения толщины секторов по электрическому сопротивлению, монтаж электропроводящего слоя на наружной поверхности изделия, расположение на изделии токоведущих шин и чехла из теплоизоляционного материала. Технический результат - повышение точности и достоверности результатов теплопрочностных испытаний обтекателей ракет из неметаллических материалов. 1 ил.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов и может быть использовано при наземных испытаниях элементов летательных аппаратов. Заявленный способ включает зонный нагрев наружной поверхности изделия за счет контакта с нагревателем. Распределение температуры по высоте изделия задается электропроводящими секторами нагревателя разной толщины, которые соединены в электрическую цепь параллельно и сформированы за счет намотки токопроводящей нити под и (или) поверх электрических шин, размещенных на изделии вдоль образующих. Количество витков токопроводящей нити в каждом электропроводящем секторе выбирается по формуле: где Ni - количество витков в i-м секторе; U - напряжение на шинах; ρ - удельное сопротивление токопроводящего материала; Ri - наружный радиус изделия в i-м секторе; qi - требуемая плотность теплового потока в i-м секторе; Sn - площадь поперечного сечения токопроводящей нити; Δh - высота i-го сектора. Технический результат - устранение ограничений по заданию температурного поля на поверхности испытуемых объектов, высота которых меньше диаметра основания. 1 з.п. ф-лы, 3 ил.

Изобретение относится к аэродинамике летательных аппаратов сверхзвуковых и околозвуковых скоростей. Способ торможения сверхзвукового потока заключается в создании скачков уплотнения, движущихся относительно обтекаемой поверхности в направлении течения, со значениями скоростей меньшими разницы значений скоростей потока и скоростью звука перед скачками уплотнения. Движение скачков уплотнения осуществляют путем создания в потоке у обтекаемой поверхности поперечных волн, бегущих в направлении потока. Поперечные бегущие волны создают путем поперечных бегущих деформаций контура обтекаемой поверхности либо путем периодических, чередуемых отсоса и выдува воздуха из участков обтекаемой поверхности со сдвигом фаз отсоса и выдува между соседними участками обтекаемой поверхности. Изобретение направлено на уменьшение потерь полного давления. 2 з.п. ф-лы, 4 ил.

Изобретение относится к методике теплопрочностных испытаний носовых обтекателей и передних кромок воздухозаборника гиперзвуковых летательных аппаратов (далее ГЛА) с помощью инфракрасных нагревателей по программе гиперзвукового полета и касается способа создания большой величины плотности теплового потока (4-5 МВт/м2) и последующей передачи его на испытываемый объект в очень короткий срок (менее 0,1 с), в частности, на самую переднюю часть носового обтекателя или переднюю кромку воздухозаборника. Способ заключается в том, что с помощью автономного высокотемпературного нагревателя в специальной камере, расположенной перпендикулярно оси носовой части, накапливают тепловую энергию (тепловой поток), а затем через регулируемую диафрагму, определяющую распределение теплового потока по носку обтекателя, создают необходимую плотность теплового потока и совместно с боковыми нагревателями облучают этим тепловым потоком носовую часть обтекателя, раскрывая нижнюю стенку специальной камеры, находящейся непосредственно над фокусирующей диафрагмой и носком испытываемого обтекателя, причем нижняя стенка, состоящая из двух или нескольких частей, раскрывается со скоростью, обеспечивающей полетную скорость нарастания теплового потока на носке обтекателя совместно с боковыми нагревателями. Технический результат - обеспечение теплового удара на носок обтекателя, что имеет место при достижении гиперзвуковых скоростей полета и появлении сверхзвукового скачка в исключительно малый промежуток времени, упрощение процесса нагревания объекта, повышение достоверности и точности воспроизведения температурного поля. 2 н.п. ф-лы, 2 ил.

Изобретение относится к экспериментальной аэродинамике, в частности к устройствам для изменения положения испытываемой модели в рабочей части аэродинамической трубы. Устройство содержит узел крепления державки для установки модели и три стойки, соединенные с одной стороны с шарнирами, установленными в двух точках, разнесенных по длине узла крепления державки, а с другой стороны - с тремя шарнирами, установленными на ползунах, размещенных на закрепленной в рабочей части продольной направляющей, и взаимодействующих с автономными приводами. Дополнительно оно снабжено дополнительной направляющей, установленной в рабочей части симметрично относительно вертикальной плоскости к основной, с дополнительными тремя ползунами и установленными на них дополнительными шарнирами, дополнительными шарнирами в двух точках на узле крепления державки, симметричными относительно вертикальной плоскости к основным, и дополнительными тремя стойками, соединяющими соответствующие дополнительные шарниры на узле крепления державки и ползунах. При этом соответствующие пары основных и дополнительных ползунов соединены перпендикулярными к вертикальной плоскости каретками, взаимодействующими с автономными приводами. Основной и дополнительный шарниры, размещенные на хвостовой части узла крепления державки, смещены по вертикали относительно продольной оси узла крепления державки на расстояние, соответствующее ее максимальному повороту в вертикальной плоскости. Части стоек, размещаемые в потоке аэродинамической трубы, выполнены обтекаемой формы, а части стоек, находящиеся вне потока и размещенные на одинаковых каретках, соединены перемычками. Технический результат заключается в повышении жесткости устройства и точности позиционирования модели в рабочей части аэродинамической трубы и расширении его функциональных возможностей. 2 з.п. ф-лы, 6 ил.

Изобретение относится к испытательной технике, в частности к испытательным стендам для аэродинамических испытаний транспортных средств, а именно к покрытиям стендов. Покрытие используется в испытательном стенде для аэродинамических измерений транспортных средств с, по меньшей мере, одним ленточным транспортером, проходящим, по меньшей мере, в области черного пола у передних и задних колес транспортного средства. При этом покрытие содержит множество опорных элементов, которые могут быть покрыты пластиковым материалом. Технический результат заключается в повышении прочности, упрощении ремонта и стойкости к загрязнениям. 5 з.п. ф-лы, 3 ил.
Наверх