Форсунка многотопливного дизеля

Изобретение относится к топливной аппаратуре. Форсунка содержит корпус и головку с каналами, полый распылитель с запирающим конусом, распыливающими отверстиями, каналами подвода, подпружиненную запирающую иглу, в распылителе выполнена распределительная полость, связанная с каналами подвода основного топлива, а также с полостью смешения посредством кольцевого канала, внутри запирающей иглы выполнен осевой канал, сообщенный с каналами подвода запального топлива посредством кольцевой полости, а также дополнительные радиальные каналы, выходящие одним концом в полость смешения, а другим - в осевой канал, один обратный клапан, установленный в линии каналов подвода запального топлива, включающая дополнительно выполненную в распылителе цилиндрическую проточку с образованием между распределительной и кольцевой полостями полости управления, которая сообщена с каналом подвода головки форсунки запального топлива, проточки, образованной между торцевыми поверхностями корпуса и головки форсунки. При работе форсунки можно значительно уменьшить объем энергоносителя, сосредоточенного в корпусе форсунки и распылителе, что увеличивает максимальное давление впрыскивания в период подачи основного топлива. Изобретение позволяет осуществлять коррекцию массового состава смеси, подаваемой в камеру сгорания дизеля в процессе рабочего цикла, а также улучшить мелкость распыливания топлива в периоды подъема и посадки запирающей иглы распылителя. 1 з.п. ф-лы, 6 ил.

 

Изобретение относится к транспортному машиностроению и может быть использовано в конструкциях дизельных двигателей.

В дизелях получили большое распространение топливные системы, включающие топливный насос ТНВД с механическим приводом плунжера, топливопровод и форсунку с пружинным нагружением запирающей иглы распылителя [1]. Эти системы приемлемы для подачи в камеру сгорания традиционного, альтернативного топлив и их смесей [2].

Недостаток этих систем состоит в том, что конструкции не позволяют изменять массовый состав смесей с учетом многорежимности, а также в процессе впрыскивания, что необходимо для обеспечения высоких эксплуатационных характеристик дизеля в условиях совместного применения традиционных, альтернативных топлив и присадок [2; 3].

Известна принятая в качестве прототипа форсунка для дизеля для подачи двух видов топлива в двигатель, состоящая из корпуса с закрепленным в нем распылителем, в полости которого установлена подпружиненная запирающая игла, имеющая направляющую, цилиндрическую и коническую запирающую поверхности. В корпусе и полом распылителе выполнены связанные между собой соответствующие каналы подвода основного и запального топлив. При этом в теле иглы выполнен центральный канал, связанный с каналами подвода запального топлива, а в нижней части иглы с выходом на ее коническую запирающую поверхность - радиальные каналы, которые при подъеме иглы сообщаются с распыливающими отверстиями. Канал подвода основного топлива связан с полостью распределительной полости - карманом распылителя и при подъеме иглы также сообщается посредством кольцевого канала с распыливающими отверстиями, образуя совместно с запальным топливом смесь с определенным коэффициентом состава смеси Ксм [4].

Недостаток прототипа состоит в том, что в случае использования как традиционного топлива, так и его смеси, в частности, с растительными маслами наблюдается существенное ухудшение мелкости распыливания смеси, что проявляется в наибольшей степени на частичных подъемах запирающей иглы распылителя, т.е. в периоды ее подъема к упору и посадки на седло [1]. Это приводит к увеличению удельного расхода топлива и токсичности отработавших газов.

Технической задачей, решаемой изобретением, является получение возможности коррекции массового состава смеси, подаваемой в камеру сгорания дизеля в процессе рабочего цикла, и улучшение мелкости распыливания топлива в периоды подъема и посадки запирающей иглы распылителя.

Решение поставленной технической задачи достигается тем, что в форсунке многотопливного дизеля, содержащей корпус и головку с каналами подвода каждого вида топлива, полый распылитель с запирающим конусом, распыливающими отверстиями, каналами подвода каждого вида топлива, сообщенными с соответствующими каналами подвода корпуса форсунки, и подпружиненную запирающую иглу, размещенную в полости распылителя и выполненную с направляющей и цилиндрической поверхностями, а также конической запирающей поверхностью с обратным конусом, образующими с распылителем соответственно подыгольный объем и полость смешения, при этом в распылителе выполнена распределительная полость, связанная с каналами подвода основного топлива, а также с полостью смешения посредством кольцевого канала, а в теле запирающей иглы выполнен осевой канал, сообщенный через радиальные каналы с каналами подвода запального топлива посредством кольцевой полости между цилиндрическими поверхностями распылителя и запирающей иглы соответственно, а также дополнительные радиальные каналы, выходящие одним концом в полость смешения, а другим - в осевой канал, и, по меньшей мере, один обратный клапан, установленный в линии каналов подвода запального топлива корпуса форсунки и распылителя, согласно изобретению в распылителе дополнительно выполнена цилиндрическая проточка с образованием между распределительной и кольцевой полостями полости управления, которая сообщена с каналом подвода головки форсунки запального топлива с помощью соответствующих цилиндрических каналов, выполненных в распылителе и корпусе форсунки, и проточки, образованной между торцевыми поверхностями корпуса и головки форсунки, а обратный клапан установлен в корпусе форсунки в линии подвода запального топлива в осевой канал запирающей иглы, параллельной линии подвода запального топлива в полость управления.

На решение поставленной технической задачи направлено также то, что запирающая игла имеет дополнительную внешнюю цилиндрическую проточку с основанием, расположенным за пределами кольцевого канала распылителя, и диаметром dци, меньшим диаметра dцp кольцевого канала распылителя, для которого выполнимо условие dцp<d′и, где d′и диаметр цилиндрической поверхности запирающей иглы.

Решение поставленной технической задачи достигается за счет выполнения в распылителе полости управления в дополнение к кольцевой и распределительной полостям, а также благодаря разветвленной системе подвода основного и запального топлив к упомянутым полостям. Благодаря подводу запального топлива по параллельным линиям подачи одновременно к полости управления и через обратный клапан в корпусе форсунки - к кольцевой полости, становится возможным в итоге значимо уменьшить объем энергоносителя, сосредоточенного в корпусе форсунки и распылителе, что увеличивает максимальное давление впрыскивания в период подачи основного топлива.

Изобретение поясняется чертежами, где на фиг. 1 изображен общий вид форсунки; на фиг. 2 представлено сечение Α-A на фиг. 1; на фиг. 3 изображен продольный разрез форсунки; на фиг. 4 представлено сечение Б-Б на фиг. 2; на фиг. 5 изображен выносной элемент I на фиг. 3; на фиг. 6 дано изображение варианта выполнения иглы форсунки.

На фиг. 6 используются следующие обозначения: dци и dцp - диаметры дополнительной внешней цилиндрической проточки иглы и кольцевого канала корпуса распылителя соответственно; d′и - диаметр цилиндрической поверхности запирающей иглы.

Форсунка многотопливного дизеля содержит корпус 1 и головку 2 с каналами 3, 4 и 5, 6 подвода каждого вида топлива (фиг. 1) - запального и основного соответственно, полый распылитель 7 с запирающим конусом 8 (фиг. 4 и 5), распыливающими отверстиями 9, каналами 10, 11 и 12 подвода каждого вида топлива, соответственно запального и основного, сообщенными с соответствующими каналами 4 и 6 подвода топлива корпуса 1 форсунки. В полости распылителя 7 (фиг. 3) размещена подпружиненная с помощью пружины 13 запирающая игла 14, выполненная с направляющей и цилиндрической поверхностями 15 и 16 соответственно. В нижней части запирающей иглы 14 (фиг. 5) выполнена коническая запирающая поверхность 17 с обратным конусом 18, образующими с распылителем 7 соответственно подыгольный объем 19 и полость 20 смешения, расположенную у основания запирающего конуса 8. При этом в форсунке выполнена распределительная полость 21 (фиг. 3 и 4), связанная с каналами 5, 6 и 12 подвода основного топлива, а также с полостью 20 смешения посредством кольцевого канала 22, образованного цилиндрическими поверхностями 16 и 23 распылителя 7 и запирающей иглы 14 соответственно. В теле запирающей иглы 14 выполнен осевой канал 24, сообщенный через радиальные каналы 25 с каналами 3, 4, 10 и 11 подвода запального топлива посредством кольцевой полости 26 между цилиндрическими поверхностями 27 и 28 распылителя 7 и запирающей иглы 14 соответственно, а также дополнительные радиальные каналы 29, выходящие одним концом в полость 20 смешения, а другим - в осевой канал 24. В корпусе 1 форсунки установлен, по меньшей мере, один обратный клапан 30 в линии каналов 4 и 10 подвода запального топлива. При этом в распылителе 7 дополнительно выполнена цилиндрическая проточка 31 с образованием между распределительной и кольцевой полостями 21 и 26 соответственно полости 32 управления. Последняя соединена с каналом 3 подвода головки 2 форсунки запального топлива с помощью соответствующих цилиндрических каналов 33 и 34, выполненных в распылителе 7 и корпусе 1 форсунки, и проточки 35, образованной между торцевыми поверхностями 36 и 37 корпуса 1 и головки 2 форсунки (фиг. 2). Обратный клапан 30 установлен в корпусе 1 форсунки в канале 4 подвода запального топлива в осевой канал 24 запирающей иглы 14, параллельном линии подвода запального топлива в полость 32 управления. При этом распределительная полость 21 и полость 32 управления разобщены между собой смежными прецизионными участками цилиндрических поверхностей 16 и 38, соответствующих запирающей иглы 14 и распылителя 7 соответственно.

В частном случае запирающая игла 14 может иметь дополнительную внешнюю цилиндрическую проточку 39 с основанием 40, расположенным за пределами кольцевого канала 22 распылителя 7, и диаметром dци, меньшим диаметра dцp кольцевого канала 22 распылителя 7, для которого выполнимо условие dцp<d′и, где d′и - диаметр цилиндрической поверхности запирающей иглы.

Форсунка для многотопливного дизеля работает следующим образом.

На заданном режиме работы дизеля запальное топливо, например дизельное топливо, поступает от соответствующего насоса высокого давления ТНВД1 (на чертеже не показан) по каналам 3 головки 2, а также 4, 10 и 11 подвода в корпусе 1 форсунки и распылителя 7 соответственно (фиг. 1, 2, 3 и 4) в кольцевую полость 26 между цилиндрическими поверхностями 27 и 28 распылителя 7 и запирающей иглы 14 и далее - по радиальным каналам 25, осевому каналу 24 и дополнительным радиальным каналам 29 (фиг. 5) к полости 20 смешения. Одновременно запальное топливо от насоса ТНВД1 по каналу 3 и каналу 35 между торцевыми поверхностями 36 и 37, а также каналам 33 и 34 (фиг. 1 и 4) подается в полость 32 управления, образованную проточкой 31. При этом каналы 35, 34 и 33 подвода образуют, по существу, гидравлическую линию связи, параллельную каналам 10 и 11 подвода распылителя 7.

С некоторым смещением по времени другой насос высокого давления ТНВД2 (на чертеже не показан) по соответствующим каналам 5 головки 2, а также 6 и 12 подвода в корпусе 1 форсунки и распылителе 7 (фиг. 1 и 3) подает основное альтернативное топливо в распределительную полость 21 и далее по каналу 22 в полость 20 смешения топлив, расположенную у оснований запирающего конуса 8 распылителя 7 и поверхности обратного конуса 18 запирающей иглы 14 (фиг. 5).

В процессе рабочего цикла форсунки в полости 20 смешения образуется смесь, характеризуемая коэффициентом Кп массового состава, который определяется по формуле:

Кп=Gп/Gт+Gп,

где Gп и Gт - массовые доли присадки (запального топлива) и основного топлива соответственно.

В период подачи запального топлива насосом ТНВД1 в полость 20 смешения в ней происходит смешение запального топлива с основным, которое находилось в полости 20 смешения после завершения предыдущего цикла. В результате коэффициент Кп массового состава в полости 20 смешения будет увеличиваться, и эта смесь переменного значения Кп вследствие ее определенной сжимаемости в полостях форсунки поступает в кольцевой канал 22 между цилиндрическими поверхностями 16 и 23 запирающей иглы 14 и распылителя 7, в котором происходит распределение смеси переменного массового состава по его длине. При этом в области пересечения радиальных и кольцевого каналов 29 и 22 соответственно значения коэффициентов Кп достигают максимальных величин. Минимальные значения Кп будут наблюдаться в начале кольцевого канала 22.

В результате подачи присадки (запального топлива) к форсунке давление Рф в полостях 20 и 32 смешения и управления соответственно начинает увеличиваться. При равенстве давлений Рф и Рфо, где Рфо - давление начала движения запирающей иглы 14, последняя поднимается, открывая доступ смеси топлив из полости 20 смешения в подыгольный объем 19 и далее к распыливающим отверстиям 9 и камеру сгорания дизеля.

При этом в начале впрыскивания в камеру сгорания поступает смесь с преимущественным содержанием присадки, массовая доля которой, как показывают опыты МАДИ, достигает 80-90% [3, 5].

С некоторым смещением во времени по отношению к насосу ТНВД1 другой насос ТНВД2 начинает подавать основное топливо в распределительную полость 21. Давление в форсунке начинает увеличиваться с большей интенсивностью, чем от подачи только присадки насосом ТНВД1, в результате запирающая игла 14 увеличивает скорость перемещения, и происходит интенсификация впрыскивания.

В период впрыскивания, когда У<Умах, здесь У и Умах - текущее и максимальное значения перемещения запирающей иглы 14, насос ТНВД1 завершает подачу присадки. В результате происходит разгрузка линии высокого давления насоса ТНВД1, падение давления в каналах 4, 35, 34, 33 и полости 32 управления и разъединение каналов 4 и 10 обратным клапаном 30, который обеспечивает сохранение высокого давления в каналах 10 и 11, а также в радиальных и осевом каналах 25 и 24 соответственно, и кольцевой полости 26.

В результате падения давления в полости 32 управления происходит изменение баланса сил, действующих на запирающую иглу 14. В пределе, когда в полости 32 управления давление Рф=0, усилие пружины 13 форсунки Fпр, равное Fпр=Рфо (fи-f′и)+δ′У, будет уравновешиваться давлением, которое равно Р′′ф и которое действует на поверхность f′′и-f′и, а также давлением Р′ф, действующим на площадь f′и. Здесь и далее Fпр - усилие пружины 13, действующей на запирающую иглу 14, fи - площадь поперечного сечения запирающей иглы 14 на участке по направляющей поверхности 15, f′и - площадь, ограниченная запирающим конусом 17 запирающей иглы 14, δ′ - жесткость пружины 13, Р′ф - давление распыливания в подыгольном объеме 19, f′′и - площадь поперечного сечения запирающей иглы 14 на участке по цилиндрической поверхности 16.

Опыты показывают, что при У>0,2 мм можно принять, что Р′′ф=Р′ф.

При оговоренных выше условиях, т.е. когда в полости 32 управления давление Рф=0, давление Р′′ф можно определить из соотношения:

В рассматриваемой системе значение давления Р′′ф существенно зависит от геометрических характеристик запирающей иглы 14, режима работы, значений У.

Так при давлении Рфо=17,5 МПа, fи=28,27 мм2, f′и=6,157 мм2, f′и=15,9 мм2, δ′=216 Н/мм и y=0,2 мм значение давления Р′′ф=27,06 МПа, т.е. ≈ в 1,5 раза больше, чем давление Рфо.

Таким образом, в рассматриваемой конструкции форсунки в период подачи только основного топлива от ТНВД2 значение давления Р′′ф в кольцевом канале 22 на частичных подъемах запирающей иглы 14 существенно больше, чем давление Рфо. В конструкции [4] распылителя в статических условиях при 0<У≤Умах значение давления Рф меньше, чем давление Рфо. Таким образом, для опытного распылителя в сравнении с [4] разница в значениях Р′′ф и Рф, в частности, при посадке запирающей иглы 14 на седло может достигать 1,5…2 крат.

Более высокие значения Р′′ф в предлагаемой конструкции в сравнении с Рф прототипа при подъеме запирающей иглы 14 позволяют увеличить скорость истечения топлива из распыливающих отверстий 9 распылителя 7. Это, как известно, улучшает мелкость распыливания топлива.

В процессе нагнетания основного топлива насосом ТНВД2 в полость 20 смешения массовая доля присадки в смеси, т.е. коэффициент Кп в ней будет уменьшаться и в определенный момент в полости 20 смешения может присутствовать только основное топливо. Это зависит от конструктивных и режимных параметров системы.

В период интенсивного нагнетания топлива насосом ТНВД2 смесь из полости 20 по зазору запирающего конуса 8 распылителя 7 и конической поверхности 17 запирающей иглы 14 поступает в подыгольный объем 19, распыливающие отверстия 9 и камеру сгорания дизеля. Кроме этого, в это время впрыскивания, когда d Р′′ф/dφ>0, часть смеси из полости 20 смешения, в результате ее сжимаемости в полостях форсунки, будет поступать в осевой канал 24. При этом массовый состав смеси по длине осевого канала 24 будет меняться. При удалении сечения от пересечения осевого и дополнительных радиальных каналов 24 и 29 соответственно коэффициент Кп увеличивается и в определенном сечении осевого канала 24 Кп=1, т.е. в энергоносителе присутствует только запальное топливо.

В процессе окончания подачи основного топлива при d Р′′ф/dφ<0, давление Р′′ф уменьшается. В этот период в полость 20 смешения топлив поступает основное топливо из кольцевого канала 22 и смесь из дополнительных радиальных каналов 29. В результате в камеру сгорания дизеля впрыскивается смесь, значение Кп которой может несколько увеличиваться. Однако это увеличение незначительное, т.к. полости каналов, обеспечивающих подачу запального топлива ограничены обратным клапаном 30. Кроме этого, наличие обратного клапана 30 позволяет обеспечить более высокие давления впрыскивания основного топлива.

Заканчивается процесс впрыскивания топлива в камеру сгорания дизеля посадкой запирающей иглы 14 на седло - запирающий конус 8 распылителя 7. При движении запирающей иглы 14 от упора к седлу - запирающему конусу 8 значение коэффициента Кп меняется незначительно. Этому способствует особенность конструкции системы и, в частности, наличие обратного клапана 30 в канале 4 корпуса 1 форсунки.

Важная особенность посадки запирающей иглы 14 на седло - запирающий конус 8 состоит и в том, что начало ее движения от упора происходит при значении давления Р′′ф значительно большем, чем значение давления Рфо (в рассматриваемом случае приблизительно в 1,5 раза). В результате существенно сокращаются продолжительность впрыскивания топлива в камеру сгорания дизеля и подача смеси с убывающими скоростями. Кроме этого, как отмечалось ранее, система обеспечивает более мелкое распыливание энергоносителя при У<Умах. Все отмеченное позволяет улучшить эксплуатационные характеристики дизеля.

В случае, когда запирающая игла 14 имеет дополнительную внешнюю цилиндрическую проточку 39 с основанием 40, расположенным за пределами кольцевого канала 22 распылителя 7, при условии, что диаметр внешней проточки dци меньше диаметра dцp кольцевого канала 22 распылителя 7, причем dцp меньше или равен диаметру d′и цилиндрической поверхности 16 запирающей иглы 14, обеспечивается большая технологичность конструкции в части изготовления кольцевого канала 22 распылителя 7. Технологичность заключается в том, что при d′и=45 мм изготовление канала 22 с dцp>d′и требует, в частности, дополнительных инструментов и технологических операций.

Таким образом, изобретение позволяет получить возможность коррекции массового состава смеси, подаваемой в камеру сгорания дизеля в процессе рабочего цикла, и улучшить мелкость распыливания топлива в периоды подъема и посадки запирающей иглы распылителя.

Источники информации:

1. Астахов И.В., Голубков Л.Н., Трусов В.И. и др. Топливные системы и экономичность дизелей. - М.: Машиностроение, 1990, - 288 с.; ил.

2. Марков В.А., Гайворонский A.И., Грехов Л.В., Иващенко Н.А. Работа дизелей на нетрадиционных топливах. - М.: Легион-Автодата, 2008, с. 298.

3. Мальчук B.И. Топливоподача и зональное смесеобразование в дизелях. - М.: МАДИ, 2009, - 176 с.; ил.

4. Авт.св. СССР №1530801, Мкл. F02M 43/04, опубл. 1989 г. (прототип).

5. Мальчук В.И. Концепция организации подачи и распыливания альтернативных топлив в быстроходных дизелях нового поколения. // Вестник МАДИ (ГТУ), вып. 4, 2005, с. 11-18.

1. Форсунка многотопливного дизеля, содержащая корпус и головку с каналами подвода каждого вида топлива, полый распылитель с запирающим конусом, распыливающими отверстиями, каналами подвода каждого вида топлива, сообщенными с соответствующими каналами подвода корпуса форсунки, и подпружиненную запирающую иглу, размещенную в полости распылителя и выполненную с направляющей и цилиндрической поверхностями, а также конической запирающей поверхностью с обратным конусом, образующими с распылителем соответственно, подыгольный объем и полость смешения, при этом в распылителе выполнена распределительная полость, связанная с каналами подвода основного топлива, а также с полостью смешения посредством кольцевого канала, а в теле запирающей иглы выполнен осевой канал, сообщенный через радиальные каналы с каналами подвода запального топлива посредством кольцевой полости между цилиндрическими поверхностями распылителя и запирающей иглы, соответственно, а также дополнительные радиальные каналы, выходящие одним концом в полость смешения, а другим - в осевой канал, и, по меньшей мере, один обратный клапан, установленный в линии каналов подвода запального топлива корпуса форсунки и распылителя, отличающаяся тем, что в распылителе дополнительно выполнена цилиндрическая проточка с образованием между распределительной и кольцевой полостями полости управления, которая сообщена с каналом подвода головки форсунки запального топлива с помощью соответствующих цилиндрических каналов, выполненных в распылителе и корпусе форсунки, и проточки, образованной между торцевыми поверхностями корпуса и головки форсунки, а обратный клапан установлен в корпусе форсунки в линии подвода запального топлива в осевой канал запирающей иглы, параллельной линии подвода запального топлива в полость управления.

2. Форсунка по п. 1, отличающаяся тем, что запирающая игла имеет дополнительную внешнюю цилиндрическую проточку с основанием, расположенным за пределами кольцевого канала распылителя, и диаметром dци, меньшим диаметра dцр кольцевого канала распылителя, для которого выполнимо условие dцр<d'и, где d'и - диаметр цилиндрической поверхности запирающей иглы.



 

Похожие патенты:

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ управления двойным впрыском, включающий стадию, в которой с помощью устройства управления впрыском оценивают, выполняются ли в работающем с больше чем одним топливом двигателе заданные ранее условия выполнения логики переключения топлива, чтобы выполнить переключения топлива на привод посредством указанного топлива 1 или на привод посредством указанного топлива 2.

Изобретение относится к системам впрыска топлива дизельных двигателей. Предложена форсунка, содержащая корпус (1), полый распылитель (4) с коническим седлом (5) и каналы (2) и (3) подвода основного и запального топлива.

Изобретение относится к двигателестроению и может быть использовано в различных отраслях, использующих дизельные двигатели. .

Изобретение относится к двигателестроению, в частности к топливной аппаратуре двигателей внутреннего сгорания. .

Изобретение относится к двигателестроению, в частности к топливным системам двигателей внутреннего сгорания. .

Изобретение относится к транспортному машиностроению и может быть использовано в конструкциях дизельных двигателей. .

Изобретение относится к двигателестроению, в частности к форсункам для многотопливных дизелей. .

Изобретение относится к двигателестроению, в частности к устройствам впрыска топлива в двигатель внутреннего сгорания. .

Изобретение относится к двигателестроению, в частности, к системам впрыска топлива в дизель. .

Изобретение относится к области двигателестроения, в частности, может использоваться в двигателях внутреннего сгорания с воспламенением от сжатия. .

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания с самовоспламенением (ДВС). Предложен топливный клапан (50) для впрыскивания запального жидкого топлива и газообразного топлива в камеру сгорания ДВС, содержащий: удлиненный корпус (52), форсунку (54) с отверстиями (56) и проходным отверстием (53) подачи газообразного топлива и иглу (61) клапана, выполненную с возможностью осевого перемещения между открытым и закрытым положениями. Топливный клапан содержит приводную систему для управления перемещением иглы (61), проходное отверстие (78) для подвода жидкого топлива, канал (67) для впрыскивания жидкого топлива, проходящий в осевом направлении внутри иглы (61), и насосную камеру (80), соединенную по текучей среде с отверстием (78) и с каналом (67). Насосная камера (80) сжата, когда игла (61) перемещена из закрытого положения в открытое, и насосная камера (80) расширена, когда игла (61) перемещена из открытого положения в закрытое, причем жидкое топливо поступает к форсунке (54) при сжатии насосной камеры (80). 2 н. и 10 з.п. ф-лы, 9 ил.

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания с воспламенением от сжатия (ДВС). Предложен топливный клапан (50) для впрыска газообразного топлива в камеру сгорания ДВС. Топливный клапан (50) содержит удлиненный корпус (52), форсунку (54) с удлиненным корпусом и полой внутренней частью, которая образует камеру (55), соединенную с отверстиями (56) форсунки. Топливный клапан (50) содержит впускное отверстие (53) для газообразного топлива, впускное отверстие (78, 98) для воспламеняющей жидкости, средство (61, 69, 53, 58, 61, 69) для установления синхронизированного проточного соединения между впускным отверстием для газообразного топлива и камерой (55) воспламенения и средство (61, 67, 69, 76, 79, 85, 98, 99), выполненное с возможностью синхронизированной доставки конечного объема воспламеняющей жидкости в камеру (55) для воспламенения газообразного топлива внутри камеры (55). Технический результат – оптимизация системы топливоподачи за счет исключения отдельных устройств подачи воспламеняющей жидкости. 4 н. и 15 з.п. ф-лы, 15 ил.

Изобретение может быть использовано в системах топливоподачи для двигателей внутреннего сгорания с самовоспламенением (ДВС). Предложен топливный клапан (50) для впрыска газообразного топлива в камеру сгорания ДВС. Топливный клапан (50) содержит корпус (52); форсунку (54) с отверстиями (56), впускное отверстие (53) для газообразного топлива; иглу (61) клапана, выполненную с возможностью осевого перемещения в продольном канале (77) удлиненного корпуса (52) клапана между закрытым положением и открытым положением. Топливный клапан имеет приводную систему для управляемого перемещения иглы (61) клапана между закрытым положением и открытым положением; впускное отверстие (78, 98) для воспламеняющей жидкости и канал (76, 99) подачи воспламеняющей жидкости, соединяющий впускное отверстие (78, 98) для воспламеняющей жидкости с топливной камерой (58), причем канал подачи (76, 99) воспламеняющей жидкости содержит постоянный гидравлический ограничительный элемент. Технический результат – подача небольшого непрерывного потока воспламеняющей жидкости в камеру (58) форсунки, заполненную газовым топливом. 3 н. и 13 з.п. ф-лы, 12 ил.

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания. Предложена форсунка, содержащая корпус, полый распылитель (4) с запирающим коническим седлом (5), распыливающими отверстиями (6) и каналами подвода основного и запального топлива. В полости распылителя (4) размещена запирающая игла (11), в нижней части которой выполнена запирающая коническая поверхность. В теле иглы (11) выполнен осевой канал (22), оканчивающийся отверстиями (27). В нижней части запирающей иглы (11) на конической поверхности выполнена проточка с образованием дополнительного конуса (28) и полости (30) смешения в виде гарантированного в течение эксплуатационного цикла работы зазора So. Изобретение позволяет осуществлять коррекцию массового состава смеси, подаваемой в камеру сгорания дизеля в процессе рабочего цикла, и улучшать протекание характеристик массового состава смеси и их стабильность в процессе эксплуатации. Дополнительно изобретение дает возможность обеспечить идентичность рабочих циклов в различных цилиндрах многоцилиндрового дизеля за счет возможности регулирования динамики ввода присадки. 1 з.п. ф-лы, 6 ил., 1 табл.
Наверх