Зеркальный автоколлимационный спектрометр

Изобретение относится к оптическому приборостроению и касается зеркального автоколлимационного спектрометра. Спектрометр состоит из входной щели, объектива и плоской отражательной дифракционной решетки. Входная щель расположена в фокальной плоскости объектива и смещена относительно его оптической оси. Объектив состоит из трех зеркал. Первое зеркало выполнено внеосевым в виде эллипсоида с положительной оптической силой, в 1,5-2,5 раза большей, чем у третьего зеркала. Второе зеркало выполнено сферическим с отрицательной оптической силой, в 2,5-3,5 раза большей, чем у третьего зеркала. Третье зеркало выполнено в виде внеосевого гиперболического фрагмента с положительной оптической силой, близкой к силе всего объектива. Расстояния между первым, вторым и третьим зеркалами в 1,5…2 раза меньше фокусного расстояния всего объектива. Оптические оси зеркал совмещены с оптической осью объектива. Перед плоскостью изображения расположена плоскопараллельная пластина с показателем преломления 1,4-1,6 и толщиной 0,005-0,02 от фокусного расстояния объектива. Дифракционная решетка выполнена с углом блеска, рассчитанным для спектра первого порядка. Технический результат заключается в повышении качества и однородности изображения. 3 ил., 1 табл.

 

Изобретение относится к оптическому приборостроению и может быть использовано в промышленных, авиационных и космических гиперспектральных системах.

Известны оптические системы, предназначенные для разложения оптического излучения в спектр с целью изучения его спектрального состава. Например, в книге Пейсахсона И.В. «Оптика спектральных приборов», изд. 2-е доп. и перераб., Л., «Машиностроение», Ленинградское отделение, 1975, с. 6, приведена принципиальная оптическая схема спектрального прибора. Он состоит из входной щели, коллимирующего объектива, диспергирующего устройства, фокусирующего объектива и приемника изображения. Недостатком таких схем является наличие двух линзовых объективов и, как следствие, большие габариты и масса.

Также известны автоколлимационные зеркальные монохроматоры, Пейсахсон И.В. «Оптика спектральных приборов», изд. 2-е доп. и перераб., Л., «Машиностроение», Ленинградское отделение, 1975, с. 153, имеющие более простую конструкцию. Они содержат минимальное количество оптических деталей: вогнутое зеркало в качестве коллимирующего и фокусирующего объективов и автоколлимационную призменную диспергирующую систему. Наличие только одного зеркала не позволяет исправить аберрации системы и кривизну спектральных линий даже для узкого спектрального диапазона и малых угловых полей.

Наиболее близким к предлагаемому изобретению является зеркальный автоколлимационный спектрометр, описанный в патенте РФ №2521249, МПК G02B 17/08, G01J 3/14, опубликованном 27.06.2014 г., состоящий из входной щели, объектива и диспергирующего устройства. Входная щель расположена в фокальной плоскости объектива и смещена в меридиональной плоскости относительно его оптической оси. Объектив состоит из трех установленных последовательно по ходу луча зеркал. Первого сферического, выполненного в виде внеосевого фрагмента, вогнутого зеркала с положительной оптической силой, в 3 раза большей, чем у третьего зеркала, обращенного вогнутостью к входной щели. Второго, выполненного в виде внеосевого фрагмента вытянутого эллипсоида, выпуклого зеркала с отрицательной оптической силой, в 4 раза большей, чем у третьего зеркала, расположенного между входной щелью и первым зеркалом и обращенного выпуклостью к первому зеркалу. Третьего, расположенного на оптической оси объектива, вогнутого гиперболического зеркала с положительной оптической силой, примерно равной силе всего объектива, обращенного вогнутостью к входной щели. Причем центры отражающих поверхностей всех зеркал расположены на оптической оси объектива. Диспергирующее устройство спектрометра расположено с другой стороны от оптической оси по отношению к входной щели и выполнено в виде призмы с преломляющим углом 5…30 градусов из материала, с показателем преломления в пределах 1,4…1,7 и коэффициентом дисперсии в пределах 20…70, с нанесенным на второй по ходу луча грани отражающим покрытием. Апертурная диафрагма расположена на второй по ходу луча грани призмы. Излучение от входной щели преобразуется объективом в коллимированный пучок, который затем попадает на диспергирующий элемент, раскладывается в спектр, отражается от плоского зеркала, снова проходит через диспергирующий элемент, а затем попадает в объектив, формирующий в обратном ходе разложенное в спектр изображение входной щели на приемнике изображения. Но результатом применения призменного диспергирующего устройства является низкая угловая дисперсия.

Задачей данного изобретения является создание зеркального автоколлимационного спектрометра с повышенными эксплуатационными характеристиками.

Технический результат - создание зеркального автоколлимационного спектрометра, обеспечивающего высокое качество и однородность изображения во всем рабочем спектральном диапазоне, с повышенной технологичностью, малыми габаритами и массой, простого в юстировке.

Это достигается тем, что в зеркальном автоколлимационном спектрометре, состоящем из входной щели, объектива и диспергирующего устройства, входная щель расположена в фокальной плоскости объектива и смещена в меридиональной плоскости относительно его оптической оси, объектив состоит из трех установленных последовательно по ходу луча зеркал, первого, выполненного в виде внеосевого фрагмента вогнутого зеркала с положительной оптической силой, обращенного вогнутостью к входной щели, второго выпуклого зеркала с отрицательной оптической силой, расположенного между входной щелью и первым зеркалом и обращенного выпуклостью к первому зеркалу, третьего вогнутого гиперболического зеркала с положительной оптической силой, близкой к силе всего объектива, обращенного вогнутостью к входной щели, причем все оптические поверхности зеркал объектива являются поверхностями не более чем второго порядка, с оптическими осями, совмещенными с оптической осью объектива, апертурная диафрагма расположена на диспергирующем устройстве, находящемся с другой стороны от оптической оси по отношению к входной щели, в отличие от известного, первое зеркало выполнено в виде сплюснутого эллипсоида с оптической силой, в 1,5…2,5 раза большей, чем у третьего зеркала, второе зеркало - сферическое, расположенное на оси, с оптической силой, в 2,5…3,5 раза большей, чем у третьего зеркала, выполненного в виде внеосевого фрагмента, расстояние между первым и вторым зеркалами в 1,5…2 раза меньше фокусного расстояния всего объектива и равно расстоянию между вторым и третьим зеркалом, диспергирующее устройство выполнено в виде плоской отражательной дифракционной решетки с шагом от 1 до 1000 мкм с углом блеска, рассчитанным для спектра первого порядка, кроме того, перед плоскостью изображения расположена плоскопараллельная пластина с показателем преломления 1,4…1,6 и толщиной 0,005…0,02 от фокусного расстояния объектива, а все оптические элементы выполнены из материалов с высокой радиационной устойчивостью к воздействию космического излучения.

На фиг. 1 представлена принципиальная оптическая схема зеркального автоколлимационного спектрометра. На фиг. 2 приведена модуляционная передаточная функция зеркального автоколлимационного спектрометра для средней и граничных длин волн рабочего спектрального диапазона для центральной точки входной щели. На фиг. 3 приведена модуляционная передаточная функция зеркального автоколлимационного спектрометра для средней и граничных длин волн рабочего спектрального диапазона для крайней точки входной щели.

Зеркальный автоколлимационный спектрометр на фиг.1 состоит из входной щели 1, первого зеркала 2, второго зеркала 3, третьего зеркала 4, отражающей дифракционной решетки 5 и плоскопараллельной пластины 6. Зеркала 2, 3 и 4 образуют объектив с эксцентрично расположенным полем изображения. Входная щель 1 длиной 19,2 мм расположена в фокальной плоскости объектива перпендикулярно меридиональной плоскости и смещена относительно оптической оси. Первое зеркало 2 выполнено в виде внеосевого фрагмента вогнутого сплюснутого эллипсоида, обращенного вогнутостью к входной щели 1, с положительной оптической силой примерно в 2 раза большей, чем у третьего зеркала 4. Второе зеркало 3 - выпуклое осесимметричное, выполненное сферическим с отрицательной оптической силой, примерно в 2 раза большей, чем у третьего зеркала 4, расположено между входной щелью 1 и первым зеркалом 2 и обращено выпуклостью к первому зеркалу 2. Третье зеркало 4 выполнено в виде внеосевого фрагмента вогнутого гиперболоида, обращенного вогнутостью к входной щели 1, с положительной оптической силой, близкой к силе всего объектива, при этом расстояние между первым и вторым зеркалами примерно в 1,7 раза меньше фокусного расстояния всего объектива, а вершины первого и третьего зеркал совмещены. Оптические оси отражающих поверхностей зеркал 2, 3 и 4 совмещены с оптической осью объектива. Диспергирующее устройство спектрометра выполнено в виде плоской отражательной дифракционной решетки 5 с шагом от 1 до 1000 мкм с углом блеска, рассчитанным для спектра первого порядка, и расположено с другой стороны от оптической оси по отношению к входной щели 1, также в плоскости дифракционной решетки 5 расположена апертурная диафрагма. Плоскопараллельная пластина 6 имитирует защитное стекло приемника изображения, расположена перед плоскостью изображения и выполнена из оптического материала с показателем преломления 1,4…1,6 и толщиной 0,005…0,02 от фокусного расстояния объектива. Все оптические элементы выполнены из материалов с высокой радиационной устойчивостью к воздействию космического излучения.

На фиг. 2 приведена модуляционная передаточная функция зеркального автоколлимационного спектрометра для средней и граничных длин волн рабочего спектрального диапазона для центральной точки входной щели.

На фиг. 3 приведена модуляционная передаточная функция зеркального автоколлимационного спектрометра для средней и граничных длин волн рабочего спектрального диапазона для крайней точки входной щели.

Зеркальный автоколлимационный спектрометр работает следующим образом. Излучение от входной щели 1 спектрометра попадает на первое зеркало 2, затем, отразившись от него, последовательно претерпевает отражение на втором зеркале 3 и третьем зеркале 4. После зеркала 4 коллимированный пучок излучения попадает на отражающую дифракционную решетку 5, и отразившись от нее, раскладывается в спектр и снова попадает на третье зеркало 4. Отразившись последовательно от третьего зеркала 4, второго зеркала 3, первого зеркала 2 и пройдя через плоскопараллельную пластину 6, излучение формирует разложенное в спектр изображение входной щели в плоскости изображения.

В соответствии с предложенным техническим решением рассчитан зеркальный автоколлимационный спектрометр, конструктивные параметры которого приведены в таблице 1.

Характеристики зеркального автоколлимационного спектрометра:

Спектральный диапазон: 1,0-2,2 мкм.

Относительное отверстие объектива: 1:3,5.

Длина входной щели: 19,2 мм.

Линейное поле в пространстве изображений: 19,32×6,35 мм.

Зеркальный автоколлимационный спектрометр имеет следующие характеристики качества изображения:

- кривизна спектральных линий не более 5,0 мкм во всем рабочем спектральном диапазоне;

- краевая дисторсия изображения не более 5,2 мкм во всем рабочем спектральном диапазоне;

- линейная дисперсия 0,19 нм/мкм;

- МПФ на пространственной частоте 30 мм-1 не менее 0,5 во всем рабочем спектральном диапазоне для всех точек линейного поля.

Таким образом, создан зеркальный автоколлимационный спектрометр, работающий в ближнем инфракрасном диапазоне длин волн 1,0-2,2 мкм, с входной щелью длиной 19,2 мм, относительным отверстием объектива 1:3,5, линейной дисперсией 0,19 нм/мкм, имеющий высокое качество и однородность изображения во всем рабочем спектральном диапазоне, что очень важно при использовании матричных фотоприемных устройств. Кроме того, он обладает повышенной технологичностью и простотой в юстировке за счет использования в объективе спектрометра асферических поверхностей не более чем второго порядка, единственное выпуклое зеркало является сферическим, причем центры всех отражающих поверхностей находятся на оптической оси объектива, вершины первого и третьего зеркал совмещены, а диспергирующее устройство выполнено в виде плоской отражающей дифракционной решетки.

Зеркальный автоколлимационный спектрометр, состоящий из входной щели, объектива и диспергирующего устройства, входная щель расположена в фокальной плоскости объектива и смещена в меридиональной плоскости относительно его оптической оси, объектив состоит из трех установленных последовательно по ходу луча зеркал, первого, выполненного в виде внеосевого фрагмента вогнутого зеркала с положительной оптической силой, обращенного вогнутостью к входной щели, второго выпуклого зеркала с отрицательной оптической силой, расположенного между входной щелью и первым зеркалом и обращенного выпуклостью к первому зеркалу, третьего вогнутого гиперболического зеркала с положительной оптической силой, близкой к силе всего объектива, обращенного вогнутостью к входной щели, причем все оптические поверхности зеркал объектива являются поверхностями не более чем второго порядка, с оптическими осями, совмещенными с оптической осью объектива, апертурная диафрагма расположена на диспергирующем устройстве, находящемся с другой стороны от оптической оси по отношению к входной щели, отличающийся тем, что первое зеркало выполнено в виде сплюснутого эллипсоида с оптической силой, в 1,5…2,5 раза большей, чем у третьего зеркала, второе зеркало - сферическое, расположенное на оси, с оптической силой, в 2,5…3,5 раза большей, чем у третьего зеркала, выполненного в виде внеосевого фрагмента, расстояние между первым и вторым зеркалами в 1,5…2 раза меньше фокусного расстояния всего объектива и равно расстоянию между вторым и третьим зеркалами, диспергирующее устройство выполнено в виде плоской отражательной дифракционной решетки с шагом от 1 до 1000 мкм с углом блеска, рассчитанным для спектра первого порядка, кроме того, перед плоскостью изображения расположена плоскопараллельная пластина с показателем преломления 1,4…1,6 и толщиной 0,005…0,02 от фокусного расстояния объектива, и все оптические элементы выполнены из материалов с высокой радиационной устойчивостью к воздействию космического излучения.



 

Похожие патенты:

Объектив может быть использован в космических телескопах. Объектив содержит первое зеркало в виде внеосевого фрагмента вогнутого гиперболического зеркала, линзовый компенсатор аберраций видимого канала из плосковыпуклой и двояковыпуклой линз и отрицательного мениска, второе зеркало в виде внеосевого фрагмента сферического выпуклого зеркала и третье зеркало в виде внеосевого фрагмента вогнутого сферического зеркала.

Объектив может быть использован в космических телескопах. Объектив содержит первое зеркало в виде внеосевого фрагмента вогнутого сферического зеркала, обращенного вогнутостью к плоскости предметов, линзовый корректор аберраций, выполненный в виде трех одиночных осесимметричных линз из разных оптических материалов: двояковыпуклой, двояковогнутой и положительного мениска, второе зеркало в виде внеосевого фрагмента выпуклого зеркала, обращенного выпуклостью к линзовому корректору аберраций, третье зеркало в виде внеосевого фрагмента вогнутого сферического зеркала, обращенного вогнутостью к плоскости предметов, и апертурную диафрагму, совпадающую с оправой первой поверхности второй линзы корректора аберраций.

Объектив может использоваться для работы в видимом и ближнем ИК-диапазоне длин волн. Объектив коллиматора содержит первичное зеркало, на первую по ходу лучей поверхность которого нанесено зеркальное покрытие, вторичное зеркало с зеркальным покрытием на кольцевой периферийной части, причем отражающие поверхности зеркал обращены друг к другу, двухлинзовый оптический элемент, установленный за первичным зеркалом со стороны пространства изображений и состоящий по ходу лучей из одиночной отрицательной линзы, обращенной вогнутой поверхностью к пространству изображений, и одиночной двояковыпуклой линзы.

Изобретение относится к формирующей изображение оптической системе, датчику для проверки ценных документов с такой оптической системой и к способу отображения точки предмета.

Оптический элемент (2) для коллимирования света из источника (3) света выполнен из единого куска материала и содержит: впускную сторону (5), выполненную с возможностью приема света, выпускную сторону (6), выполненную с возможностью обеспечения излучения коллимированного света, и тело элемента, продолжающееся от впускной стороны (5) до выпускной стороны (6).

Система может быть использована при исследовании свойств газовых сред, в том числе, с химическими реакциями, в малых объемах, методами спектроскопии рассеяния или поглощения света.

Зеркально-линзовый объектив состоит по ходу луча из плосковыпуклой линзы, обращенной выпуклостью к плоскости предметов, на центральную часть плоской поверхности которой нанесено зеркальное покрытие, зеркала Манжена, обращенного вогнутостью к плоскости предметов, в центре которого выполнено отверстие, и положительного склеенного мениска, обращенного выпуклостью к плоскости предметов.

Предлагаемое изобретение относится к оптическому приборостроению, а именно к объективам коллиматора, работающим в среднем ИК-диапазоне длин волн (для спектрального диапазона от 3 до 5 мкм), и может быть использовано в тепловизионных коллиматорах или в приемных тепловизионных объективах (в обратном ходе лучей) в различных приборах.

Способ может быть использован для наблюдения Земли из космоса с использованием матричной телевизионной системы для измерения ориентации визирной оси телекамеры по изображению горизонта Земли с помощью построения местной вертикали.

Объектив может быть использован для визуального наблюдения, фото и видео регистрации. Объектив содержит расположенные по ходу лучей четыре компонента: главное зеркало, вторичное зеркало с внутренним отражением, расположенный вблизи плоскости промежуточного изображения третий компонент и оборачивающую систему, состоящую из двух линз, одна из которых - отрицательный мениск, обращенный вогнутой стороной ко второй двояковыпуклой линзе.

Спектрометр состоит из входной щели, расположенной в фокальной плоскости объектива и смещенной в меридиональной плоскости относительно его оптической оси, объектива и диспергирующего устройства.

Изобретение может быть использовано в промышленных, авиационных и космических гиперспектральных системах. Cпектрометр состоит из входной щели, объектива и диспергирующего устройства, находящегося с другой стороны от оптической оси по отношению к входной щели. Объектив выполнен из трех зеркал: первого – положительного в виде внеосевого фрагмента вогнутого зеркала в виде сплюснутого эллипсоида, второго выпуклого сферического зеркала, третьего положительного вогнутого зеркала в виде внеосевого фрагмента гиперболоида. Входная щель и ее изображение ориентированы параллельно меридиональной плоскости и смещены в меридиональной и сагиттальной плоскостях относительно оптической оси объектива. Разложение изображения входной щели в спектр осуществлено в сагиттальном направлении. Главное сечение диспергирующего устройства расположено перпендикулярно меридиональной плоскости с наклоном к оптической оси. Технический результат – обеспечение спектрального разложения в сагиттальном направлении с увеличенным линейным полем, повышение технологичности, малые габариты и масса, простота юстировки, высокое качество изображения во всем рабочем спектральном диапазоне. 2 з.п. ф-лы, 5 ил., 1 табл.

Изобретение может быть использовано в тепловизионных приборах на основе охлаждаемых матричных приемников излучения. Объектив состоит из расположенных по ходу лучей первого компонента, содержащего два асферических зеркала, из которых первое имеет центральное отверстие и выполнено вогнутым, а второе - выпуклым, и второго компонента, содержащего первую отрицательную, вторую положительную и третью отрицательную выпукло-вогнутые линзы, при этом оптическая сила второго компонента в целом - положительная. Между первым и вторым компонентами формируется промежуточное изображение. Выходной зрачок расположен между вторым компонентом и плоскостью изображения. Технический результат - повышение качества изображения путем повышения разрешающей способности за счет увеличения относительного отверстия, а также путем улучшения освещенности и контраста изображения за счет оптимального сопряжения объектива с охлаждаемым матричным приемником излучения. 1 ил., 3 табл.

Изобретение может использоваться в оптических системах, работающих в широком спектральном диапазоне. Зеркально-линзовый объектив содержит на входе афокальный компенсатор с близкой к нулю оптической силой, состоящий из обращенного вогнутостью к предмету отрицательного мениска и положительной линзы, выполненных из одного материала, а на выходе - второй отрицательный двухлинзовый компенсатор, содержащий обращенный вогнутостью к изображению отрицательный мениск, являющийся выходным элементом объектива, и расположенный перед ним мениск, выпуклость которого обращена к выпуклости выходного мениска. Оба мениска изготовлены из того же материала, что и линзы первого компенсатора. Между компенсаторами расположены последовательно по ходу распространения лучей два зеркала, первое из которых выполнено вогнутым с отверстием в центральной части, а второе - выпуклым. Технический результат - расширение спектрального диапазона за счет уменьшения вторичного спектра при сохранении дифракционного качества изображения по всему полю изображения. 3 ил.

Изобретение может быть использовано для головок самонаведения, оптико-электронных систем обнаружения, распознавания и автосопровождения, в частности, в составе бортовой аппаратуры, работающей в нескольких спектральных диапазонах. Система содержит первый канал и второй канал, соосный первому и установленный перед ним. Первый канал содержит главное зеркало, вторичное зеркало (ВЗ), отражающее спектральное излучение Δλ1=8-12,5, линзовый компенсатор аберраций (ЛКА) и фотоприемник излучения спектрального диапазона Δλ1. Второй канал содержит главное зеркало, ВЗ, пропускающее спектральное излучение Δλ2=0,4-0,7 мкм, ЛКА, установленный в зоне центрального экранирования первого канала, и фотоприемник излучения спектрального диапазона Δλ2. Cпектроделительное покрытие нанесено на выпуклую поверхность ВЗ. ЛКА обоих каналов выполнены с положительным линейным увеличением β: 0.8<β<1.2. Технический результат - повышение качества изображения, увеличение светосилы второго канала до светосилы первого канала, обеспечение атермальности обоих каналов, упрощение конструкции и уменьшение габаритно-массовых характеристик. 4 з.п. ф-лы, 1 ил., 1 прилож.

Изобретение относится к области светотехники. Техническим результатом является достижение возможности смешения цветов в расширенном рабочем диапазоне, в том числе осуществление задания установочных параметров масштабирования вне фокуса, часто используемых для получения пятен с размытыми краями. Устройство (14, 22) включает трубчатый отражатель, имеющий отражающую внутреннюю поверхность (16), который содержит первую секцию (15а), имеющую входную апертуру (17а) и выходную апертуру (17b), большую, чем указанная входная апертура, и вторую секцию (15b), имеющую входную апертуру (18а) и выходную апертуру (18b), по существу идентичные по размеру, входная апертура (18а) второй секции (15b) расположена рядом с указанной выходной апертурой (17b) первой секции (15а); матрицу (1) источников света, содержащую множество источников (2) света, размещенных для излучения света в первую секцию (15а) указанного трубчатого отражателя через входную апертуру (17а) указанной первой секции (15а). Оптический фокусирующий элемент (21) расположен между выходной апертурой (17b) первой секции (15а) и выходной апертурой (18b) второй секции указанного трубчатого отражателя. Указанные первая и вторая секция, матрица источников света и оптический фокусирующий элемент размещены с возможностью формирования коллимированного пучка света однородно смешанных цветов, выводимого через выходную апертуру (18b) второй секции (15b). Оптическая ось (19) проходит от матрицы (1) источников света к выходной апертуре (18b) второй секции (15b), при этом первая секция (15а) имеет выпуклую форму, видимую от оптической оси (19). 3 н. и 10 з.п. ф-лы, 6 ил.
Наверх