Способ получения сжиженного метана высокой чистоты

Изобретение относится к криогенной технике. Способ получения сжиженного метана высокой чистоты, включающий предварительное охлаждение компрессата, его разделение на технологический поток, который охлаждают, редуцируют и нагревают продуктовым и технологическим потоками, и продуктовый поток, который охлаждают, редуцируют и сепарируют с получением сжиженного метана и газа сепарации. Природный газ предварительно подвергают мягкому паровому каталитическому риформингу совместно с водным конденсатом и деминерализованной водой с получением риформата. Риформат смешивают с нагретым технологическим потоком и сжимают компрессором, оснащенным в качестве привода двигателем внутреннего сгорания, с получением компрессата, предварительное охлаждение которого осуществляют сторонним хладоагентом до температуры не ниже температуры гидратообразования. Перед разделением компрессата на технологический и продуктовый потоки его осушают и очищают от углекислого газа с получением метана высокой чистоты, водного конденсата и отходящего газа, содержащего CO2, при этом газ сепарации нагревают продуктовым и технологическим потоками, смешивают с отходящим газом, содержащим CO2, и используют в качестве топлива для привода компрессора. Техническим результатом является повышение выхода жидкого метана высокой чистоты. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к криогенной технике и может быть использовано в газовой промышленности для получения сжиженного метана высокой чистоты, например, в качестве топлива для ракетных двигателей.

Известен способ частичного сжижения природного газа и установка для его реализации [RU 2280826, опубл. 27.07.2006 г., МПК F25J 1/00], при этом способ включает предварительное охлаждение, очистку от масла и капельной влаги, адсорбционную осушку и очистку от углекислого газа прямого потока газа высокого давления, полученного сжатием смеси природного газа и обратного потока газа, его охлаждение до полной конденсации, очистку от твердых примесей фильтрованием, дросселирование, переохлаждение сжиженным природным газом и разделение на технологический поток, который используют для охлаждения и предварительного охлаждения компрессата и далее направляют на смешение с природным газом, и продуктовый поток, который дросселируют и сепарируют на сжиженный газ и паровую фазу, которой охлаждают компрессат, а затем используют в качестве регенерирующего потока для десорбции и топлива для привода компрессора и/или выводят с установки.

Недостатком данного способа является низкое содержание метана в сжиженном газе из-за отсутствия стадий очистки природного газа от тяжелых углеводородов.

Наиболее близок по технической сущности к предлагаемому изобретению способ частичного сжижения природного газа (варианты), позволяющий получить метан высокой чистоты [RU 2525759, опубл. 20.08.2014 г., МПК F25J 1/00], включающий предварительное охлаждение прямого потока газа высокого давления (компрессата) обратным потоком газа, его дросселирование (редуцирование) и разделение на продукционный (продуктовый) и технологический потоки, при этом технологический поток охлаждают, дросселируют, последовательно нагревают реконденсируемым продукционным потоком, продукционным и технологическим потоками и затем после повторного дросселирования направляют в обратный поток, кроме того, продукционный поток охлаждают, дросселируют, разделяют в ректификационной колонне на жидкую фракцию и паровую фракцию, которую реконденсируют с последующим направлением части реконденсированного продукционного потока в ректификационную колонну в качестве флегмового орошения, а также дросселированием и разделением (сепарацией) другой его части на жидкую фазу (сжиженный метан), являющуюся готовым продуктом, и паровую фазу (газ сепарации), направляемую в обратный поток.

Недостатком устройства является низкий выход сжиженного метана высокой чистоты (7,5-8,2%) из-за отсутствия рециркуляции технологического потока газа.

Задачей предлагаемого изобретения является повышение выхода жидкого метана высокой чистоты.

Техническим результатом, получаемым при использовании изобретения, является повышение выхода жидкого метана высокой чистоты за счет предварительного каталитического превращения тяжелых углеводородов природного газа в метан путем мягкого парового риформинга, а также за счет рециркуляции технологического потока газа.

Указанный технический результат достигается тем, что в известном способе, включающем предварительное охлаждение компрессата, его разделение на технологический поток, который охлаждают, редуцируют и нагревают продуктовым и технологическим потоками, и продуктовый поток, который охлаждают, редуцируют и сепарируют с получением сжиженного метана и газа сепарации, особенность заключается в том, что природный газ предварительно подвергают мягкому паровому каталитическому риформингу совместно с водным конденсатом и деминерализованной водой с получением риформата, который смешивают с нагретым технологическим потоком и сжимают компрессором, оснащенным в качестве привода двигателем внутреннего сгорания, с получением компрессата, предварительное охлаждение которого осуществляют сторонним хладоагентом до температуры не ниже температуры гидратообразования, а перед разделением компрессата на технологический и продуктовый потоки его осушают и очищают от углекислого газа с получением метана высокой чистоты, водного конденсата и отходящего газа, содержащего CO2, при этом газ сепарации нагревают продуктовым и технологическим потоками, смешивают с отходящим газом, содержащим CO2, и используют в качестве топлива для привода компрессора.

Для увеличения выхода сжиженного метана высокой чистоты целесообразно дополнительно охлаждать продуктовый поток газом сепарации. При необходимости после предварительного охлаждения сторонним хладоагентом компрессат может быть дополнительно охлажден технологическим потоком и топливным газом.

Мягкий паровой каталитический риформинг природного газа совместно с водным конденсатом и деминерализованной водой, например, в соответствии с [RU 2443764, МПК C10L 3/10, опубл. 27.02.2012] позволяет получить риформат, не содержащий тяжелых углеводородов, за счет чего обеспечить высокую чистоту сжиженного метана.

Сжатие риформата в смеси с нагретым технологическим потоком компрессором, оснащенным в качестве привода двигателем внутреннего сгорания, позволяет в составе топлива, получаемого путем смешения газа сепарации с отходящим газом, содержащим CO2, утилизировать примеси (азот, углекислый газ, водород, инертные газы), содержащиеся в компрессате. Примеси ртути и сернистых соединений удаляют на стадии мягкого парового риформинга.

При реализации предлагаемого способа природный газ (I) совместно с деминерализованной водой (II) и водным конденсатом (III) в блоке 1 подвергают мягкому паровому каталитическому риформингу с получением риформата (IV), который смешивают с технологическим потоком (V), сжимают компрессором 2, охлаждают до температуры не ниже температуры гидратообразования сторонним хладоагентом (например, воздухом) в теплообменнике 3 и подвергают осушке и очистке от углекислого газа в блоке 4 с получением отходящего газа, содержащего CO2 (VI), и водного конденсата (III). Очищенный газ - метан высокой чистоты (VII) - разделяют на технологический поток (VIII), который охлаждают в теплообменнике 5, редуцируют в устройстве 6 (например, дроссельном вентиле или детандере), нагревают в теплообменнике 5 и смешивают с риформатом (IV), и продуктовый поток (IX), который охлаждают в теплообменнике 5, редуцируют в устройстве 7 (например, дроссельном вентиле или детандере), и сепарируют в устройстве 8 (например, емкостном сепараторе) с получением сжиженного высокой чистоты метана (X), выводимого с установки, и газа сепарации (XI), который нагревают в теплообменнике 5, смешивают с отходящим газом, содержащим CO2 (VI), а полученный при этом топливный газ (XII) подают в качестве топлива в привод компрессора 9, например двигатель внутреннего сгорания.

При необходимости, после предварительного охлаждения в теплообменнике 3, компрессат может быть дополнительно охлажден технологическим потоком топливным газом (XII) и технологическим потоком (V) в теплообменнике 10 (показано пунктиром). Для достижения максимальной степени сжижения осуществляют дополнительное охлаждение продуктового потока (IX) газом сепарации (XI) в теплообменнике 11 (показано пунктиром).

Сущность изобретения иллюстрируется следующим примером. Природный газ состава (% об.): метан 94,5%, этан 2,5%, пропан 0,4%, бутаны 0,3%, С5+ 0,1%, углекислый газ 0,2%, азот 2,0% в количестве 1000 нм3/час подвергают мягкому каталитическому паровому риформингу совместно с 20 кг/час деминерализованной воды и 9,8 кг/час конденсата водяного пара, при давлении 5,5 МПа и 20°C смешивают с 6190 нм3/час технологического потока и сжимают до 20 МПа, охлаждают воздухом до 40°C, затем в рекуперационном теплообменнике до 20°C, сепарируют и осушают композитным адсорбентом и очищают от углекислого газа цеолитом NaX с получением 7201 нм3/час осушенного газа, 52 нм3/час газа регенерации и конденсата водяного пара. Очищенный газ разделяют на 6190 нм3/час технологического потока и 1011 нм/час продуктового газа, потоки охлаждают до -146,1°C и редуцируют на детандерах: технологический поток - до 5,5 МПа, а продуктовый поток - до 0,15 МПа. Редуцированный технологический поток нагревают в рекуперационных теплообменниках до 20°C и направляют на смешение с природным газом. Редуцированный продуктовый поток сепарируют с получением 75 нм3/час газа сепарации, который смешивают с газами регенерации, нагревают в рекуперационных теплообменниках до 20°C, а полученный топливный газ используют в качестве топлива для привода компрессора. Выход сжиженного метана с чистотой более 99% составил 99% в расчете на исходный метан.

В аналогичных условиях при использовании способа по прототипу выход сжиженного метана высокой чистоты не превышал 8,2%.

Таким образом, предлагаемый способ позволяет повысить выход сжиженного метана высокой чистоты и может найти применение в газовой промышленности.

1. Способ получения сжиженного метана высокой чистоты, включающий предварительное охлаждение компрессата, его разделение на технологический поток, который охлаждают, редуцируют и нагревают продуктовым и технологическим потоками, и продуктовый поток, который охлаждают, редуцируют и сепарируют с получением сжиженного метана и газа сепарации, отличающийся тем, что природный газ предварительно подвергают мягкому паровому каталитическому риформингу совместно с водным конденсатом и деминерализованной водой с получением риформата, который смешивают с нагретым технологическим потоком и сжимают компрессором, оснащенным в качестве привода двигателем внутреннего сгорания, с получением компрессата, предварительное охлаждение которого осуществляют сторонним хладоагентом до температуры не ниже температуры гидратообразования, а перед разделением компрессата на технологический и продуктовый потоки его осушают и очищают от углекислого газа с получением метана высокой чистоты, водного конденсата и отходящего газа, содержащего CO2, при этом газ сепарации нагревают продуктовым и технологическим потоками, смешивают с отходящим газом, содержащим CO2, и используют в качестве топлива для привода компрессора.

2. Способ по п. 1, отличающийся тем, что после предварительного охлаждения сторонним хладоагентом компрессат дополнительно охлаждают технологическим потоком и топливным газом.

3. Способ по пп. 1 и 2, отличающийся тем, что продуктовый поток дополнительно охлаждают газом сепарации.



 

Похожие патенты:

Изобретение относится к технологии раздельного извлечения компонент газовых смесей, в частности очистки гексафторида урана от легколетучих примесей. Способ охлаждения газовой смеси включает предварительную очистку сжатого атмосферного воздуха, предварительное захолаживание сжатого атмосферного воздуха, охлаждение сжатого атмосферного воздуха в турбодетандере до заданной температуры, отвод работы, затраченной на расширение, регулирование холодопроизводительности.

Изобретение относится к криогенной технологии газоразделения попутных нефтяных газов. Способ комплексной осушки и очистки попутного нефтяного газа включает газодинамическую сепарацию, мембранную технологию удаления кислых соединений.

Группа изобретений относится к области сжижения природных газов высокого давления и их смесей. Способ частичного сжижения природного газа по варианту 1 включает предварительное охлаждение прямого потока газа высокого давления.

Изобретение относится к газовой промышленности, конкретно к технологиям ожижения природного газа. Способ производства сжиженного природного газа, согласно которому входящий поток газа очищают от примесей и компримируют до разделения его на технологический и продукционный потоки.

Способ сжижения газа, заключающийся в том, что предварительно очищенный и осушенный природный газ охлаждают и конденсируют в теплообменнике предварительного охлаждения, затем сепарируют, отделяя жидкую этановую фракцию, которую направляют на фракционирование, а газовый поток с первого сепаратора последовательно охлаждают в теплообменнике сжижения, используя смешанный хладагент, переохлаждают газообразным азотом в теплообменнике переохлаждения, давление переохлажденного СПГ снижают в жидкостном детандере, и переохлажденный СПГ направляют на сепарирование, после чего сжижаемый газ направляют в емкость хранения СПГ, отсепарированный газ направляют в систему топливного газа.

Способ предназначен для раздачи природного газа потребителям газа низкого давления с получением сжиженного газа. Способ заключается в отводе потока газа из магистрального трубопровода высокого давления, расширении его в многоступенчатой турбине с получением в ней механической энергии, теплообмене в теплообменнике и раздаче полученного газа низкого давления потребителю, при этом газ из магистрального трубопровода высокого давления направляют на вход тракта горячего теплоносителя теплообменного устройства и охлаждают, а на выходе из тракта его направляют в многоступенчатую турбину, где охлажденный поток газа расширяют до давления меньше заданного давления подачи потребителю в трубопроводе низкого давления, при котором подаваемый поток сжатого природного газа меняет свои параметры и свое агрегатное состояние, переходя из однофазного на входе в многоступенчатую турбину в двухфазный поток на выходе из нее, при этом из последнего отделяют в сепараторе жидкую фазу и направляют для раздачи в трубопровод сжиженного газа, а оставшуюся после отделения часть потока направляют на вход тракта холодного теплоносителя теплообменного устройства для подогрева при теплообмене с подаваемым потоком сжатого природного газа из магистрального трубопровода высокого давления и далее сжимают эту часть в дожимающем компрессоре до давления, равного давлению в трубопроводе низкого давления, одновременно нагревая ее до положительных температур, а затем направляют для раздачи в трубопровод низкого давления, причем на сжатие этой части природного газа в компрессоре используют механическую энергию расширения, полученную в многоступенчатой турбине, при этом отделение сжиженной части природного газа осуществляют после каждой ступени турбины.

Способ и система предназначены для оптимизации операций изоляции диоксида углерода и направлены на управление рабочими параметрами наземной установки для сжатия диоксида углерода (CO2) или трубопровода для поддержания потока CO2 в жидком или сверхкритическом состоянии при транспортировке к месту изоляции.

Группа изобретений относится к системе и способу сжижения газа. Способ сжижения газа содержит следующие этапы.

Изобретение относится к технологии подготовки и переработки природного или попутного нефтяного газов в сжиженный газ, представляющий собой пропан-бутановую фракцию.

Группа изобретений относится к области сжижения природных газов высокого давления и их смесей. В способе частичного сжижения природного газа прямой поток после охлаждения дросселируют и разделяют на продукционный и технологический потоки.

Изобретение относится к химической промышленности, в частности к способу получения сверхчистого сжатого гелия в баллонах. Газообразный гелий с концентрацией 99,99% подают на всасывание в компрессор [1], где сжимают до давления 15-25 кгс/см2. Далее гелий подают в блок очистки [2], где охлаждают до температуры жидкого азота (77К) и очищают от влаги, масла, газообразных примесей, после чего гелий подают в блок теплообменников [3], где разделяют на две части. Одну часть - детандерный поток (примерно 70%) расширяют в детандере [4] и охлаждают при этом. Вторую часть - дроссельный поток (примерно 30%) охлаждают, очищают от неона в неоновом адсорбере [5] и дросселируют в сборник жидкого гелия, частично сжижая. Часть гелия или весь гелий после неонового адсорбера с чистотой 99,9999% - 99,99999% по линии [8] направляют на нагреватель [9], далее в компрессор [10], где сжимают и закачивают в баллоны [11]. Изобретение позволяет получить очищенный от примесей гелий выше 99,99%. 1 ил.

Изобретение относится к криогенной технике и может быть использовано в газовой промышленности для сжижения природного газа. Способ сжижения природного газа, включающий предварительное охлаждение, очистку от масла и капельной влаги, адсорбционную осушку и очистку от углекислого газа компрессата, полученного сжатием смеси природного газа и технологического потока газа, охлаждение компрессата до полной конденсации, очистку от твердых примесей фильтрованием и разделение на технологический поток. Его используют для охлаждения и предварительного охлаждения компрессата и далее направляют на смешение с природным газом. Продуктовый поток, который редуцируют и разделяют на сжиженный природный газ, выводимый в качестве продукта, и газ сепарации, которым охлаждают компрессат, а затем используют в качестве топливного газа для привода компрессора. Осушку компрессата осуществляют после его охлаждения сторонним хладоагентом, технологическим потоком газа и топливным газом до температуры, близкой к температуре гидратообразования, но превышающей ее, очистку компрессата от углекислого газа осуществляют после его предварительного охлаждения технологическим потоком газа и топливным газом до температуры, близкой к температуре точки росы по углекислому газу, но превышающей ее. Очищенный компрессат разделяют на технологический и продуктовый потоки и производят их раздельное охлаждение и редуцирование, кроме того, газы регенерации осушки и очистки компрессата от углекислого газа смешивают с газом сепарации. Техническим результатом является повышение выхода сжиженного природного газа. 3 з.п. ф-лы, 1 ил.

Изобретение относится к нефтегазовой промышленности и может быть использовано для сжижения природного газа и утилизации попутного газа путем его сжижения. Устройство содержит линию подачи газа, три вихревых трубы с линиями отвода частично нагретого и охлажденного газа, связанные между собой каскадно через линии охлажденного газа. Также содержит теплообменные аппараты, линию отвода сжиженного газа и емкость для сбора конденсата. Теплообменные аппараты размещены на линиях отвода частично нагретого газа первых двух вихревых труб. На линиях отвода охлажденного газа из вихревых труб установлены дроссели, а линии отвода частично нагретого газа всех вихревых труб подведены к вводу первой вихревой трубы. При этом первые две вихревые трубы оснащены сепарационными узлами, которые снабжены линиями отвода газа и линиями отвода механических примесей, подключенными к емкости сбора механических примесей. Техническим результатом является снижение габаритов и массы устройства, обеспечение оптимального охлаждения. 1 з.п. ф-лы, 2 табл., 2 ил.

Изобретение относится к способу охлаждения одно- или многокомпонентного потока косвенным теплообменом со смесью охлаждающего средства в циркуляционном контуре смеси охлаждающего средства. Смесь охлаждающего средства сжимают в две ступени, разделяют на низкокипящую, сжатую до конечного давления циркуляционного контура смеси охлаждающего средства, фракцию смеси охлаждающего средства и одну высококипящую, сжатую до промежуточного давления фракцию смеси охлаждающего средства. Высококипящую фракцию смеси охлаждающего средства нагнетают до давления низкокипящей фракции смеси охлаждающего средства и перед косвенным теплообменом или непосредственно в его начале объединяют с низкокипящей фракцией смеси охлаждающего средства. Техническим результатом является создание способа охлаждения, который требует меньших затрат на оборудование и регулирование. 2 з.п. ф-лы, 1 ил.

Группа изобретений относится к водозаборному блоку трубопроводов, который может быть подвешен к морской структуре. Блок содержит пучок из первого трубчатого канала и второго трубчатого канала, которые по существу простираются бок о бок в направлении длины. Каждый содержит ближайший участок, содержащий средства подвески, последующий соединительный участок, последующий удаленный участок, содержащий водозаборную секцию. Указанный удаленный участок простирается между первым удаленным краем и соединительным участком соответствующего трубчатого канала. Указанный соединительный участок соединяет по текучей среде ближайший участок и удаленный участок. Причем первый и второй трубчатые каналы поперечно соединяются между собой с помощью одной распорной втулки в сочетании с соответствующими соединительными участками, при этом в полностью подвешенном состоянии часть удаленного участка первого трубчатого канала простирается дальше в направлении длины, чем второй трубчатый канал. Также описаны способ получения сжиженного углеводородного потока и способ получения потока парообразных углеводородов. Группа изобретений позволяет снизить риск полного прекращения транспортирования воды в ближайший участок из-за закупорки в удаленной части водозаборного блока трубопроводов. 4 н. и 8 з.п. ф-лы, 6 ил.

Изобретение относится к криогенике. Способ сжижения природного газа включает очистку нерасширившегося газа от примесей, разделение его на три потока, первый и второй из которых подают на сжижение по тракту системы рекуперативных теплообменных аппаратов. Отношение массовых расходов газа, который подается на сжижение, к общему расходу газа, поступающего в вихревые трубы, составляет 0,1-0,2. Далее потоки дросселируют и собирают образовавшийся конденсат в накопительной емкости. Третий поток пропускают через теплообменный аппарат. Далее поток разделяют на два равных потока, подают в вихревые трубы с дополнительным потоком, где разделяют на подогретый и охлажденный с отношением массовых расходов охлажденного газа на выходе из трубы и общего газа, поступающего в нее, равным 1,2. Охлажденный газ из вихревых труб пропускают по тракту системы рекуперативных теплообменных аппаратов, частично охлаждая нерасширившийся поток газа, подаваемый на сжижение. Далее отводят газ к потребителю редуцированного газа, подогретый газ из вихревой трубы с дополнительным потоком дросселируют, охлаждают в теплообменном аппарате и вместе с эжектируемыми через эжектор массами газа подают в качестве дополнительного потока в вихревую трубу с дополнительным потоком. Изобретение позволяет увеличить долю выхода конденсата. 2 з.п. ф-лы, 1 ил.
Настоящее изобретение относится к способу производства жидкого водорода и электроэнергии. Способ производства водорода и/или электроэнергии включает создание системы, подходящей для производства водорода и/или электроэнергии, содержащей, по меньшей мере, устройство реформинга, приспособленное для приема сырьевого природного газа и реформинга природного газа с получением водородсодержащего газа; устройство для производства электроэнергии, приспособленное для приема, по меньшей мере, части водорода, содержащегося в водородсодержащем газе, и осуществления реформинга водорода для производства электроэнергии; и устройство для сжижения водорода, приспособленное для приема части водорода, содержащегося в водородсодержащем газе, и для сжижения водорода с получением жидкого водорода, при этом во время работы в устройство для сжижения водорода подают по меньшей мере часть электроэнергии, произведенной в устройстве для выработки электроэнергии, и во время работы из системы отводят жидкий водород и/или электроэнергию; при этом в течение первого периода природный газ направляют в устройство реформинга газа, и система работает для отвода жидкого водорода; и в течение второго периода природный газ направляют в устройство реформинга газа, и система работает для отвода электроэнергии. 21 з.п. ф-лы, 1 ил.

Изобретение относится к способу удаления тяжелых углеводородов из исходного потока природного газа. Способ включает стадии: охлаждение исходного потока природного газа; введение охлажденного исходного потока природного газа в систему разделения газ-жидкость и разделение охлажденного исходного потока природного газа на паровой поток природного газа, обедненного тяжелыми углеводородами, и на поток жидкости, обогащенной тяжелыми углеводородами; нагревание парового потока природного газа, обедненного тяжелыми углеводородами; пропускание по меньшей мере части парового потока природного газа, обедненного тяжелыми углеводородами, через один или несколько слоев адсорбционной системы для адсорбирования из него тяжелых углеводородов с получением таким образом потока природного газа, обедненного тяжелыми углеводородами; и охлаждение по меньшей мере части потока природного газа, обедненного тяжелыми углеводородами, с получением охлажденного потока природного газа, обедненного тяжелыми углеводородами. При этом паровой поток природного газа, обедненный тяжелыми углеводородами, нагревают, и по меньшей мере часть потока природного газа, обедненного тяжелыми углеводородами, охлаждают в экономайзере-теплообменнике путем косвенного теплообмена между исходным паровым потоком природного газа, обедненного тяжелыми углеводородами, и по меньшей мере части потока природного газа, обедненного тяжелыми углеводородами. Также изобретение относится к устройству. Предлагаемое изобретение позволяет лучше извлекать тяжелые углеводороды из потоков природного газа. 2 н. и 9 з.п. ф-лы, 4 ил., 2 табл., 1 пр.

Изобретение относится к газовой промышленности, в частности к ожижению природного газа. Холодильная машина содержит компрессор, вход которого сообщен с паровой зоной циркуляционного ресивера, а выход сообщен с жидкостной зоной циркуляционного ресивера, которая через циркуляционный насос сообщена со входом испарителя. В качестве рабочего тела использована льдосодержащая суспензия СО2, содержание льда в которой не превышает 45%. Дно циркуляционного ресивера выполнено с наклоном, превышающим угол, обеспечивающий «сползание» частиц льда, причем циркуляционный насос сообщен с нижней точкой дна циркуляционного ресивера. На подающей линии установлен первый запорный вентиль, причем участок подающей линии между циркуляционным насосом и первым запорным вентилем сообщен с циркуляционным ресивером рециркуляционной линией, снабженной вторым запорным вентилем. Технический результат выражается в возможности охлаждения природного газа до -50°С перед его подачей в криогенный теплообменник. 1 ил.

Данное изобретение относится к способу и устройству для сжижения природного газа. В варианте осуществления настоящего изобретения способ сжижения природного газа включает: охлаждение части питающего потока природного газа с образованием охлажденного питающего потока природного газа; объединение охлажденного питающего потока природного газа со сжатым потоком орошения с формированием объединенного потока природного газа; разделение объединенного потока природного газа на первый поток легких фракций и первый поток тяжелых фракций; расширение первого потока легких фракций с формированием расширенного первого потока легких фракций; и сжатие потока орошения в сжатый поток орошения. Изобретение направлено на удаление тяжелых фракций и снижение энергозатрат. 3 з.п. ф-лы, 1 ил.
Наверх