Устройство измерения линейного смещения объекта

Изобретение относится к контрольно-измерительной технике, а именно к устройствам контроля линейных смещений объектов оптико-электронными методами. Устройство для измерения линейного смещения объекта содержит точечный излучатель, фотоприемную систему, оптически сопряженную с излучателем, включающую оптический фильтр, объектив и фотоприемное устройство, установленное в плоскости изображения объектива и выполненное в виде матричного фотоприемника, соединенного с блоком обработки, а также блок управления излучателем, содержащий канал управления излучателем и микроконтроллер, выходы которого соединены с входом канала управления излучателем. Вход микроконтроллера соединен с блоком обработки, при этом выход канала управления излучателем соединен с входом излучателя, при этом устройство содержит два ретрорефлектора, предназначенных для размещения на контролируемом объекте. Кроме того, точечный излучатель расположен на оптической оси объектива в пределах фотоприемной системы, так что индикатриса его излучения направлена от фотоприемной системы в сторону ретрорефлекторов. Технический результат - снижение энергопотребления излучателем и упрощение обслуживания и эксплуатации устройства в целом. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к контрольно-измерительной технике, к устройствам контроля линейных смещений объектов оптико-электронными методами и может быть использовано для контроля взаимного положения элементов крупногабаритных сооружений, соосных деталей (турбоагрегатов АЭС, направляющих крупногабаритных станков и т.п.), смещения их осей, измерения непараллельности, неплоскостности, неперпендикулярности и величин их прогибов в процессе ремонта, настройки и эксплуатации.

Известны технические решения контроля линейных смещений объектов, основанные на формировании равносигнальной базовой линии. Например, устройство измерения линейного смещения объекта, основанное на прямом методе измерений (пат. РФ, №2252395, МПК G01B 11/00 11/02, опубл. 20.05.2005). Устройство содержит предназначенный для размещения на контролируемом объекте протяженный равнояркий излучатель, установленный на оптической оси прибора с возможностью перемещения в плоскостях, перпендикулярных ей, фотоприемную систему из объектива и фотоприемного устройства с четырьмя чувствительными площадками, границы раздела которых совпадают с координатными осями ОХ и OY и имеют общую точку, которая с центром входного зрачка объектива лежит на оптической оси, образующей базовую линию, от которой ведется отсчет измерения линейных смещений, соединенный с выходами чувствительных площадок блок обработки электрических сигналов для выделения и регистрации сигналов рассогласования с вычислением величины смещения объекта относительно базовой линии. В устройстве на оптической оси прибора дополнительно установлены две квадратные диафрагмы разного размера у входного зрачка излучателя и у входного зрачка объектива фотоприемной системы. Фотоприемное устройство выполнено в виде квадратного приемника, установленного в фокальной плоскости объектива фотоприемной системы. При этом излучатель выполнен в виде осветителя, который представляет собой полую сферу диаметром 40 мм с выходным окном диаметром 10 мм. Выходное окно определяет размер протяженного равнояркого светового источника. Внутренняя поверхность сферы выполнена с диффузно-рассеивающим покрытием (белое, глубокоматовое по OCT3-1898-73) с коэффициентом отражения 0,95. Внутри сферы размещены 8 светодиодов АЛ 119. Светодиоды связаны с источником питания, выполненным в виде генератора переменных напряжений на базе однотактного таймера типа К1006В41. Источник питания подключался к сети = 220 В, 50 Гц.

К существенным недостаткам данного устройства можно отнести высокое потребление энергии излучателем вследствие того, что для работы излучателя необходимо обеспечить питание большого количества светодиодов, неудобство настройки и юстировки системы из-за необходимости совмещения центров диафрагм излучателя, объектива, а также общей точки четырех фоточувствительных площадок фотоприемного устройства с оптической осью объектива и центром входного зрачка. Кроме того, к недостаткам устройства необходимо отнести неудобство эксплуатации системы вследствие необходимости протягивания кабелей питания к излучателю, удаленному от фотоприемной системы и блока обработки.

Известно устройство для измерения линейного смещения объекта (патент РФ №2456542, МПК G01B 11/02, G01S 11/12, опубл. 20.07.2012), выбранное в качестве прототипа. Устройство включает предназначенные для размещения на контролируемом объекте два точечных излучателя, расположенных в одной плоскости на фиксированном расстоянии друг от друга, фотоприемную систему, оптически сопряженную с излучателями, содержащую оптический фильтр, объектив и фотоприемное устройство, установленное в плоскости изображения объектива и выполненное в виде матричного фотоприемника, соединенного с блоком обработки, а также блок управления излучателями, содержащий два канала управления излучателями и микроконтроллер, выходы которого соединены с входами каждого из каналов управления излучателями, а вход микроконтроллера соединен с блоком обработки, при этом выходы каждого канала управления излучателями соединены с входами соответствующих излучателей, плоскость размещения которых параллельна фоточувствительной площадке фотоприемного устройства. В качестве объектива используется телеобъектив с внутренней фокусировкой, а центр матрицы назначается программно.

К существенным недостаткам данного устройства можно отнести высокое потребление энергии излучателями, т.к. для работы устройства требуется несколько излучателей, а также неудобство эксплуатации и обслуживания системы вследствие необходимости либо протягивать кабели питания от фотоприемной системы (блока обработки) к удаленным излучателям, либо производить регулярную замену автономных элементов питания.

Задачей заявляемого устройства является снижение энергопотребления излучателем и упрощение обслуживания и эксплуатации устройства в целом.

Указанная задача решается за счет того, что в устройстве для измерения линейного смещения объекта, включающем точечный излучатель, фотоприемную систему, оптически сопряженную с излучателем, содержащую оптический фильтр, объектив и фотоприемное устройство, установленное в плоскости изображения объектива и выполненное в виде матричного фотоприемника, соединенного с блоком обработки, а также блок управления излучателем, содержащий канал управления излучателем и микроконтроллер, выходы которого соединены с входом канала управления излучателем, а вход микроконтроллера соединен с блоком обработки, при этом выход канала управления излучателем соединен с входом излучателя, новым является то, что устройство содержит два ретрорефлектора, предназначенных для размещения на контролируемом объекте, плоскости входных зрачков которых расположены в одной плоскости и параллельны плоскости фоточувствительной площадки фотоприемного устройства, а центры зрачков расположены на фиксированном расстоянии друг от друга, при этом точечный излучатель расположен на оптической оси объектива в пределах фотоприемной системы, так что индикатриса его излучения направлена от фотоприемной системы в сторону ретрорефлекторов. Кроме того, каждый из излучателей выполнен в виде полупроводникового излучающего диода, излучатель закреплен в отверстии оптического фильтра фотоприемной системы на оптической оси объектива, а ретрорефлекторы выполнены в виде триппель-призм.

Сущность изобретения поясняется чертежом, где изображена структурная схема устройства, реализующего способ измерения линейного смещения объекта.

Устройство содержит два ретрорефлектора 1 и 2, излучатель 3, расположенный на оптической оси объектива 4, и три блока: блок управления 5 излучателем 3, состоящий из канала управления 6 излучателем 3 и микроконтроллера 7, фотоприемную систему 8, состоящую из последовательно расположенных оптического фильтра 9, объектива 4, фотоприемного устройства 10 и блок обработки электрических сигналов 11.

Устройство работает следующим образом.

Перед началом измерения ретрорефлекторы 1 и 2, выполненные в виде, например, триппель-призм, закрепляются на контролируемом объекте, так чтобы плоскости их входных зрачков были параллельны плоскости фоточувствительной площадки фотоприемного устройства 10 и лежали в одной плоскости. При этом необходимо, чтобы оптическое излучение от излучателя 3 после отражения от ретрорефлекторов попадало в поле зрения фотоприемной системы 8, а поле излучения должно быть достаточным, чтобы перекрывать входные зрачки обоих ретрорефлекторов. В режиме ожидания фотоприемная система 8 производит непрерывную съемку лежащей в ее поле зрения части пространства, но полученные при этом кадры не сохраняются и не обрабатываются. Излучатель 3 при этом находится в выключенном состоянии. По сигналу от электронной вычислительной машины 12 в микроконтроллер 7 поступает управляющий сигнал, по которому канал управления 6 излучателем 3 вырабатывает сигнал активации излучателя 3. При необходимости контраст изображения может регулироваться изменением яркости излучателя 3 посредством пересылки необходимых команд в блок управления 5 излучателем 3. Отраженное от ретрорефлекторов 1 и 2 оптическое излучение излучателя 3, пройдя через оптический фильтр 9, отрезающий спектральные составляющие падающего излучения, не соответствующие спектральному диапазону излучателя 3, и объектив 4, формирует в плоскости изображения объектива 4 распределение облученности в виде двух квазиточечных пятен рассеяния. Установленное в той же плоскости фотоприемное устройство 10, выполненное в виде матричного приемника излучения, преобразует оптический сигнал в электрический, который затем поступает на вход блока обработки электрических сигналов 11, где по сигналу от электронной вычислительной машины 12 производится захват видеокадра с изображениями ретрорефлекторов 1 и 2, после чего в блоке обработки электрических сигналов 11 электрический сигнал преобразуется в цифровой вид.

Величина смещения контролируемого объекта Χ, Υ определяется из соотношения: Х=x′·М и Y=y′·M, где - масштабный коэффициент М, вычисляемый автоматически для каждой дистанции, В - длина базового отрезка в пространстве предметов, равная расстоянию между центрами входных зрачков ретрорефлекторов 1 и 2, известная с большой точностью, где x′, y′ - координаты центра отрезка между пятнами рассеяния, x1, x2 - горизонтальные координаты энергетических центров тяжести первого и второго пятен рассеяния соответственно, y1, y2 - вертикальные координаты энергетических центров тяжести первого и второго пятен рассеяния соответственно.

Работа с цифровым электрическим сигналом позволяет вводить в алгоритм работы электронной вычислительной машины 12 алгоритмические поправки, компенсирующие влияние различных погрешностей.

Необходимые для работы устройства напряжения питания вырабатываются блоком питания (не показан).

Таким образом, предлагаемое изобретение по сравнению с прототипом имеет следующие преимущества:

- меньшее энергопотребление, в связи с тем, что используется только один точечный излучатель;

- отсутствие необходимости протягивания кабелей к контролируемому объекту для питания излучателей или замены элементов питания, поскольку активные излучатели на контролируемом объекте в данном случае заменены на пассивные ретрорефлекторы. Это обуславливает упрощение эксплуатации и обслуживания устройства.

Пример конкретного исполнения.

Ретрорефлекторы выполнены в виде триппель-призм, установленных в держателе таким образом, чтобы входные грани триппель-призм лежали в одной плоскости, а расстояние между их вершинами было строго фиксировано. Держатель с триппель-призмами закрепляется на контролируемом объекте таким образом, чтобы обеспечить параллельность входных граней триппель-призм плоскости фоточувствительной площадки фотоприемного устройства. Излучатель, выполненный в виде полупроводникового излучающего диода, закрепляется в отверстии по центру защитного стекла фотоприемной системы или по центру оптического фильтра, установленного соосно с объективом. Блок управления излучателем выполнен единой платой с размещенным на ней микроконтроллером и каналом управления излучателем, который состоит из инвертора и усилителя, выполняющих широтно-импульсную модуляцию для управления яркостью излучателя. Спектральная полоса пропускания оптического фильтра фотоприемной системы согласована со спектральной характеристикой полупроводникового излучающего диода. В качестве объектива используется телеобъектив с внутренней фокусировкой, который позволяет сохранять положение плоскости резкого изображения и сохранить прямолинейность базовой линии системы при перефокусировке на разноудаленные дистанции. Фотоприемное устройство выполнено в виде КМОП матрицы, причем центр матрицы назначается в процессе калибровки программно. Это значительно упрощает процесс калибровки, юстировки и освобождает от необходимости точных механизмов юстировки матрицы. Блок обработки электрических сигналов выполнен единой платой с оперативным запоминающим устройством, платой формирователя адреса и микроконтроллером, выполняющим согласование работы вышеперечисленных компонентов блока обработки электрических сигналов и необходимые вычисления. Электронная вычислительная машина выполнена в виде персонального компьютера.

Таким образом, заявляемое устройство обеспечивает, наряду со снижением энергопотребления, повышение эргономичности при настройке и эксплуатации.

1. Устройство для измерения линейного смещения объекта, включающее точечный излучатель, фотоприемную систему, оптически сопряженную с излучателем, содержащую оптический фильтр, объектив и фотоприемное устройство, установленное в плоскости изображения объектива и выполненное в виде матричного фотоприемника, соединенного с блоком обработки, а также блок управления излучателем, содержащий канал управления излучателем и микроконтроллер, выходы которого соединены с входом канала управления излучателем, а вход микроконтроллера соединен с блоком обработки, при этом выход канала управления излучателем соединен с входом излучателя, отличающееся тем, что устройство содержит два ретрорефлектора, предназначенных для размещения на контролируемом объекте, плоскости входных зрачков которых расположены в одной плоскости и параллельны плоскости фоточувствительной площадки фотоприемного устройства, а центры зрачков расположены на фиксированном расстоянии друг от друга, при этом точечный излучатель расположен на оптической оси объектива в пределах фотоприемной системы, так что индикатриса его излучения направлена от фотоприемной системы в сторону ретрорефлекторов.

2. Устройство по п. 1, отличающееся тем, что излучатель выполнен в виде полупроводникового излучающего диода.

3. Устройство по п. 1, отличающееся тем, что оптический фильтр выполнен с отверстием на оптической оси объектива, в которое помещен излучатель.

4. Устройство по п. 1, отличающееся тем, что ретрорефлекторы выполнены в виде триппель-призм.



 

Похожие патенты:

Изобретение относится к способу измерения длины электрического кабеля, содержащему: обеспечение электрического кабеля, имеющего длину и включающего в себя нейтральную ось кабеля и волоконный модуль, вытянутый в продольном направлении вдоль кабеля и включающий в себя оптоволокно, расположенное, по существу, вдоль нейтральной оси, причем оптоволокно механически соединено с кабелем; введение оптического сигнала в оптоволокно; детектирование светового излучения, обратно рассеянного из оптоволокна в ответ на упомянутый введенный оптический сигнал; анализ детектированного обратно рассеянного светового излучения как функции времени, чтобы определить длину оптоволокна, и выведение длины кабеля исходя из длины оптоволокна.

Изобретение относится к измерительной технике, а именно к калибровке лазерных толщиномеров, построенных по методу лазерной триангуляции, при котором пучки излучения направлены с двух сторон перпендикулярно к контролируемой поверхности, а принятый оптический сигнал фиксируется многоэлементным приемником.

Изобретение относится к измерительной технике, а именно к измерению геометрических размеров объектов с помощью триангуляционных лазерных датчиков. Способ калибровки и настройки системы лазерных датчиков, а также устройство, реализующее данный способ, содержит настроечный образец, который ориентируют в трехмерном пространстве по отношению к блоку «камера-лазер» так, что свет, излучаемый лазером, виден камере, лазеры и камеры располагают на определенном расстоянии друг от друга так, что оптические оси лазеров и камер противолежат под определенным углом, определяют свойства лазера от света, записанного камерой, и расположение лазера относительно камеры.

Изобретение относится к способам измерения объектов с малыми размерами. Изображение объекта печатается на фотослайде с дальнейшим увеличением размеров изображения путем его проектирования с помощью диапроектора на экран.

Изобретение относится к волоконно-оптическим преобразователям перемещений. .

Изобретение относится к измерительным приборам неразрушающего контроля технологического оборудования атомных электростанций в условиях затрудненного доступа, в сильных радиационных полях, в жидких и воздушных средах, а именно для дистанционного визуального контроля реакторного пространства, внутренней поверхности технологических каналов, элементов графитовой кладки, подводных металлоконструкций транспортно-технологических емкостей, трубопроводов, сосудов, емкостей, полостей и т.п.

Изобретение относится к технологии экспресс-анализа качества вяжущего материала (связки) на основе -оксида алюминия, применяемого для изготовления огнеупоров. .

Изобретение относится к контрольно-измерительной технике и может использоваться для бесконтактного оптического измерения физических параметров прозрачных объектов, как-то профиля, толщины стенки.

Дальномер // 2463553
Изобретение относится к измерительной технике, а именно к дальномерам. .

Изобретение относится к машино-, станко- и приборостроению и предназначено для контроля линейных размеров изделий на этапах межоперационного, послеоперационного контроля или автоматического контроля и в т.ч. операциях шлифования на различных металлообрабатывающих станках. Предлагаемое изобретение основано на создании и использовании струи жидкости, направленной на контролируемое изделие, используемой в качестве жидкого световода и образующей вместе с используемым волоконно-оптическим преобразователем (ВОП) измерительный канал измерителя. В заявленном способе контроля линейных размеров изделий, в котором используется измеритель и оптически прозрачные измерительный стержень и наконечник с возможностью механического контакта наконечника с изделием, создающий посредством оптического излучения входной световой поток, формирующий в зоне этого механического контакта отраженный световой поток, направляющий отраженный световой поток в измеритель для преобразования в электрический сигнал, измерения его параметров и расчета текущей координаты поверхности изделия и линейного размера изделия. При этом для двунаправленной передачи входного и отраженного световых потоков измерительный стержень и наконечник выполняют в виде потока струи жидкости, направленного к изделию, кроме того, отраженный световой поток формируют поверхностью изделия, причем для двунаправленной передачи входного и отраженного световых потоков, распространяющихся по струе, между ней и измерителем вводят волоконно-оптический преобразователь, направляя входной световой поток в струю жидкости, а также выделяя и передавая часть отраженного светового потока, распространяющегося по струе, для преобразования в электрический сигнал. Технический результат – повышение точности измерений, снижение требований к оптической схеме и упрощение ее конструкции. 3 з.п. ф-лы, 6 ил., 1 табл.

Изобретение относится к способу и устройству измерения расстояний рельсового транспортного средства до расположенных сбоку от рельсового транспортного средства предметов, прежде всего края платформы, во время движения рельсового транспортного средства. При реализации способа во время движения рельсового транспортного средства многократно измеряют посредством первой измерительной системы первую величину измерения бокового расстояния, во время движения многократно измеряют посредством второй измерительной системы вторую величину измерения бокового расстояния, точность первой измерительной системы больше, чем второй измерительной системы, однако частота измерения, то есть частота приема величин измерения, первой измерительной системы меньше, чем второй измерительной системы. Путем комбинирования первой и второй величин измерения вычисляют величины расстояния, которые отображают боковое расстояние рельсового транспортного средства в зависимости от момента времени во время движения и/или в зависимости от места на отрезке движения, причем первую и вторую величины измерения комбинируют с использованием соответствующих весовых коэффициентов. 2 н. и 6 з.п. ф-лы, 4 ил.

Изобретение относится к способу определения положения по меньшей мере одного края объекта, в частности шнуровидного объекта. Данный способ включает следующие операции: освещение объекта излучением по меньшей мере одного когерентного источника излучения с образованием дифракционной каймы (границы дифракции) на обоих краях геометрической тени, отбрасываемой объектом, и регистрацию пространственного профиля интенсивности по меньшей мере одной дифракционной каймы с помощью по меньшей мере одного линейного или полилинейного оптического датчика. Затем осуществляют дифференцирование по меньшей мере одного зарегистрированного профиля интенсивности по координате, совпадающей с осью расположения элементов приемника, и построение графика результирующего профиля по квадратичной координатной оси. Далее осуществляют сравнение по меньшей мере одного зарегистрированного профиля интенсивности, продифференцированного по указанной координате, по меньшей мере с одним периодическим референтным профилем интенсивности и определение, на основе выполненного сравнения, положения по меньшей мере одного края объекта. Техническим результатом является повышение точности анализа дифракционной картины. 3 н. и 20 з.п. ф-лы, 8 ил.

Изобретение относится к способу определения расстояния от датчика до осветительного устройства. Заявленное осветительное устройство включает в себя, по меньшей мере, первый источник света, сконфигурированный для испускания первого светового пучка, предназначенного для освещения заданной области, и второй источник света, сконфигурированный для испускания второго светового пучка, предназначенного для освещения фоновой области, окружающей заданную область. Датчик, который включен в пределы другого осветительного устройства, предназначен для обнаружения отраженного назад первого светового пучка и отраженного назад второго светового пучка. Способ включает в себя определение расстояния от датчика до осветительного устройства, по меньшей мере частично, на основании сравнения информации, указывающей уровень сигнала обнаруженного, отраженного назад первого светового пучка, и информации, указывающей уровень сигнала обнаруженного, отраженного назад второго светового пучка. Технический результат – повышение точности в определении расстояния от датчика до осветительного устройства. 6 н. и 6 з.п. ф-лы, 9 ил.

Заявленная группа изобретений относится к области для измерения геометрических параметров стальных листов в прокатном производстве. Лазерная измерительная система для измерения геометрических параметров листа, движущегося по рольгангу, предназначенная для сбора, состоит из совокупности как минимум девяти лазерных триангуляционных датчиков 2D профилометров, расположенных над поверхностью стального листа на раме, установленной на портал, образующих по меньшей мере три измерительные линии ИЛ1, ИЛ2, ИЛ3 на расстоянии 500 мм друг от друга, перпендикулярных оси рольганга. При этом по меньшей мере по три датчика в первом ряду, во втором ряду и в третьем ряду образуют лазерные линейки L1, L2, L3 с расстояниями между датчиками в каждом ряду. Причем линии удовлетворяют условию перекрытия зон «обзора» лазерных линеек L1, L2, L3 так, чтобы между измерениями в пределах линии ИЛ не было разрыва, и осуществляющие в каждой своей измерительной линии и ряду обработку первичных данных, используемых для построения виртуальной модели поверхности листа. Технический результат – возможность измерения плоскостности, серповидности и ширины листа и исключение влияния на результаты измерений вибраций, изгибов и крутильных колебаний поверхности листа при его перемещении по рольгангу. 2 н. и 4 з.п. ф-лы, 17 ил.

Изобретение относится к измерительной технике, в частности к способам контроля формы внутренних деталей. Способ контроля формы внутренних деталей, включающий в себя этапы доставки внутрь контролируемого оборудования эндоскопа с миниатюрной камерой, выполненного с возможностью измерений, для навигации по траектории которого используется освещение белого света, которое передается по оптическому волокну, после выхода из которого требуемая индикатриса освещенности формируется по меньшей мере одной линзой. Далее осуществляют выравнивание дистального конца эндоскопа ортогонально контролируемой поверхности посредством механической артикуляции. Далее следует этап выключения или приглушения белого света с последующим включением лазера, который посредством оптического волокна, передающего лазерный поток, и конденсатора формирует параллельный пучок лучей, который, проходя через дифракционный оптический элемент, формирует на поверхности объекта контроля изображение с известными размерами, а затем, используя полученное цифровое изображение детали и спроецированное на нее лазерное изображение, производят калибровку с последующим сравнением изображений и в случае выявления несплошностей проводится измерение геометрических параметров детали. Технические результат – повышение эффективности и производительности контроля формы внутренних деталей. 1 ил.

Дифракционный способ измерения линейного размера объекта включает в себя получение дифракционной картины от объекта, её сканирование, преобразование распределения интенсивности в электрический сигнал. Поставленная задача решается на этапе выделения измерительной информации, за счет использования точек перегиба в осциллирующем сигнале, возникающем при регистрации дифракционной картины, положение которых постоянно к изменению неравномерности распределения амплитуды облучающего поля в плоскости измеряемого объекта. Технический результат заключается в уменьшение влияния на результат измерения размера объекта неравномерности распределения амплитуды облучающего поля в плоскости измеряемого объекта. 2 ил.

Группа изобретений относится к медицинской технике, а именно к средствам профилирования глубины поверхности целевого объекта. Портативное устройство содержит первый источник света, содержащий двумерную матрицу лазеров, имеющий угол раскрыва θр между примерно 5 и примерно 45 градусами, оптическое устройство, имеющее фокусное расстояние порядка нескольких миллиметров, для проецирования двумерного многострочного шаблона подсветки на участок поверхности целевого объекта, причем шаблон подсветки искажается профилем глубины поверхности целевого объекта, устройство захвата изображения, ориентированное под углом θd между примерно 25 и примерно 45 градусами относительно первого источника света, причем угол θd зависит от диапазона глубины и участка поверхности целевого объекта, процессор, выполненный с возможностью обработки захваченного изображения, чтобы восстанавливать профиль глубины двумерного участка поверхности целевого объекта из изображения, захваченного устройством захвата изображения, и средство для определения расстояния между устройством и поверхностью целевого объекта, при этом двумерная матрица содержит множество строк, причем по меньшей мере одна строка смещена вбок по отношению к смежной строке. Способ профилирования глубины поверхности осуществляется посредством устройства с использованием считываемого компьютером носителя данных. Использование изобретений позволяет расширить арсенал средств профилирования глубины поверхности. 3 н. и 10 з.п. ф-лы, 7 ил.

Предложен способ проверки участка соединения наполнителя, посредством которого проверяют состояние соединения обоих концов поверхностей (531, 532) ремнеобразного наполнителя (53), который прикреплен по кольцу вдоль внешней периферии сердечника 52 борта шины. Способ проверки участка соединения наполнителя включает в себя этап получения данных о расстоянии между оптическими датчиками (33А, 33В) и боковыми поверхностями наполнителя (53) сканированием по боковым сторонам наполнителя (53), сечений оптическими датчиками (33А, 33В) прилегающей области обеих концевых поверхностей (531, 532) вдоль тангенциального направления наполнителя (53) в предопределенном диапазоне сканирования, этап повторения этапа получения данных при изменении положений оптических датчиков (33А, 33В) в радиальном направлении наполнителя (53) и этап сравнения полученных данных с контрольными данными, которые введены заранее. Техническим результатом является повышение точности проверки соединенного участка. 5 з.п. ф-лы, 14 ил.

Изобретение относится к неразрушающему контролю заготовок. Способ контроля заготовки включает сохранение данных модели, связанных с заготовкой, в систему контроля и определение относительного положения измерителя удаленности по отношению к заготовке. Также способ включает калибровку точки обзора для системы контроля по отношению к модели на основании положения измерителя удаленности по отношению к заготовке и измерение данных о фактическом расстоянии удаленности одного элемента отображения измерителя удаленности по отношению к заготовке. На основании данных о фактическом расстоянии удаленности определяют, удовлетворяет ли заготовка предварительно установленным критериям контроля. Повышается точность и надежность контроля. 2 н. и 13 з.п. ф-лы, 3 ил.
Наверх