Коммутатор напряжения с защитой от перегрузки по току

Использование: в области электротехники. Технический результат - повышение точности коммутации в условиях изменения температуры при снижении массы и габаритов коммутатора. Коммутатор напряжения с защитой от перегрузки по току содержит элемент И, последовательно соединенные электронный коммутатор и блок нагрузки и дополнительно введенные генератор тока, терморезистор, задатчик тока, блок сравнения и блок определения фактического значения коммутируемого тока, включающий блок хранения заданных значений, сравнивающее устройство, блок умножения, сумматор и блок деления. 1 з.п. ф-лы, 2 ил.

 

Предлагаемое изобретение относится к области электронной техники и может быть использовано в коммутируемых источниках питания с защитой от перегрузки по току, преимущественно в системах управления космических аппаратов.

Известен коммутатор напряжения с защитой от перегрузки по току [1], содержащий электронный ключ, первый и второй релейные элементы, датчик тока, триггер, блок нагрузки, операционный усилитель, задатчик напряжения, транзистор.

Недостаток известного устройства состоит в его сложности и в использовании датчика тока (шунта). При коммутации больших токов на шунте выделяется значительная мощность, что приводит к увеличению массы и габаритов коммутатора напряжения за счет установки металлического отводящего тепло от шунта элемента, рассчитанного на отвод тепла большой мощности.

Наиболее близким техническим решением к предлагаемому коммутатору напряжения с защитой от перегрузки по току является коммутатор напряжения [2]. Известное устройство содержит последовательно соединенные датчик тока, электронный коммутатор и блок нагрузки, а также релейный элемент, триггер.

Недостаток известного коммутатора напряжения с защитой от перегрузки по току состоит в следующем. При коммутации больших токов в цепях их протекания возникают значительные помехи. Для получения достоверного уровня срабатывания релейного элемента необходимо, чтобы уровень полезного сигнала превышал уровень сигнала помехи. Для этого требуется увеличивать омическое сопротивление датчика тока, а это приводит к значительному увеличению на нем рассеиваемой мощности и, как следствие, к увеличению массы и габаритов. Для достоверного срабатывания релейного элемента, выключающего коммутатор при возникновении тока перегрузки, величина полезного входного сигнала релейного элемента должна быть на уровне 100-300 мВ. Так, при коммутации тока IH=50А и при сопротивлении датчика тока (шунта) rш=4 мОм тепловыделение шунта составит 10 Вт. Для отвода такого тепла от шунта требуется значительный по массе и габаритам металлический элемент, что увеличивает массу и габариты коммутатора напряжения. Кроме того, в известном устройстве имеет место изменение параметров датчика тока от температуры, которое не компенсируется, что приводит к снижению точности коммутатора напряжения.

Задача изобретения - снижение массы и габаритов коммутатора напряжения и повышение его точности в условиях изменения температуры.

Эта задача достигается тем, что коммутатор напряжения с защитой от перегрузки по току содержит входную шину, элемент И и последовательно соединенные электронный коммутатор и блок нагрузки, при этом электронный коммутатор выполнен в виде электронного ключа с МОП структурой, а, кроме того, в коммутатор напряжения дополнительно введены блок определения фактического значения коммутируемого тока, задатчик тока, блок сравнения и последовательно соединенные генератор тока и терморезистор, общая точка которых соединена с первым входом блока определения фактического значения коммутируемого тока, второй вход которого соединен с общей точкой электронного коммутатора и блока нагрузки, а выход подключен к суммирующему входу блока сравнения, вычитающий вход которого соединен с выходом задатчика тока, выход блока сравнения подключен к второму входу элемента И, выход которого соединен с входом управления электронного коммутатора.

Блок определения фактического значения коммутируемого тока содержит блок хранения заданных значений и последовательно соединенные сравнивающее устройство, блок умножения, сумматор и блок деления, при этом суммирующий вход сравнивающего устройства соединен с первым входом блока определения фактического значения коммутируемого тока, второй вход которого соединен с входом делимого блока деления, выход которого является выходом блока определения фактического значения коммутируемого тока, а вычитающий вход сравнивающего устройства, второй и третий входы блока умножения и второй вход сумматора соединены с соответствующими выходами блока хранения заданных значений.

На фиг.1 приведена блок-схема коммутатора напряжения с защитой от перегрузки по току, на фиг.2 приведена блок-схема блока хранения заданных значений. На схеме фиг. 1: 1 - входная шина, 2 - элемент И, 3 - электронный коммутатор, 4 - блок нагрузки, 5 - блок определения фактического значения коммутируемого тока, 6 - задатчик тока, 7 - блок сравнения, 8 - генератор тока, 9 - терморезистор, 10 и 11 - соответственно первый и второй входы блока определения фактического значения коммутируемого тока 5, 12 - выход блока определения фактического значения коммутируемого тока 5.

На фиг.1 входная шина 1 соединена с первым входом элемента И 2, выход которого соединен с входом управления электронного коммутатора 3, соединенного последовательно с блоком нагрузки 4. Генератор тока 8 соединен последовательно с терморезистором 9, общая точка которых соединена с первым входом блока определения фактического значения коммутируемого тока 5, второй вход которого соединен с общей точкой электронного коммутатора 3 и блока нагрузки 4. Выход блока определения фактического значения коммутируемого тока 5 соединен с суммирующим входом блока сравнения 7, вычитающий вход которого соединен с выходом задатчика тока 6. Выход блока сравнения 7 соединен с вторым входом элемента И 2.

На фиг.2 соединены последовательно сравнивающее устройство 13, блок умножения 14, сумматор 15 и блок деления 16. Вход сравнивающего устройства 13 соединен с первым входом 10, вход делимого блока деления 16 соединен с вторым входом 11, выход блока деления 16 соединен с выходом 12. Вычитающий вход сравнивающего устройства 13, второй и третий входы блока умножения 14 и второй вход сумматора 15 соединены с соответствующими выходами блока хранения заданных значений 17.

Коммутатор напряжения с защитой от перегрузки по току работает следующим образом. В качестве электронного коммутатора 3 предложено использование электронного ключа (транзистора) с МОП структурой. Особенностью такого элемента является возможность коммутировать большие токи, при этом при коммутации различных токов омическое сопротивление открытого электронного ключа (транзистора) практически не зависит от величины тока и составляет незначительную величину (единицы мОм). Кроме того, транзисторы с МОП структурой изменяют свое сопротивление в зависимости от температуры перехода, причем это изменение носит, как правило, линейный характер, однако предложенный коммутатор компенсирует изменение сопротивления.

В общем случае падение напряжения UK на открытом электронном коммутаторе 3 можно представить в виде

U K = r K I H ( 1 )

где IH - коммутируемый ток нагрузки, rK - сопротивление электронного коммутатора 3 в открытом (включенном) состоянии. Сопротивление электронного коммутатора rK можно представить в виде

r K = r 0 ( 1 + K 1 Δ t ) ( 2 )

где r0 - сопротивление электронного коммутатора 3 при номинальной заданной температуре t0, K1 - температурный коэффициент изменения сопротивления rK в зависимости от температуры t электронного коммутатора 3, Δt - разность температур t и t0 (Δt=t-t0.).

Будем предполагать, что электронный коммутатор 3 находится в открытом (включенном) состоянии, если на его вход управления подается положительный сигнал U2 с выхода элемента И 2 (U2=1), и в закрытом (выключенном) состоянии, если U2=0.

Пусть терморезистор 9 установлен на корпусе (или теплоотводе) электронного коммутатора 3 и его величина Rt определяется выражением

R t = R t 0 ( 1 + K 2 Δ t ) ( 3 )

где Rt0 - сопротивление терморезистора 9 при температуре t0, K2 - коэффициент температурного изменения терморезистора 9. Пусть генератор тока 8 создает ток i0. В этом случае напряжение Ut на терморезисторе 9 будет равно

U t = i 0 R t = i 0 R t 0 ( 1 + K 2 Δ t ) = i 0 R t 0 + i 0 R t 0 K 2 ( t t 0 ) ( 4 )

Пусть

U 0 = i 0 R t 0 ( 5 )

тогда из (4) с учетом (5) имеем

t = ( U t U 0 ) / K 2 U 0 + t 0 , Δ t = t t 0 = ( U t U 0 ) / K 2 U 0 ( 6 )

Ток в нагрузке IH, протекающий в коммутаторе 3, из (1) и (2) определяется в виде

I H = U K / r 0 ( 1 + K 1 Δ t ) ( 7 )

Пусть в блоке хранения заданных значений 17 установлены следующие данные. Выходные сигналы D1, D2, D3 и D4 блока хранения заданных значений 17 соответствуют заданным величинам

D 1 = U 0 = i 0 R t 0 , D 2 = ( K 2 U 0 ) 1 , D 3 = K 1 r 0 , D 4 = r 0 ( 8 )

В этом случае выходной сигнал U13 сравнивающего устройства 13 равен

U 13 = U t D 1 = U t i 0 R t 0 = U t U 0 ( 9 )

Выходной сигнал U14 блока умножения 14 равен

U 14 = U 13 D 2 D 3 = ( U t U 0 ) ( K 2 U 0 ) 1 K 1 r 0 ( 10 )

Выходной сигнал U15 сумматора 15 равен

U 15 = U 14 + D 4 = ( U t U 0 ) ( K 2 U 0 ) 1 K 1 r 0 + r 0 ( 11 )

Выходной сигнал U16 блока деления 16 равен

U 16 = U K / U 15 = U K / [ ( U t U 0 ) ( K 2 U 0 ) 1 K 1 r 0 + r 0 ] ( 12 )

С учетом (6) выходной сигнал U16 блока деления 16 будет равен

U 16 = U K / r 0 ( 1 + K 1 Δ t ) = I H ( 13 )

Таким образом, на выходе 12 блока определения фактического значения коммутируемого тока 5 мы имеем сигнал, определяющий величину коммутируемого тока IH.

Выходной сигнал IH блока определения фактического значения коммутируемого тока 5 поступает на суммирующий вход блока сравнения 7, на вычитающий вход которого подается сигнал с выхода задатчика тока 6. Выходной сигнал I3 задатчика тока 6 определяет величину тока в нагрузке 4, при которой следует проводить выключение электронного коммутатора 3. Этот сигнал соответствует аварийному режиму и он известен заранее. Блок сравнения 7 формирует выходной сигнал Р в соответствии с (14)

I H I 3 < 0, P = 1 ; I H I 3 0, P = 0 ( 14 )

При поступлении на входную шину 1 сигнала Ua=1 происходит включение электронного коммутатора 3, если IH-I3<0, что, как правило, имеет место. В этом случае в соответствии с (14) сигнал блока сравнения 7 Р=1 и выходной сигнал элемента И 2 U2=1. Этот сигнал производит включение электронного коммутатора 2. Если в некоторый момент времени IH-I3≥0, то сигнал блока сравнения 7 Р=0. Этот сигнал изменяет выходной сигнал элемента И 2, в результате чего U2=0, и этот сигнал производит выключение электронного коммутатора 3.

Оценим погрешность предлагаемого коммутатора напряжения с защитой от перегрузки по току при r0=4 мОм, I3=50 A, Rt0=100 Ом, K1=0,005, K2=0,01, i0=3 мА, t0=20°C, t=60°C. В этом случае Δt=t-t0=40°C, U0=i0Rt0=0,3 В. Из (2) значение rK=r0(1+K1Δt)=4,8 мОм, из (1) значение UK=rKIH=rKI3=0,24 В. Измеренное значение тока IH определяется с погрешностью Δ, зависящей от погрешности измерения температуры t и погрешности заданного коэффициента K1. Будем предполагать, что температура t измеряется с точностью δ t=2°C, а заданный коэффициент K1 определен с погрешностью δK1=5%. В этом случае из (7) измеренное значение тока IH=49,16 А. Погрешность 8 коммутатора напряжения с защитой от перегрузки по току можно оценить в виде δ=(I3-IH)/I3=0,017, что составляет 1,7%.

Известное устройство [2] не учитывает изменение параметров датчика тока от температуры. Если, например, датчик тока изменяет свое сопротивление от температуры с коэффициентом 0,005, то при Δt=40°C погрешность известного устройства составит в тех же условиях 20%.

По сравнению с известным устройством [2] предлагаемое изобретение позволяет снизить массу и габариты устройства за счет снятия требований по отводу тепла с датчика тока, который в предлагаемой схеме отсутствует. В известной схеме при использовании датчика тока с rш=4 мОм при токе 50А рассеивается мощность 10 Вт. Для отвода тепла в 10 Вт требуется металлическая отводящая поверхность площадью 2 дМ2. При допустимом перегреве на датчике тока в 40°С по сравнению с температурой окружающей среды потребуется теплоотвод с теплоотводящей поверхностью 100×200 мм. При использовании в качестве теплоотвода алюминиевой пластины толщиной 5 мм масса теплоотвода составит 250 г, что для одного коммутатора является значительной величиной. При использовании нескольких электронных коммутаторов в системах управления, например, космических аппаратов дополнительная масса является существенным недостатком.

Предлагаемая совокупность признаков в рассмотренных авторами решениях не встречалась для решения поставленной задачи и не следует явным образом из уровня техники, что позволяет сделать вывод о соответствии технического решения критериям "новизна" и "изобретательский уровень". В качестве элементов для реализации устройства могут быть использованы логические элементы И, например, серии 564, электронные коммутаторы с МОП структурой, например, типа 2П7161 Б, генераторы тока, терморезисторы, стандартные схемы сравнения, умножения, деления.

Литература

1. Патент РФ №2258302, Кл. H03K 17/08, 2005 г.

2. Патент РФ №2208291, Кл. H03K 17/08, 2003 г.

1. Коммутатор напряжения с защитой от перегрузки по току, содержащий входную шину, элемент И и последовательно соединенные электронный коммутатор и блок нагрузки, отличающийся тем, что электронный коммутатор выполнен в виде электронного ключа с МОП структурой, а, кроме того, в коммутатор напряжения дополнительно введены блок определения фактического значения коммутируемого тока, задатчик тока, блок сравнения и последовательно соединенные генератор тока и терморезистор, общая точка которых соединена с первым входом блока определения фактического значения коммутируемого тока, второй вход которого соединен с общей точкой электронного коммутатора и блока нагрузки, а выход подключен к суммирующему входу блока сравнения, вычитающий вход которого соединен с выходом задатчика тока, выход блока сравнения подключен к второму входу элемента И, выход которого соединен с входом управления электронного коммутатора.

2. Блок определения фактического значения коммутируемого тока по п.1, отличающийся тем, что он содержит блок хранения заданных значений и последовательно соединенные сравнивающее устройство, блок умножения, сумматор и блок деления, при этом суммирующий вход сравнивающего устройства соединен с первым входом блока определения фактического значения коммутируемого тока, второй вход которого соединен с входом делимого блока деления, выход которого является выходом блока определения фактического значения коммутируемого тока, а вычитающий вход сравнивающего устройства, второй и третий входы блока умножения и второй вход сумматора соединены с соответствующими выходами блока хранения заданных значений.



 

Похожие патенты:

Изобретение относится к полупроводниковой промышленности, в частности к интегральным микросхемам, и может быть использовано для защиты выходов высокочастотных металлооксидных полупроводниковых (МОП) микросхем от электростатических разрядов.

Изобретение относится к способу коммутации от работающего в диодном режиме биполярного транзистора с изолированным затвором (IGBT) (Т1) с обратной проводимостью на работающий в IGBT-режиме IGBT (Т2) с обратной проводимостью.

Изобретение относится к импульсной технике и может быть использовано в различных устройствах автоматики, в том числе в информационно-управляющих системах, в качестве силового транзисторного ключа с защитой от короткого замыкания.

Изобретение относится к области электроники и может быть использовано в системах управления ракетоносителя, в системах управления разгонным блоком для контроля прохождения команд в коммутационных системах.

Изобретение относится к области электронной техники и может быть использовано в источниках питания с защитой от перегрузки по току, преимущественно в системах управления космических аппаратов.

Предлагаемое изобретение относится к области электронной техники и может быть использовано в коммутируемых источниках питания с защитой от перегрузки по току. Достигаемый технический результат - уменьшение времени срабатывания защиты при перегрузке по току и защиты нагрузки от выходного напряжения при его значениях ниже допустимых.

Изобретение относится к области формирования выходных сигналов высокочастотных КМОП микросхем и защиты выходов от электростатических разрядов. Техническим результатом является повышение быстродействия формирователя импульсов.

Использование: в области электротехники. Технический результат - уменьшение энергопотребления.

Изобретение относится к вычислительной технике. Технический результат заключается в увеличении реактивного импеданса устройства защиты на высоких частотах.

Изобретение относится к области электронной техники и может быть использовано в источниках питания с защитой от перегрузки по току без использования датчика тока, преимущественно в системах управления космических аппаратов.

Изобретение относится к области электронной техники и может быть использовано в источниках питания с защитой от перегрузки по току без использования датчика тока, преимущественно в системах управления космических аппаратов.

Изобретение относится к области электронной техники и может быть использовано в источниках питания с защитой от перегрузки по току без использования датчика тока, преимущественно в системах управления космических аппаратов.

Изобретение относится к электротехнике, к ограничителям тока повреждения. Технический результат состоит в экономичной и эффективном повышении качества электрического тока путем уменьшения гармонических искажений.

Изобретение относится к электротехнике и может быть использовано для ограничения тока замыкания токов замыкания от низкого до сверхвысокого напряжений. .

Изобретение относится к области электротехники и может быть использовано в электрических генераторных системах для ограничения тока генератора. .

Изобретение относится к области электротехники, в частности к конструкции индуктивного токоограничивающего устройства, и может быть использовано в системах передачи и распределения электрической энергии переменного тока.

Изобретение относится к области электротехники. .

Изобретение относится к электротехнике, к криоэлектронике и может быть использовано для защиты электрических машин от токовых перегрузок. .

Использование: в области электротехники. Технический результат - обеспечение эффективного охлаждения сверхпроводящего элемента при срабатывании токоограничивающего устройства. Модуль ограничителя тока включает, по меньшей мере, один сверхпроводящий элемент, расположенный в керамической капсуле и находящийся в термическом контакте с материалом капсулы, где капсула выполнена из термостойкой теплопроводной керамики с коэффициентом теплопроводности не менее 1 Вт/м/К, электрическим сопротивлением не менее 105∙Ом·м и электрической прочностью свыше 400 В/мм. 2 н. и 6 з.п. ф-лы, 2 ил.
Наверх