Способ изготовления шаблона из эластичного гибкого листового диэлектрического материала для электрохимической размерной обработки

Изобретение относится к электрохимической размерной обработке и может быть использовано при получении углублений, формирующих турбулизаторы в узких пазах, например в охлаждающих системах тепловых двигателей. Изготавливают макет шаблона из эластичного гибкого листового диэлектрического материала с толщиной листа, равной полуразности между шириной паза в детали и шириной электрода в пазе. В макете шаблона выполняют сквозные окна для получения углублений в пазах детали с заданными размерами и положением. Затем макет шаблона нагружают в поперечном направлении возрастающими растягивающими силами при одновременном измерении толщины материала макета шаблона до снижения толщины макета шаблона на величину заданного межэлектродного зазора. Далее фиксируют величину растягивающей силы, замеряют при этой силе размеры и положение сквозных окон в макете шаблона и измеряют изменение размеров окон и величину их смещения относительно заданных величин. С учетом измерений из того же материала изготавливают шаблон для электрохимической размерной обработки, предназначенный для установки на электрод при получении углублений в узких пазах детали и обеспечивающий получение точных углублений с заданной геометрией и положением в пазах детали. 2 ил., 1 пр.

 

Способ относится к области машиностроения и может быть использован при электрохимической размерной обработке получения углублений, формирующих турбулизаторы в узких пазах, например в охлаждающих системах тепловых двигателей.

Известен способ [1], с. 7, по которому в качестве материала для трафаретов, служащих шаблоном для маркирования используется специальная бумага, обладающая гибкостью и имеющая окна для локализации процесса анодного растворения и получения углублений. Недостатком способа является невозможность создания равномерного межэлектродного зазора в пазах, корректировки положения окон при изгибе трафарета по форме места обработки заготовки из-за изменения положения окон в процессе изгиба.

Известен способ [2] электрохимической размерной обработки, по которому на трафарет наносят слой эластичного материала, повторяющего контур трафарета, который выдавливают в сторону окон, ограничивающих зону обработки.

К недостаткам способа относится невозможность сохранения формы и положения окон в эластичном слое трафарета в случае его изгиба и утрата точности обработки.

Наиболее близким аналогом к предлагаемому способу является способ [2].

Техническим результатом, на достижение которого направлено данное изобретение, является получение точных углублений с заданной геометрией и положением в пазах детали при электрохимической размерной обработке.

Данный технический результат достигается тем, что шаблон изготавливают из эластичного гибкого листового диэлектрического материала для электрохимической размерной обработки и предназначен для установки на электрод при получении углублений в узких пазах детали. Способ включает изготовление макета шаблона из эластичного гибкого листового диэлектрического материала с толщиной листа, равной полуразности между шириной паза в детали и шириной электрода в пазе. При этом в макете шаблона выполняют сквозные окна для получения углублений в пазах детали с заданными размерами и положением. Затем макет шаблона нагружают в поперечном направлении возрастающими растягивающими силами при одновременном измерении толщины материала макета шаблона и продолжают нагружать до снижения толщины макета шаблона на величину заданного межэлектродного зазора. После чего фиксируют величину растягивающей силы, замеряют при этой силе размеры и положение сквозных окон в макете шаблона и измеряют изменение размеров окон и величину их смещения относительно заданных величин. Затем с учетом измерений из того же материала изготавливают шаблон, сквозные окна в котором выполняют уменьшенными в поперечном и увеличенными в продольном сечении по сравнению с макетом шаблона. Положение сквозных окон в шаблоне смещают на величину изменения размеров материала макета шаблона при растяжении на участке между соседними окнами.

Способ поясняется фигурами 1 и 2.

На фиг. 1 показан макет шаблона из гибкого эластичного диэлектрического материала.

На фиг. 2 приведена схема установки шаблона по месту электрохимической размерной обработки с межэлектродным зазором между электродом и деталью и с окнами в местах получения углублений в пазах детали.

В макете шаблона 1 (фиг. 1), выполненного из листового гибкого диэлектрического материала толщиной 2, вырезают сквозные окна 3 в местах осуществления анодного процесса электрической размерной обработки углублений на детали.

Макет шаблона 1 в поперечном направлении нагружают растягивающей силой 4, вызывающей удлинение 5 макета шаблона 1 в поперечном направлении и сужение участка макета шаблона 1 в перпендикулярном продольном направлении. При этом размеры сквозных окон 3 изменяются как в продольном 6, так и в поперечном 7 направлении. Изменяется длина участков между соседними окнами в продольном 8 и поперечном 9 направлениях.

Под действием растягивающей силы 4 толщина 2 макета шаблона 1 снижается до величины 10 (фиг. 2). Фиксируют величину растягивающей силы 4 и, не снимая действия силы 4, измеряют удлинение 5 макета шаблона 1 и полученные в макете шаблона 1 размеры сквозных окон 3 в продольном 6 и поперечном 7 направлениях, смещение положения окон 3 в продольном 8 и поперечном 9 направлениях. По результатам измерений из того же материала, как у макета шаблона 1, изготавливают шаблон 11 с окнами 12, изготовленными с учетом изменения размеров 6; 7 сквозных окон 3 в макете шаблона 1 и положения окон 8; 9 (фиг. 1) в макете шаблоне 1 при действии силы 4. При этом расстояние между окнами 12 (фиг. 2) в продольном направлении 8 (фиг. 1) может уменьшаться в пределах упругости материала макета шаблона 11. Устанавливают шаблон 11 на электрод 13 и вместе с электродом 13 помещают в паз 14 детали 15.

Прикладывают к концам шаблона 11 силу 4, установленную для макета 1. Формируется межэлектродный зазор 16, величина которого является разницей между размерами 17 паза 14 в детали 15 и размерами 18 электрода 13 (задана чертежом детали) и толщиной 10 шаблона 11. После действия растягивающей силы 4 на шаблон 11 окна 12 занимают на шаблоне 11 положение, необходимое для получения (по требованиям чертежа детали) положения с размерами 19; 20 в поперечном направлении и с требуемыми размерами в продольном направлении (на фиг. 2 не показано).

В положении, приведенном на фиг. 2, проводят электрохимическую размерную обработку по схеме с неподвижными (относительно паза 14 детали 15) электродами 13, для чего через межэлектродный зазор 16 прокачивают электролит, а на электрод 13 и деталь 15 подают постоянный низковольтный ток (деталь-анод) и выполняют обработку углублений 21 на боковой и донной поверхности паза 14, например, по времени обработки. Режимы электрохимической размерной обработки могут быть приняты, например, по [2].

Пример осуществления способа.

Необходимо на донной части и боковых участках пазов для охлаждения камеры сгорания ракетного двигателя получить турбулизаторы потока охлаждающей криогенной газожидкостной среды.

Размеры пазов: ширина=1,5 мм, глубина=4,8 мм, материал камеры сгорания - бронза.

Размеры углублений, формирующих турбулизаторы: длина 2,2±0,5 мм, ширина 1,2±0,1 мм, глубина 0,3+0,05 мм.

Шаг между углублениями в продольном направлении 3±0,2 мм. Расстояние между углублениями в поперечном направлении 1,2±0,3 мм.

Шаблон и макет шаблона изготовлены из лавсановой пленки с толщиной 0,3 мм. Межэлектродный зазор 0,15±0,02 мм. При приложении на макет шаблона растягивающей силы 600 Н его длина в поперечном направлении увеличилась на 18%, а размеры окон и их положение сместилось на 0,8 мм в поперечном направлении и 0,5 мм в продольном. С учетом этого изготовлен шаблон.

Шаблон установлен на электроде с шириной 0,9 мм и помещен в паз детали. К концам шаблона приложена растягивающая сила 600 Н, после чего образовался межэлектродный зазор 0,1±0,01 мм. Режим электрохимической размерной обработки: электролит - 15% водный раствор Na2NO3, давление на входе - 0,3 мПа, напряжение тока 12 В. Время обработки - 2,8 мин.

Результаты обработки: размеры углублений и их положение в пазах соответствуют требованиям чертежа.

Источники

1. Смоленцев В.П. Электрохимическое маркирование деталей / В.П. Смоленцев, Г.П. Смоленцев, З.Б. Садыков. М.: Машиностроение, 1983, 72 с.

2. Авторское свидетельство 1839126 (СССР). Способ электрохимической обработки / З.Б. Садыков, В.П. Смоленцев, Р.А. Алфимов. БИ, 1993, №48-47.

Способ изготовления шаблона из эластичного гибкого листового диэлектрического материала для электрохимической размерной обработки, предназначенного для установки на электрод при получении углублений в узких пазах детали, включающий изготовление макета шаблона из эластичного гибкого листового диэлектрического материала с толщиной листа, равной полуразности между шириной паза в детали и шириной электрода в пазе, при этом в макете шаблона выполняют сквозные окна для получения углублений в пазах детали с заданными размерами и положением, затем макет шаблона нагружают в поперечном направлении возрастающими растягивающими силами при одновременном измерении толщины материала макета шаблона и продолжают нагружать до снижения толщины макета шаблона на величину заданного межэлектродного зазора, после чего фиксируют величину растягивающей силы, замеряют при этой силе размеры и положение сквозных окон в макете шаблона и измеряют изменение размеров окон и величину их смещения относительно заданных величин, затем с учетом измерений из того же материала изготавливают шаблон, сквозные окна в котором выполняют уменьшенными в поперечном и увеличенными в продольном сечении по сравнению с макетом шаблона, причем положение сквозных окон в шаблоне смещают на величину изменения размеров материала макета шаблона при растяжении на участке между соседними окнами.



 

Похожие патенты:

Изобретение относится к области электрохимической обработки металлов и сплавов импульсным током и может быть использовано для получения сложнофасонных поверхностей деталей авиационных газотурбинных двигателей.

Изобретение относится к области машиностроения и может быть использовано при восстановлении трущихся сопряжений двигателя внутреннего сгорания дизель-генераторной установки (ДВС ДГУ) локомотива.

Изобретение относится к электрохимической обработке осесимметричных деталей типа вал. Устройство содержит переднюю и заднюю опоры со сферическими центрами, установленные через диэлектрические прокладки в передней и задней опорах станка, суппорт, дополнительную станину с закрепленными на ней самоцентрирующими люнетами с приводами зажима, блок управления приводами зажима самоцентрирующих люнетов и источник питания, подключенный положительным полюсом к валу.

Изобретение относится к разделению листовых металлических материалов. Способ включает нанесение на плоскую сторону заготовки диэлектрического шаблона с контуром профиля разделения и установку на него металлического шаблона из запассивированного титанового сплава, со стороны которого с зазором для прокачки электролита устанавливают катод-инструмент и осуществляют подачу тока на анод-заготовку и катод-инструмент от источника тока, который через регулятор напряжения соединен с металлическим шаблоном.

Изобретение относится к устройству для электрохимической маркировке деталей, в частности для маркировки внутренней поверхности ствола оружия. Устройство содержит корпус цилиндрической формы из диэлектрического материала, размещенный внутри него катод-инструмент, снабженный цилиндрической камерой смешения электролита, по окружности которой выполнены радиальные сверления.

Изобретение относится к области размерной электрохимической обработки металлов и сплавов и может быть использовано для изготовления лопаток с двумя хвостовиками газотурбинного двигателя.

Изобретение относится к размерной электрохимической обработке деталей из высокопрочных сталей и сплавов и может быть использовано для изготовления деталей со сложным рельефом поверхности и сложным наружным контуром, например, управляющих рулей, лопастей, крыльев управляемых ракет, турбинных лопаток и т.п.

Изобретение относится к электрохимической обработке и может быть использовано при формировании глубоких отверстий малого диаметра в деталях. .

Изобретение относится к электрохимической резке тонкостенных электропроводных заготовок. .

Изобретение относится к электрохимической обработке твердых WC-Co сплавов и может быть использовано для выполнения различных копировально-прошивочных операций при изготовлении сложнофасонных поверхностей деталей машин и инструментов.

Изобретения относятся к электрохимической обработке и могут быть использованы для полирования, чистовой обработки заготовки или придания ей формы с помощью электрохимической обработки. Предложены гибкие электрохимические инструменты, содержащие катоды, которые выполнены с возможностью упругой деформации в двух или трех измерениях и которые могут адаптироваться к профилю заготовки при ее перемещении относительно инструмента. Данными гибкими электрохимическими инструментами можно выполнять трассировку, кроме того, некоторые из них предназначены для обработки особых конструкций, например, углов и ребер. Изобретения позволяют осуществить качественную гибкую электрохимическую обработку заготовок разной формы и обеспечивают снижение временных и экономических затрат на модификацию используемого гибкого инструмента. 9 н. и 16 з.п. ф-лы, 15 ил.

Изобретение относится к электрохимической обработке отверстий. Установка содержит камеру, внутри которой установлена стойка с держателем для крепления электрода в зажимном устройстве с возможностью линейного перемещения электрода по горизонтальной оси, корпус, стол для закрепления детали и источник питания. Стол выполнен в виде вертикально расположенной металлической плиты, имеющей горизонтально расположенные Т-образные пазы и выполненной с возможностью крепления к корпусу установки, а на Т-образные пазы с возможностью перемещения вдоль них установлено приспособление, к которому прикреплен ложемент, копирующий внутреннюю поверхность обрабатываемой детали. Зажимное устройство выполнено в виде патрона с цангой, установленного на держателе, на котором размещен механизм грубого перемещения держателя для крепления электрода по вертикальной оси, состоящий из винтовой пары и кулачка с толкателем. Изобретение обеспечивает несложную юстировку положения электрода относительно обрабатываемого отверстия и перенастройку установки с обработки одного отверстия на другое. 4 з.п. ф-лы, 6 ил.

Изобретение относится к оборудованию для электрохимической обработки винтового зубчатого профиля внутренней поверхности в отверстии трубчатой заготовки для изготовления статоров с равномерной толщиной обкладки из эластомера, применяемых в винтовых героторных гидравлических двигателях для бурения нефтяных скважин. Изобретение обеспечивает повышение точности центрирования электрода в отверстии трубчатой заготовки и точности электрохимической обработки, а также повышение надежности и ресурса установки, улучшение охлаждения приводной штанги и электрода, предотвращение возможности разрушения приводной штанги и обеспечивает защиту от коротких замыканий. 4 з.п. ф-лы, 15 ил.

Изобретение относится к области высокоточной электрохимической обработки. Способ включает обработку анода-заготовки двумя катодами-инструментами на малых рабочих межэлектродных зазорах с подачей пакетов импульсов технологического напряжения, при этом сначала обрабатывают одним катодом-инструментом, а затем, после поворота анода-заготовки на 180° - вторым катодом-инструментом. Предварительно анод-заготовку базируют по ее финишно обработанной замковой части в приспособлении-спутнике, имеющем элементы для его базирования, элементы для фиксации анода-заготовки и подвода к ней тока и элементы, обеспечивающие возможность его захвата и поворота на 180°, а катоды-инструменты устанавливают на двух электрохимических копировальных станках. Далее обработку поверхностей лопатки ведут в упомянутом приспособлении-спутнике, при этом приспособление-спутник совмещают с каждым катодом-инструментом, обеспечивая ламинарное течение электролита без возникновения кавитации на входе и выходе межэлектродного зазора. Изобретение позволяет обеспечить точное и стабильное формообразование всех поверхностей проточной части лопатки авиационного газотурбинного двигателя. 2 н. и 1 з.п. ф-лы, 5 ил.

Изобретение относится к области электрохимической обработки и может быть использовано в электролитических режущих инструментах. Устройство содержит источник питания, первый катод, расположенный с возможностью образования первого зазора между ним и первой стороной заготовки для протекания электролита, второй катод, расположенный с возможностью образования второго зазора между ним и второй стороной заготовки для протекания электролита. Первый и второй катоды расположены напротив друг друга. Устройство также выполнено с возможностью подачи электролита в направлении к первому зазору и далее от него и в направлении ко второму зазору и далее от него. Источник питания обеспечивает протекание тока через первый и второй зазоры, чтобы вызывать электролитическое растворение в заготовке как с первой стороны, так и со второй стороны. 2 н. и 12 з.п. ф-лы, 11 ил.

Изобретение относится к области размерной электрохимической обработки и может быть использовано, например, при финишной обработке профиля двигательной лопатки. При осуществлении способа используют стержневой электрод-инструмент, содержащий цилиндрическую державку с центральным каналом для подвода электролита, переходящую в рабочую часть электрод-инструмента, выполненную с эксцентриситетом относительно продольной оси державки, при этом на поверхности рабочей части со стороны максимального эксцентриситета рабочей поверхности от продольной оси державки выполнен продольный боковой паз для прокачки электролита, который также сообщается с центральным каналом для подвода электролита. Рабочая часть электрода-инструмента имеет цилиндрическую или полусферическую форму. В способе стержневому электроду-инструменту задают вращательное движение относительно его продольной оси и осуществляют подачу относительно детали, перемещают по заданным координатам криволинейной поверхности детали и подают на электрод-инструмент импульсы технологического тока с заданной длительностью и частотой в момент минимального зазора между поверхностью рабочей части электрода-инструмента и поверхностью детали по направлению движения электрода-инструмента. В момент увеличения межэлектродного промежутка перпендикулярно вектору движения электрода-инструмента по криволинейной траектории промывают продукты растворения. Причем частоту импульсов технологического тока задают кратной частоте вращательного движения электрода-инструмента, а подачу технологического тока синхронизируют с направлением вектора перемещения рабочей части электрода-инструмента. Изобретение позволяет повысить точность 3-мерной финишной обработки по всей поверхности детали. 2 з.п. ф-лы, 3 ил.

Изобретение относится к электрохимической обработке металлов и сплавов и предназначено для обработки ступенчатых валов. Устройство содержит диэлектрический корпус, внутренняя часть которого выполнена в виде призмы, в каждой плоскости которой встроены регулируемые опоры осевой фиксации заготовки, оси которых пересекаются в центре оси заготовки и расположены друг относительно друга под углом 90°. На корпусе установлена крышка из электроизоляционного материала, базируемая по диагонали двумя центровочными штифтами и выполненная с возможностью регулирования межэлектродного зазора по другой диагонали с помощью винтового механизма. Внутренняя часть крышки выполнена по продольным и поперечным размерам заготовки и на ней размещены по два электрода-инструмента на каждую ступень заготовки. Технический результат: повышение точности формы и качества обработанных поверхностей путем минимизации уровня остаточных напряжений и равномерного распределения их по всему объему изделия, за счет одновременного съема поверхностного слоя со всего объема обрабатываемой заготовки. 5 ил.

Изобретение относится к электрохимической обработке деталей. Установка содержит источник тока, электрод-анод и катод, трубу для подвода электролита, механизм управления электродом-анодом, выполненный в виде пантографа, состоящего из нижней и верхней штанг, и устройство для удержания пантографа в рабочем положении, состоящее из пары: постоянный магнит - геркон и электромагнита. Электрод-анод выполнен из штока, установленного с помощью вилки на подвижной части пантографа и связанного с колпаком камеры обработки при помощи хомута, при этом выполненного с возможностью тонкого перемещения вверх-вниз с помощью регулировочной гайки, обеспечивающей контакт штока с плитой, которая имеет возможность контакта с обрабатываемой деталью, являющейся катодом и установленной в разрыве электрической цепи в приспособлении, которое размещено в посадочном месте чаши камеры обработки и соединено с трубой для подачи электролита, имеющей электрическую связь с источником питания. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области электрохимической обработки, в частности к способам размерной электрохимической обработки в проточном электролите при обработке углублений, выборок, выемок. В способе обрабатываемую деталь устанавливают в катодное устройство с обеспечением ее плотного прилегания к изолятору, при этом катодное устройство с деталью устанавливают на стол электрохимического станка и осуществляют обработку детали в проточном электролите с помощью неподвижного электрода-инструмента. При этом используют изолятор, выполненный с пазом для электрода-инструмента, который имеет эквидистантно заниженные размеры боковой поверхности относительно размеров контура паза на 0,2…0,3 мм, а обработку осуществляют в 6%-ном растворе натриевой селитры и с низкой линейной скоростью электрохимического растворения металла Vp мм/с в пределах 0,1-0,5 долей от величины поля допуска Δt мм на размер глубины выборки h мм, причем Vp=[0,1…0,5]⋅Δt. Техническим результатом изобретения является обеспечение высокой геометрической и статической степени точности обработки выемок, углублений, выборок за счет стабилизации линейной скорости растворения металла и стабилизации электропроводности электролита. 2 ил., 1 пр.
Наверх