Компенсация крутящего момента для вертолета

Изобретение относится к области авиации, в частности к средствам компенсации создаваемого несущим винтом вертолета крутящего момента. Устройство для компенсации крутящего момента предусмотрено для вертолета (100), главный винт (110) которого вращается при работе вокруг оси (RH) вращения и за счет этого создает крутящий момент, который действует на фюзеляж (120) вертолета (100). Устройство содержит диаметральный вентилятор (200) с корпусом (210) и установленным в корпусе (210) ротором (220), при этом диаметральный вентилятор расположен на консоли (130) вертолета (100) так, что он при работе имеет действие тяги (F), которая компенсирует крутящий момент главного винта. При работе вентилятора направление тяги ориентировано перпендикулярно оси (RH) вращения несущего винта (110) и продольной оси консоли (130). Способ компенсации крутящего момента вертолета (100) включает установку на хвостовой консоли (130) диаметрального вентилятора (200), тяга которого компенсирует крутящий момент несущего винта (110). Достигается снижение веса вертолета и расхода энергии на компенсацию крутящего момента. 3 н. и 12 з.п. ф-лы, 2 ил.

 

Изобретение относится к компенсации создаваемого главным винтом вертолета крутящего момента.

Для компенсации крутящего момента в вертолетах обычно применяются осевые нагнетатели в виде хвостовых винтов с целью компенсации создаваемого главным винтом крутящего момента. При этом с помощью расположенного в хвостовой консоли вертолета хвостового винта создается горизонтальная, т.е. направленная максимально перпендикулярно вертикальной оси тяга, с целью противодействия вращению фюзеляжа вокруг вертикальной оси.

Такие хвостовые винты расположены преимущественно свободно на консоли и поэтому представляют опасность для, например, персонала на земле. Для решения этой проблемы и других недостатков свободного расположения хвостовых винтов в DE 102008015073 А1 представлен капсулированный хвостовой винт, так называемый фенестрон (Fenestron), с помощью которого снижается как угроза безопасности, так и уменьшается образование шумов и вибраций, поскольку вершины лопастей не вращаются открыто.

Однако недостатком является то, что капсуляция приводит к более высокому весу и более высоким конструктивным затратам. Кроме того, такие хвостовые винты имеют сравнительно небольшую величину, что приводит к тому, что для компенсации крутящего момента необходим больший расход энергии.

Поэтому задачей данного изобретения является создание альтернативной возможности для компенсации крутящего момента в вертолете.

Эта задача решена с помощью независимых пунктов формулы изобретения данного изобретения. Предпочтительные варианты выполнения следуют из зависимых пунктов формулы изобретения.

В решении, согласно изобретению, в отличие от обычного осевого нагнетателя в качестве создателя тяги используется нагнетатель поперечного потока, выполненный как диаметральный вентилятор, с целью обеспечения компенсации крутящего момента. При этом ось вращения диаметрального вентилятора целесообразно ориентирована параллельно продольной оси фюзеляжа, соответственно, продольной оси консоли вертолета.

Устройство, согласно изобретению, для компенсации крутящего момента для вертолета, который имеет главный винт, который вращается при работе вокруг оси вращения и за счет этого создает крутящий момент, содержит диаметральный вентилятор с корпусом и установленным в корпусе винтом, при этом диаметральный вентилятор расположен на консоли вертолета, в частности хвостовой консоли, так, что он при работе имеет действие тяги, которая компенсирует крутящий момент главного винта.

Диаметральный вентилятор расположен на консоли так, что он при работе создает тягу в направлении, которое имеет по меньшей мере одну составляющую, перпендикулярную оси вращения главного винта. В идеальном случае все направление тяги, т.е. не только одна его составляющая, ориентировано перпендикулярно оси вращения главного винта.

Кроме того, диаметральный вентилятор расположен на консоли так, что он при работе создает тягу в направлении, которое имеет по меньшей мере одну составляющую, перпендикулярную продольной оси консоли. В идеальном случае все направление тяги, т.е. не только одна его составляющая, ориентировано перпендикулярно продольной оси консоли.

За счет такого расположения диаметрального вентилятора обеспечивается, что создаваемый тягой диаметрального вентилятора крутящий момент наиболее эффективно противодействует создаваемому главным винтом крутящему моменту.

Диаметральный вентилятор может быть интегрирован в консоль. Например, винт может иметь форму валика, а консоль цилиндрическую форму, так что обеспечивается возможность интегрирования винта полностью в консоли. Таким образом, в противоположность открытому или капсулированному хвостовому винту возможна лучшая интеграция создателя тяги в форму фюзеляжа.

При этом соответствующий участок консоли может образовывать корпус диаметрального вентилятора. Другими словами, подходящий участок консоли может быть выполнен так, что он обеспечивает функцию собственно корпуса диаметрального вентилятора. По существу это означает, что в консоли могут быть предусмотрены приспособления для опоры винта, а также входное и выходное отверстия для создаваемого нагнетателем воздушного потока, соответственно, тяги. Таким образом, нагнетатель не нуждается в собственном, соответственно, отдельном корпусе, так что может быть сэкономлен материал и вес.

Для этого консоль имеет полое пространство, которое ограничено стенкой, которая образует корпус диаметрального вентилятора.

В качестве альтернативного решения, диаметральный вентилятор может быть также закреплен снаружи на консоли.

Вертолет, согласно изобретению, отличается тем, что он имеет указанное выше устройство, согласно изобретению.

В способе, согласно изобретению, компенсации крутящего момента в вертолете, с помощью которого компенсируют создаваемый вращающимся главным винтом вертолета крутящий момент, на консоли вертолета, в частности хвостовой консоли, устанавливают диаметральный вентилятор, который при работе имеет действие тяги, которая компенсирует крутящий момент главного винта.

Диаметральный вентилятор создает при работе тягу в направлении, которое имеет по меньшей мере одну составляющую, перпендикулярную оси вращения главного винта. В идеальном случае все направление тяги, т.е. не только одна его составляющая, ориентировано перпендикулярно оси вращения главного винта.

Кроме того, диаметральный вентилятор создает при работе тягу в направлении, которое имеет по меньшей мере одну составляющую, перпендикулярную продольной оси консоли. В этом случает также в идеальном случае все направление тяги, т.е. не только одна его составляющая, ориентировано перпендикулярно продольной оси консоли.

За счет применения диаметрального вентилятора, согласно изобретению, обеспечивается дополнительно к указанным выше преимуществам лучшие характеристики потока при косой обдувке, которая возникает, например, при полете вперед (смотри DE 4121995 С2). Кроме того, за счет обусловленного системой периодически прерывистого взаимодействия потока с главным винтом достигается значительное уменьшение шума.

Другие преимущества, признаки и подробности изобретения следуют из приведенного ниже описания примера выполнения со ссылками на прилагаемые чертежи, на которых изображено:

фиг. 1 - вертолет с установленным на хвостовой консоли диаметральным вентилятором;

фиг. 2 - вертолет с интегрированным в хвостовой консоли диаметральным вентилятором.

На фиг. 1 показан вертолет 100, который, согласно изобретению, снабжен диаметральным вентилятором 200. Вертолет 100 имеет главный винт 110 для создания подъемной силы и/или тяги для полета. При работе, т.е. при вращении главного винта 110, он вращается вокруг оси RH вращения и создает тем самым, как известно, крутящий момент. Этот крутящий момент без соответствующей компенсации приводил бы также к вращению фюзеляжа 120 вертолета 100 вокруг оси RH вращения.

Согласно изобретению, компенсация крутящего момента вызывается не предусмотренным на хвостовой консоли 130 вертолета 100 хвостовым винтом, а с помощью диаметрального вентилятора 200. Он отличается, например, от хвостового винта в виде пропеллера или т.п. тем, что создаваемый нагнетателем воздушный поток L проходит поперек, в частности перпендикулярно, оси RQ вращения нагнетателя 200. В соответствии с этим, создаваемая воздушным потоком L тяга ориентирована поперек оси RQ вращения нагнетателя 200. В противоположность этому, пропеллер создает воздушный поток, параллельный его оси вращения, соответственно, осевую тягу.

Диаметральный вентилятор 200 состоит по существу из корпуса 210 и установленного в корпусе с возможностью вращения валикообразного винта 220 с несколькими лопастями 230. Корпус установлен, как показано на фиг. 1, сзади на консоли 130 вертолета 100.

Корпус 210 имеет на двух лежащих противоположно сторонах соответствующее, например, шлицевое отверстие 240, 250. В рабочем состоянии привод 260 приводит во вращение винт 220 вокруг оси RQ вращения. При этом воздух всасывается через первое отверстие 240 и выталкивается снова через второе отверстие 250, так что в конечном итоге создается воздушный поток L, и на нагнетатель 200 и тем самым на консоль 130 действует тяга, соответственно сила F, направление которой противоположно воздушному потоку.

В соответствии с этим, такой предусмотренный на хвостовой консоли 130 вертолета 100 диаметральный вентилятор 200 приводит к тому, что к консоли 130 может прикладываться сила F в обозначенном стрелкой направлении, которая создает соответствующий крутящий момент, воздействующий на фюзеляж 120 вертолета 100, с помощью которого можно компенсировать создаваемый вращающимся главным винтом 110 крутящий момент.

В идеальном случае диаметральный вентилятор 200 выполнен и расположен на хвостовой консоли 130 так, что его ось RQ вращения ориентирована перпендикулярно оси RH вращения главного винта 110, соответственно, направление создаваемого воздушного потока L ориентировано перпендикулярно оси RH вращения главного винта 110 и перпендикулярно продольной оси консоли 130.

Существенным для возможно более эффективной работы является то, что направление создаваемой диаметральным вентилятором 200 силы F имеет возможно большую составляющую в направлении, которое ориентировано перпендикулярно как продольной оси консоли 130, так и перпендикулярно оси RH вращения главного винта 110, поскольку в этом случае становится максимальным крутящий момент для компенсации крутящего момента главного винта.

Поскольку не является необычным выполнение консоли 130 вертолета 100 по существу полым цилиндрическим, то диаметральный вентилятор 200 может быть также интегрирован, как показано на фиг. 2, в консоли 130, соответственно, в соответствующем полом пространстве 131 в консоли 130. В случае когда полое пространство 131 имеет походящее внутреннее поперечное сечение, которое согласовано с окружностью винта 220 диаметрального вентилятора 200, то этот участок 132 консоли 130 может образовывать корпус 21 диаметрального вентилятора 200. Таким образом, нагнетатель 200 не нуждается в собственном, соответственно, отдельном корпусе 210, так что можно экономить материал и вес.

Таким образом, хвостовая консоль 130 вертолета 100 в идеальном случае выполнена так, что она имеет полое пространство 131 с внутренним поперечным сечением и длиной, которые согласованы с размерами винта 220 диаметрального вентилятора 200 и обеспечивают возможность размещения винта 220 диаметрального вентилятора 200. Соответствующий участок 132 консоли 130, соответственно, ограничивающие полое пространство 131 стенки, содержащие две торцевые стенки 211, 212 и боковую поверхность 213, образуют в этом случае корпус 210 диаметрального вентилятора 200. На фиг. 2 винт 220 вместе с лопастями 230 изображен штриховыми линиями, поскольку эти компоненты, естественно, не видны из-за торцевой стенки 212. То же относится, соответственно, к торцевой стенке 211.

Минимальный внутренний диаметр полого пространства 131 выбран, например, так, что лопасти 230 винта 230 как раз не соприкасаются с внутренней стенкой полого пространства 131. При этом необходимо, естественно, учитывать определенные допуски из-за температурных эффектов.

Привод 260 винта 220 диаметрального вентилятора 200 может быть электродвигателем или т.п. Возможно также применение привода 140 главного винта 110 для работы диаметрального вентилятора 200, при этом в этом случае в зависимости от выполнения необходимы дополнительные отклоняющие и/или повышающие, соответственно, понижающие передачи (не изображены).

Отверстия 240, 250 не должны, естественно, лежать точно противоположно друг другу, а также не должны быть птицеобразными. Точное выполнение и размеры корпуса 210 можно определять, например, с помощью моделирования.

Диаметральный вентилятор 200 может быть также расположен снаружи хвостовой консоли 130, например выше или ниже хвостовой консоли 130. При этом более предпочтительным было бы расположение под хвостовой консолью 130, поскольку в этом случае становится минимальным взаимодействие с главным винтом 110.

1. Устройство для компенсации крутящего момента для вертолета (100), который имеет главный винт (110), который вращается при работе вокруг оси (RH) вращения и за счет этого создает крутящий момент, отличающееся тем, что устройство содержит диаметральный вентилятор с корпусом (210) и установленным в корпусе (210) ротором (220), при этом диаметральный вентилятор (200) расположен на консоли (130) вертолета (100), в частности хвостовой консоли, так, что он при работе имеет действие тяги, которая компенсирует крутящий момент главного винта (110).

2. Устройство по п.1, отличающееся тем, что диаметральный вентилятор (200) расположен на консоли (130) так, что он при работе создает тягу в направлении, которое имеет по меньшей мере одну составляющую, перпендикулярную оси (RH) вращения главного винта (110).

3. Устройство по п.2, отличающееся тем, что диаметральный вентилятор (200) расположен на консоли (130) так, что при работе направление тяги ориентировано перпендикулярно оси (RH) вращения главного винта (110).

4. Устройство по п.2, отличающееся тем, что диаметральный вентилятор (200) расположен на консоли (130) так, что он при работе создает тягу в направлении, которое имеет по меньшей мере одну составляющую, перпендикулярную продольной оси консоли (130).

5. Устройство по п.4, отличающееся тем, что диаметральный вентилятор (200) расположен на консоли (130) так, что направление тяги ориентировано перпендикулярно продольной оси консоли (130).

6. Устройство по любому из пп.1-5, отличающееся тем, что диаметральный вентилятор (200) интегрирован в консоль (130).

7. Устройство по п.6, отличающееся тем, что участок (132) консоли (130) образует корпус (210) диаметрального вентилятора (200).

8. Устройство по п.6, отличающееся тем, что консоль (130) имеет полое пространство (131), которое ограничено стенками (211, 212, 213), которые образуют корпус (21) диаметрального вентилятора (200).

9. Устройство по любому из пп. 2 или 4, отличающееся тем, что диаметральный вентилятор (200) закреплен снаружи на консоли (130).

10. Вертолет (100), содержащий устройство по любому из пп.1-9.

11. Способ компенсации крутящего момента в вертолете (100), с помощью которого компенсируют создаваемый при вращающемся главном винте (110) вертолета (100) крутящий момент, при этом на консоли (130) вертолета (100), в частности хвостовой консоли, устанавливают диаметральный вентилятор (200), который при работе имеет действие тяги, которая компенсирует крутящий момент главного винта (110).

12. Способ по п. 11, отличающийся тем, что диаметральный вентилятор (200) расположен на консоли (130) так, что он при работе создает тягу в направлении, которое имеет по меньшей мере одну составляющую, перпендикулярную оси (RH) вращения главного винта (110).

13. Способ по п.12, отличающийся тем, что диаметральный вентилятор (200) расположен на консоли (130) так, что он при работе создает тягу в направлении, которое ориентировано перпендикулярно оси (RH) вращения главного винта (110).

14. Способ по любому из пп.11-13, отличающийся тем, что диаметральный вентилятор (200) расположен на консоли (130) так, что он при работе создает тягу в направлении, которое имеет по меньшей мере одну составляющую, перпендикулярную продольной оси консоли (130).

15. Способ по п.14, отличающийся тем, что диаметральный вентилятор (200) расположен на консоли (130) так, что он при работе создает тягу в направлении, которое ориентировано перпендикулярно продольной оси консоли (130).



 

Похожие патенты:

Вертолет содержит фюзеляж, несущий винт, рулевой винт с управлением общим и циклическим шагом, силовую установку, элементы трансмиссии и систему управления. Вал рулевого винта установлен под постоянным углом в горизонтальной плоскости вертолета в диапазоне 50-70 градусов относительно продольной оси вертолета, а механизм управления циклическим шагом рулевого винта выполнен в виде автомата перекоса с управлением по одному каналу с отклонением его кольца на угол, обеспечивающий дополнительное увеличение или уменьшение пропульсивной составляющей вектора тяги рулевого винта.

Вертолет содержит хвостовую часть (1) с поперечным каналом (6) и ведущим валом (23) внутри обтекателя (14) ведущего вала для устройства (2) противодействия крутящему моменту.

Изобретение относится к авиационной технике, а именно к конструкциям рулевых винтов, служащих для компенсации реактивного момента несущего винта и путевого управления вертолетом.

Изобретение относится к области авиации, в частности к способам компенсации реактивного момента несущего винта. Способ заключается в использовании выхлопной струи газотурбинных двигателей, которая направляется в хвостовую балку и усиливается в соответствии с эффектом Бернулли благодаря расположенным у основания балки отверстиям воздухозаборников.

Изобретение относится к области авиации, в частности к конструкции хвостовых винтов вертолетов. Хвостовой винт (12) вертолета (10) имеет привод (1), содержащий электрическую машину с поперечным магнитным потоком с возбуждением от постоянных магнитов с дуплексным расположением статоров.

Изобретение относится к вертолетостроению, в частности к конструкции фюзеляжа вертолета одновинтовой схемы. .
Изобретение относится к вертолетостроению, в частности к конструкции механизма противовращения вертолета. .

Изобретение относится к области авиации, более конкретно, к системе приводов несущих винтов летательного аппарата. .

Изобретение относится к вертолетостроению. .

Изобретение относится к области авиации, более конкретно - к вертолетам с одним несущим винтом. .

Изобретение относится к области авиации, в частности к конструкциям хвостовых винтов вертолетов. Заключенный в обтекатель винт (10) для винтокрылого летательного аппарата содержит вращающийся узел, расположенный в канале для осуществления вращения вокруг оси (АХ1). Этот вращающийся узел (15) содержит множество лопастей (20), каждая из которых закреплена на втулке (16), при этом каждая лопасть (20) соответствует закону крутки, определяющему угол крутки, заключенный между нулем градусов включительно и 5 градусами включительно. Каждая лопасть (20) содержит по размаху первую зону (21), затем вторую зону (22), имеющую прямую стреловидность. Вторая зона содержит вторую заднюю кромку (30′′), расположенную ниже по потоку относительно первой задней кромки (30′) первой зоны (21). Каждая первая зона (21) содержит комель (24), соединенный с втулкой (16) при помощи устройства (40) крепления, содержащего подшипник (45) качения и конусный слоистый упор (50). Достигается возможность повышения прочности и большей линейности при работе винта. 2 н. и 12 з.п. ф-лы, 5 ил.

Изобретение относится к области авиации, в частности к конструкциям вертолетов. Хвостовое оперение вертолета содержит фенестрон с многолопастным винтом (4) с лопастями (3) и при необходимости вертикальные кили (1.2). Выпрямляющие поток статоры (5) неподвижных лопаток расположены в звездообразной конфигурации параллельно плоскости винта далее по ходу по отношению к винту (4). Кольцо (2.1) фенестрона заключено в композитную конструкцию из внешнего защищающего от эрозии поверхностного слоя (7.1, 8.1), выполненного из твердого пластика или пластикового композитного материала, и по меньшей мере одного последующего слоя (7.2, 8.2) из эластомерного демпфирующего материала. Кольцо фенестрона поочередно содержит два слоя твердого пластика и два слоя эластомерного демпфирующего элемента. Достигается снижение уровня шума хвостового оперения. 9 з.п. ф-лы, 9 ил.

Изобретение относится к области авиации, в частности к конструкциям вертолетов, выполненных по одновинтовой схеме без рулевого винта. Компенсатор реактивного момента несущего винта выполнен в виде ряда аэродинамических стабилизаторов, расположенных вертикально в зоне вращения несущего винта и выполненных с возможностью поворота при помощи проводки управления и продольных шарниров. Установленные на фюзеляже вертолета продольные шарниры связывают компенсатор с поперечными крыльями и хвостовыми стабилизаторами, которые соединены между собой аэродинамической решеткой из пересекающихся вертикальных полос желобкового профиля, ориентированных вогнутой стороной навстречу вращению несущего винта вертолета. Педали путевого управления и рычаг шаг-газ связаны через проводку управления автоматической гидросистемы с корпусными гидроцилиндрами и штоками подкосов поперечных крыльев. Достигается снижение веса и вибрации конструкции вертолета, повышение надежности управления и более рациональное использование мощности двигателей на создание подъемной силы несущего винта. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области авиации и может быть использовано для создания вертолетов одновинтовой схемы без рулевого винта. Одновинтовой вертолет содержит фюзеляж, несущий винт, силовую установку с двигателями и главным редуктором. Вал несущего винта расположен наклонно относительно вертикали. Агрегаты силовой установки размещены на поворотной платформе. Поворотная платформа установлена на потолочной панели фюзеляжа с возможностью поворота относительно своей вертикальной оси и снабжена приводом, который содержит электродвигатель и самотормозящийся редуктор. При этом ось вращения поворотной платформы смещена относительно центра масс вертолета. Длина и угол наклона относительно вертикали вала несущего винта и смещение оси вращения поворотной платформы относительно центра масс выбраны из условия обеспечения компенсации реактивного момента несущего винта на фюзеляже. Угол поворота поворотной платформы зависит от режима полета. Достигается снижение затрат мощности основных двигателей на компенсацию реактивного момента несущего винта. 2 з.п. ф-лы, 6 ил.

Изобретение относится к области авиации, в частности к конструкциям винтокрылых летательных аппаратов, и к способам минимизации шума хвостового винта. Винтокрылый летательный аппарат (1) расположен вдоль первой передне-задней плоскости (Р1), отделяющей первую сторону (6) от второй стороны (7) винтокрылого летательного аппарата (1). Упомянутый винтокрылый летательный аппарат (1) оборудован, по меньшей мере, одним несущим винтом (5), вспомогательным винтом (10) и, по меньшей мере, одной аэродинамической поверхностью (25). Упомянутый винтокрылый летательный аппарат (1) содержит блок (30) обработки, связанный со средством (35) перемещения, поворачивающим упомянутую аэродинамическую поверхность (25), при этом блок (30) обработки связан с первой системой (41) измерения текущего значения параметра скорости (V) винтокрылого летательного аппарата и со второй системой (42) измерения текущего значения параметра мощности (W) упомянутой силовой установки (90) для регулирования угла поворота аэродинамической поверхности. Достигается возможность минимизации шума, производимого хвостовым винтом, и расхода топлива. 2 н. и 15 з.п. ф-лы, 7 ил.

Изобретение относится к области авиации и может быть использовано для вертолетов со струйной системой управления. Механизм управления створками трехстворчатого сопла с управляемым вектором тяги состоит из зубчатого сектора управления положением средней створки, рычагов управления боковыми створками, центральной качалки, связанной тягами с рычагами боковых створок. Центральная качалка связана зубчатой передачей с зубчатым сектором средней створки, причем передаточное отношение от средней створки к центральной качалке составляет 0.70-0.78. Плечи центральной качалки имеют длину 0.3-0.4 ширины входного сечения сопла и угол раскрытия плеч 140°-150°. Рычаги боковых створок имеют плечи длиной 0.3-0.35 и 0.4-0.45 ширины входного сечения сопла и углы заклинения 50°-55° и 55°-60° соответственно, а тяги рычагов боковых створок имеют длину 0.5-0.55 и 0.4-0.45 ширины входного сечения сопла. Достигается уменьшение потерь давления в сопле и соответственно повышение его эффективности, обеспечение необходимого для каждого режима полета соотношения боковой и пропульсивной сил. 1 з.п. ф-лы, 7 ил.

Изобретение относится к области авиации, в частности к конструкциям вертолетов. Вертолет с асимметричным крылом содержит крыло с механизацией, включая выполненные полностью или частично поворотные плоскости. Левая и правая плоскости разнесены по длине фюзеляжа и располагаются вне зоны нисходящего воздушного потока несущего винта. Плоскости крыла имеют разные лобовое сопротивление и подъемную силу. Вертолет имеет возможность изменять соотношения лобового сопротивления и подъемной силы правой и левой плоскостей крыла для полной или частичной компенсации реактивного и кренящего моментов несущего винта. Достигается уменьшение энергопотребления на всех режимах полета. 2 ил.

Настоящее изобретение относится к области авиации, в частности к конструкциям комбинированных винтокрылых летательных аппаратов. Комбинированный летательный аппарат (1) содержит фюзеляж (2), несущий винт (3), основное устройство парирования момента (4) и два крыла (11, 11'), расположенных с одной и другой стороны упомянутого фюзеляжа (2). Каждое крыло (11, 11') содержит по меньшей мере один подвижный закрылок (12, 12'), расположенный на уровне его задней кромки. Упомянутые закрылки (12, 12') могут быть асимметрично ориентированы по отношению к воздушному потоку, образованному как ответное действие аэродинамической подъемной силе упомянутого несущего винта (3) с одной и другой стороны упомянутого фюзеляжа (2) для создания продольных аэродинамических сил противоположного направления на одной и другой стороне упомянутого фюзеляжа (2). Достигается возможность создания дополнительного вращающего момента, который добавляется к основному вращающему моменту упомянутого основного устройства парирования момента (4) несущего винта. 2 н. и 14 з.п. ф-лы, 6 ил.
Наверх