Способ сжижения фракции, обогащенной углеводородами

Изобретение относится к способу сжижения фракции, обогащенной углеводородами. Способ сжижения фракции, обогащенной углеводородами, включает следующие этапы. Охлаждение и сжижение фракции, обогащенной углеводородами, происходят путем косвенного теплообмена с холодильной смесью циркуляционного контура холодильной смеси. Охлаждение фракции, обогащенной углеводородами, происходит путем косвенного теплообмена с полностью испарившейся холодильной смесью циркуляционного контура холодильной смеси. Сжатая холодильная смесь циркуляционного контура холодильной смеси предварительно охлаждается с помощью циркуляционного контура чистого вещества. Состав холодильной смеси и/или конечное давление компрессора циркуляционного контура холодильной смеси выбираются таким образом, чтобы холодильная смесь полностью сжижалась с помощью циркуляционного контура чистого вещества. Изобретение направлено на повышение экономичности при незначительном повышении энергопотребления. 4 з.п. ф-лы, 1 ил.

 

Изобретение относится к способу сжижения фракции, обогащенной углеводородами.

Из US 3763658 известен способ сжижения фракции, обогащенной углеводородами, в частности, находящий применение в процессах сжижения природного газа. При этом циркуляционный контур холодильной смеси хладогента служит для сжижения и переохлаждения природного газа, в то время как дополнительно предусмотрен циркуляционный контур чистого вещества, который как предварительно охлаждает сжижаемый природный газ, так и предварительно охлаждает и частично сжижает холодильную смесь циркуляционного контура холодильной смеси. Такой способ сжижения, в частности, подходит для процессов сжижения природного газа производительностью 1-6 млн. т сжижаемого природного газа (LNG) в год.

Сжижаемый природный газ перед собственно охлаждением и сжижением, как правило, подается на водяную промывочную установку с амином, к которой обычно подключается блок сушки. В частности, в теплых климатических зонах для конденсации воды, содержащейся в природном газе, может использоваться часть потока из вышеописанного циркуляционного контура сверхчистого вещества, благодаря чему разгружается сушилка, подключаемая к промывочной установке с амином.

Однако этот процесс сжижения требует относительно больших затрат на оборудование. Так, например, следует предусмотреть в зависимости от исполнения до девяти испарителей сверхчистого вещества типа Kettle, а также две секции витых теплообменников. В частности, при небольших мощностях сжижения, под таковыми понимается производительность менее 3 млн. т сжижаемого природного газа (LNG) в год, вышеописанный технологический процесс по сравнению с так называемыми процессами сжижения SMR (Single Mixed Refrigerant - единственный смешанный хладагент), не имеющими никакого отдельного циркуляционного контура предварительного охлаждения, имеет недостатки, поскольку вышеописанный процесс сжижения обусловливает более крупные капитальные затраты, которые не могут быть скомпенсированы даже его меньшим энергопотреблением.

Задача настоящего изобретения заключается в создании подобного способа сжижения фракции, обогащенной углеводородами, который лишен вышеописанных недостатков.

Для решения этой задачи предлагается общий способ сжижения фракции, обогащенной углеводородами, в котором

а) охлаждение и сжижение фракции, обогащенной углеводородами, происходят путем косвенного теплообмена с холодильной смесью циркуляционного контура холодильной смеси,

б) охлаждение фракции, обогащенной углеводородами, происходит путем косвенного теплообмена с полностью испарившейся холодильной смесью циркуляционного контура холодильной смеси,

в) сжатая холодильная смесь циркуляционного контура холодильной смеси предварительно охлаждается с помощью циркуляционного контура сверхчистого вещества, и

г) состав холодильной смеси и/или конечное давление компрессора циркуляционного контура холодильной смеси выбираются таким образом, чтобы холодильная смесь полностью сжижалась с помощью циркуляционного контура сверхчистого вещества.

Под понятием «циркуляционный контур сверхчистого вещества» следует понимать холодильный цикл, в котором хладагент присутствует в концентрации 95 объемных %.

В отличие от вышеописанного способа сжижения охлаждение и сжижение фракции, обогащенной углеводородами, теперь происходят исключительно путем косвенного теплообмена с холодильной смесью циркуляционного контура холодильной смеси. Кроме того, предусматриваемый циркуляционный контур сверхчистого вещества служит согласно изобретению исключительно для предварительного охлаждения сжатой холодильной смеси циркуляционного контура холодильной смеси. При этом состав холодильной смеси и/или конечное давление компрессора циркуляционного контура холодильной смеси следует выбирать таким образом, чтобы холодильная смесь могла охлаждаться с помощью циркуляционного контура сверхчистого вещества настолько, чтобы она сжижалась полностью.

Вследствие этого холодильная смесь может подаваться непосредственно в теплообменник, служащий для сжижения и переохлаждения фракции, обогащенной углеводородами, без включения сепаратора перед этим теплообменником.

В принципе действия согласно изобретению все еще сохраняется, по существу, преимущество предварительного охлаждения с помощью циркуляционного контура сверхчистого вещества в отношении энергопотребления и пригодности для разгрузки предусматриваемого блока сушки при известных условиях. Однако затраты на оборудование при способе сжижения согласно изобретению по сравнению с вышеописанным способом сжижения существенно ниже, поскольку число теплообменников явно сокращено.

Хотя принцип действия согласно изобретению ведет к незначительному увеличению энергопотребления, энергопотребление составляет максимум 5 %, все же общая экономичность процесса сжижения повышается, вследствие чего принцип действия согласно изобретению, в частности, с диапазоном производительности 0,5-3 млн. т сжижаемого природного газа (LNG) в год, экономичнее известных процессов сжижения.

Другие предпочтительные варианты выполнения способа сжижения фракции, обогащенной углеводородами, согласно изобретению, представляющие собой предмет зависимых пунктов формулы изобретения, отличаются тем, что

- хладагент циркуляционного контура сверхчистого вещества состоит по меньшей мере на 95 объемных % из С3Н8, С3Н6, С2Н6, С2Н4 или СО2,

- холодильная смесь циркуляционного контура холодильной смеси содержит азот, метан и по меньшей мере два компонента из группы С2Н4, С2Н6, С3Н8, С4Н10 и С5Н12, и

- холодильная смесь циркуляционного контура холодильной смеси при сжижении фракции, обогащенной углеводородами, полностью испаряется.

Способ сжижения фракции, обогащенной углеводородами, согласно изобретению, а также его другие предпочтительные варианты выполнения, представляющие собой предмет зависимых пунктов формулы изобретения, более подробно показаны ниже на примере выполнения, изображенном на фигуре.

По трубопроводу 1 сжижаемая фракция, обогащенная углеводородами, под которой в дальнейшем подразумевается поток природного газа, подается в промывочную установку А с амином. К ней подключен блок Т сушки, впереди которого включен теплообменник Е1. В последнем для разгрузки блока Т сушки происходит частичная конденсация воды, содержащейся в природном газе.

Поток природного газа, предварительно обработанный таким образом, по трубопроводу 2 подается в теплообменник Е6, и в нем охлаждается полностью испарившейся холодильной смесью циркуляционного контура холодильной смеси, о котором еще будет сказано ниже. Теплообменник Е6, предпочтительно, выполнен в виде пластинчатого теплообменника.

По трубопроводу 3 охлажденный поток природного газа подается в теплообменник Е7, предпочтительно, выполненный в виде витого теплообменника. В нем происходят сжижение и переохлаждение потока природного газа путем косвенного теплообмена с холодильной смесью циркуляционного контура холодильной смеси. По трубопроводу 4 переохлажденный поток - продукт сжижаемого природного газа (LNG), отводится и подается на промежуточное хранение или непосредственно для его дальнейшего использования.

Холодильная смесь циркуляционного контура холодильной смеси в одно- или многоступенчатом блоке компрессора сжимается до желательного конечного давления компрессора; на фигуре изображены две ступени компрессора V2 и V2', причем между ступенями компрессора, предпочтительно, предусмотрен не показанный на фигуре промежуточный охладитель. После охлаждения в дополнительном охладителе Е9 сжатая холодильная смесь по трубопроводу 5 пропускается через четыре последовательно включенных теплообменника Е2-Е5. В последних холодильная смесь путем косвенного теплообмена с хладагентом циркуляционного контура сверхчистого вещества, о котором более подробно еще будет сказано ниже, охлаждается настолько, чтобы на выходе последнего теплообменника Е5 он оказывался жидким и тем самым однофазным.

Для достижения этой полной конденсации холодильной смеси циркуляционного контура холодильной смеси на выходе последнего теплообменника Е5 следует подбирать состав холодильной смеси и/или конечное давление компрессора циркуляционного контура холодильной смеси.

В качестве хладагента для циркуляционного контура сверхчистого вещества, предпочтительно, используются С3Н8, С3Н6, С2Н6, С2Н4 или СО2. Холодильная смесь циркуляционного контура холодильной смеси, предпочтительно, содержит азот, метан и по меньшей мере два компонента из группы С2Н4, С2Н6, С3Н8, С4Н10 и С5Н12.

Теперь холодильная смесь, сжиженная в циркуляционном контуре сверхчистого вещества, по трубопроводу 6 может подаваться прямо в теплообменник Е7. Тем самым наличие сепаратора, включенного перед теплообменником Е7, становится излишним. В теплообменнике Е7 жидкая холодная смесь переохлаждается, прежде чем она будет отведена по трубопроводу 7, а в клапане «а» ее давление понизится до самого низкого.

В порядке альтернативы клапану «а», изображенному на фигуре, может быть предусмотрен жидкостной экспандер, служащий для понижения рабочего давления холодильной смеси на холодном конце теплообменника Е7.

Холодильная смесь с пониженным давлением, снова поданная в теплообменник Е7, служит для сжижения и переохлаждения потока природного газа. Предпочтительным образом холодильная смесь при сжижении и переохлаждении потока природного газа испаряется полностью, так что полностью испарившийся поток холодильной смеси по трубопроводу 8 отводится из теплообменника Е7 и подается в теплообменник Е6. В последнем холодильная смесь, прежде чем она по трубопроводу 9 будет снова подана на вход блока V2/V2', перегревается относительно охлаждаемого потока природного газа.

Уже упомянутый циркуляционный контур сверхчистого вещества содержит также многоступенчатый блок V1 компрессора, к которому относится конденсатор Е8. Хладагент, сжатый до желательного конечного давления, по трубопроводу 10 подается в точку разветвления, в которой часть потока хладагента расширяется через клапан b в уже упомянутый теплообменник Е1, а из него по трубопроводам 11 и 13 снова подается в блок V1 компрессора. Вторая часть потока по трубопроводу 12 и через клапан с расширяется в теплообменник Е2.

В то время как газообразная составляющая хладагента по трубопроводу 13 отводится из теплообменника Е2 и подается в блок V1 компрессора, жидкая составляющая хладагента по трубопроводу 14 отводится из теплообменника Е2 и через клапан расширяется в теплообменник Е3. Снова происходит отделение газообразной составляющей хладагента, которая по трубопроводу 15 подается в блок V1 компрессора на промежуточной ступени, в то время как по трубопроводу 16 жидкая составляющая хладагента отводится и через клапан е расширяется в теплообменник Е4. Из него газообразная составляющая хладагента по трубопроводу 17 также подается в блок V1 компрессора на промежуточной ступени, в то время как по трубопроводу 18 жидкая составляющая хладагента отводится и через клапан f расширяется в последний теплообменник Е5. По трубопроводу 19 полностью испарившийся хладагент подается в блок V1 компрессора на самой низкой ступени давления.

Вместо изображенного на фигуре охлаждения холодильной смеси в теплообменниках Е2-Е5 на практике могут быть реализованы менее четырех теплообменников. Число теплообменников по существу определяется окружающей температурой и числом рабочих колес в турбокомпрессоре.

Способ сжижения фракции, обогащенной углеводородами, согласно изобретению определяет процесс сжижения, который при уменьшенных затратах на оборудование имеет лучшую общую экономичность, причем это должно достигаться за счет незначительного повышения энергопотребления. Принцип действия согласно изобретению, в частности, подходит для диапазона производительности 0,5-3 млн. т сжижаемого природного газа (LNG) в год.

1. Способ сжижения фракции, обогащенной углеводородами, причем
а) охлаждение (Е6) и сжижение (Е7) фракции (1, 2), обогащенной углеводородами, происходят путем косвенного теплообмена с холодильной смесью циркуляционного контура (5-9) холодильной смеси,
б) охлаждение (Е6) фракции (1, 2), обогащенной углеводородами, происходит путем косвенного теплообмена с полностью испарившейся холодильной смесью циркуляционного контура (5-9) холодильной смеси,
в) сжатая холодильная смесь циркуляционного контура (5-9) холодильной смеси предварительно охлаждается с помощью циркуляционного контура (10-19) чистого вещества, а
г) состав холодильной смеси и/или конечное давление компрессора циркуляционного контура (5-9) холодильной смеси выбираются таким образом, чтобы холодильная смесь полностью сжижалась с помощью циркуляционного контура (10-19) чистого вещества.

2. Способ по п. 1, отличающийся тем, что хладагент циркуляционного контура (10-19) чистого вещества состоит по меньшей мере на 95 объемных % из С3Н8, С3Н6, С2Н6, С2Н4 или CO2.

3. Способ по п. 1 или 2, отличающийся тем, что холодильная смесь циркуляционного контура (5-9) холодильной смеси содержит азот, метан и по меньшей мере два компонента из группы С2Н4, С2Н6, С3Н8, С4Н10 и C5H12.

4. Способ по п. 1 или 2, отличающийся тем, что холодильная смесь циркуляционного контура (5-9) холодильной смеси при сжижении (Е7) фракции (3), обогащенной углеводородами, полностью испаряется.

5. Способ по п. 3, отличающийся тем, что холодильная смесь циркуляционного контура (5-9) холодильной смеси при сжижении (Е7) фракции (3), обогащенной углеводородами, полностью испаряется.



 

Похожие патенты:

Группа изобретений относится к способу работы установки сжиженного природного газа с минимальной производительностью и к соответствующей установке сжиженного природного газа, причем установка содержит блок сжижения, расположенный на пути потока установки.

Группа изобретений относится к способу ввода в действие установки сжиженного природного газа, содержащей блок сжижения, расположенный на пути потока установки. Способ содержит следующие этапы: удаление сжиженного природного газа из первого положения на пути потока после блока сжижения; испарение удаленного сжиженного природного газа или нагрев таким образом, что удаленный сжиженный природный газ преобразуется в газообразную фазу; подача испаренного или преобразованного сжиженного природного газа обратно на путь потока во втором положении перед блоком сжижения; а также пропускание всего обратно поданного сжиженного природного газа через блок сжижения.

Изобретение относится к способу сжижения природного газа в установке, состоящей из двух контуров охлаждения, в которой охлаждают природный газ путем теплообмена с первой охлаждающей смесью, в первом контуре охлаждения.

Группа изобретений относится к способу и установке для очистки многофазного углеводородного потока. Многофазный углеводородный поток очищают, получая очищенный жидкий углеводородный поток, такой как поток сжиженного природного газа.

Изобретение относится к способу сжижения фракции, обогащенной углеводородами. Согласно способу, охлаждение и сжижение фракции, обогащённой углеводородами, происходит путём опосредованного теплообмена с холодильной смесью циркуляционного контура холодильной смеси.

Группа изобретений относится к способу и устройству для получения охлажденного углеводородного потока. В способе используется охлаждение, по меньшей мере, при двух последовательных уровнях давления.

Описывается способ сжижения фракции с высоким содержанием углеводородов при одновременном удалении фракции с высоким содержанием C2+, при этом охлаждение и сжижение фракции с высоким содержанием углеводородов происходит при непрямом теплообмене посредством смеси хладагентов циркуляционного контура смеси хладагентов, в котором смесь хладагентов подвергается по меньшей мере двухступенчатому сжатию, и удаление фракции с высоким содержанием C2+ происходит на регулируемом уровне температуры, при этом смесь хладагентов разделяется на газообразную и жидкую фракцию, обе фракции переохлаждаются, расширяются, по существу, до давления всасывания первой ступени компрессора и по меньшей мере частично выпариваются.

Группа изобретений относится к способу охлаждения потока газообразных углеводородов. Газообразный поток углеводородов охлаждают для получения потока сжиженных углеводородов.

В способе и устройстве для охлаждения углеводородного потока охлаждаемый углеводородный поток (45) подвергается теплообмену в первом теплообменнике (50) с по меньшей мере одним потоком хладагента (145b, 185b), характеризующимся скоростью (FR1) первого потока хладагента, в результате чего образуется охлажденный углеводородный поток (55), характеризующимся скоростью (FR2) охлажденного углеводородного потока, и по меньшей мере один возвратный поток (105) хладагента.

Описаны установка сжиженного природного газа, которая использует систему для удаления неконденсируемого материала из одного или более холодильных циклов в пределах установки, и способ ее работы.

Изобретение относится к способу и системе для выделения углеводородов, содержащихся в отходящем потоке процесса полимеризации. Способ включает снижение давления потока этилена от давления не менее 3,4 МПа до давления не более 1,4 МПа, охлаждение отходящего газа, включающего мономер, путем теплообмена с потоком этилена пониженного давления с получением первого конденсата, включающего часть мономера, захваченного первым легким газом, выделение первого конденсата и первого легкого газа, отделение первого конденсата от первого легкого газа, компримирование потока этилена пониженного давления до давления не менее 2,4 МПа и пропускание компримированного потока этилена в реактор полимеризации. Изобретение обеспечивает эффективное выделение углеводородов из отходящего газа, повторное применение значительной части олефинового мономера и повторное применение содержащихся в отходящем газе инертных компонентов. 2 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к технологии сжижения водорода. Устройство для изготовления жидкого водорода снабжено блоком (R) цикла охлаждения, в котором циркулирующий водород выполняет функцию охлаждающего вещества, и блоком (Р) генерирования жидкого водорода для генерирования жидкого водорода путем охлаждения водорода исходного материала под высоким давлением посредством блока (R) цикла охлаждения и путем адиабатического расширения водорода исходного материала посредством клапана (12) Джоуля-Томсона. Первый и второй теплообменники (E1, Е2) размещены вдоль блока (R) цикла охлаждения и блока (Р) генерирования жидкого водорода. Устройство (HS) для изготовления жидкого водорода снабжено приспособлением обработки испаряемого газа для генерирования жидкого водорода путем повторного сжижения испаряемого газа, генерируемого в цистерне для хранения жидкого водорода, в емкость (16) для транспортировки жидкого водорода. Испаряемый газ вводят в тракт (1) циркуляции водорода в части, в которой протекает циркулирующий водород, имеющий сверхнизкую температуру, а избыточный циркулирующий водород, генерируемый из указанного вводимого испаряемого газа, выпускают в тракт (11) для водорода исходного материала из части, в которой циркулирующий водород находится при комнатной температуре. Использование изобретения позволяет эффективно применять и повторно сжимать испаряемый из резервуара газ без потери энергии холода для восстановления жидкого водорода. 6 з.п. ф-лы, 1 ил., 1 табл.

Настоящее изобретение относится к криогенной технике, а именно к технике и технологии сжижения природного газа и прежде всего к установкам малой и средней производительности. Природный газ высокого давления поступает на вход системы осушки 1, где происходит его очистка и осушка. После блока осушки он подается в теплообменный аппарат 2, где охлаждается и сжижается за счет теплообмена с потоком холодного азота низкого давления и затем дросселируется через клапан 3 до давления, при котором происходит его накопление и хранение в криогенном резервуаре 4. В основном контуре охлаждения в качестве хладагента используется азот, который циркулирует в замкнутом контуре, организованном на базе циркуляционного компрессора 5. На детандерную ступень турбодетандер-компрессорного агрегата 7 подается не весь поток охлажденного азота высокого давления. Небольшая часть указанного потока последовательно подвергается дополнительному охлаждению в теплообменнике 2 и дросселированию в клапане 10 для получения жидкой фазы азота, которая подается в теплообменник-испаритель 11, где происходит переохлаждение потока сжиженного природного газа за счет теплообмена с кипящим жидким азотом. Образующиеся при кипении пары азота из теплообменника-испарителя 11 смешиваются с потоком азота низкого давления с выхода детандерной ступени турбодетандер-компрессорного агрегата 7, и далее объединенный поток поступает в теплообменник 2, а после снова во всасывающую магистраль циркуляционного компрессора 5. 2 з.п. ф-лы, 3 ил., 2 табл.

Группа изобретений относится к установке и способу производства жидкого гелия. Установка для производства жидкого гелия содержит устройство охлаждения/сжижения, включающее в себя контур полезной нагрузки, подвергающий рабочее вещество, обогащенное гелием, термодинамическому циклу. Причем контур содержит устройство сжатия рабочего вещества и множество теплообменников для охлаждения/нагревания жидкого вещества до заданных уровней температуры в течение цикла. Установка содержит множество трубопроводов рекуперации жидкого вещества. Передние концы этих трубопроводов избирательно соединены с соответствующими мобильными резервуарами на полуприцепах для перемещения жидкого вещества из резервуаров к устройству охлаждения/сжижения. Контур полезной нагрузки является контуром открытого типа и принимает, избирательно, жидкое вещество, находящееся снаружи контура, на уровне трубопроводов рекуперации. Установка содержит первый аккумулирующий трубопровод, передний конец которого соединен с трубопроводами рекуперации. Также задний конец, соединенный с приемником, который способен обеспечить снабжение контура полезной нагрузки рабочим веществом. Установка содержит один второй и один третий аккумулирующие трубопроводы, каждый из которых имеет передний конец, соединенный с трубопроводами рекуперации, и задний конец, соединенный с контуром полезной нагрузки. Задние концы второго и третьего аккумулирующих трубопроводов соединены с различными заданными точками контура полезной нагрузки, которые соответствуют различным уровням температуры рабочего вещества в контуре полезной нагрузки. Группа изобретений позволяет существенно повысить энергоэффективность установки. 2 н. и 12 з.п. ф-лы, 1 ил.

Изобретение относится к способу повторного сжижения отпарного газа, образовавшегося в первичном резервуаре жидкого водорода. Способ включает: примешивание отпарного газа к жидкому водороду, хранящемуся во вторичном резервуаре жидкого водорода таким образом, что часть отпарного газа сжижается за счет криогенной тепловой энергии жидкого водорода; подачуоставшейся несжиженной части отпарного газа и парообразного водорода, образовавшегося в указанном вторичном резервуаре жидкого водорода, в блок получения жидкого водорода аппарата для получения жидкого водорода из газообразного водорода; при этом указанный аппарат, наряду с указанным блоком получения жидкого водорода, включает секцию цикла охлаждения, в которой циркулирующий водород выполняет функцию хладагента; сжижение оставшейся несжиженной части отпарного газа и парообразного водорода с помощью аппарата получения жидкого водорода. Изобретение позволяет производить повторное сжижение отпарного газа с целью его дальнейшего использования в жидком виде без причинения помех при эксплуатации установки сжижения водорода. 2 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к способу удаления тяжелых углеводородов из исходного потока природного газа. Способ включает стадии: охлаждение исходного потока природного газа; введение охлажденного исходного потока природного газа в систему разделения газ-жидкость и разделение охлажденного исходного потока природного газа на паровой поток природного газа, обедненного тяжелыми углеводородами, и на поток жидкости, обогащенной тяжелыми углеводородами; нагревание парового потока природного газа, обедненного тяжелыми углеводородами; пропускание по меньшей мере части парового потока природного газа, обедненного тяжелыми углеводородами, через один или несколько слоев адсорбционной системы для адсорбирования из него тяжелых углеводородов с получением таким образом потока природного газа, обедненного тяжелыми углеводородами; и охлаждение по меньшей мере части потока природного газа, обедненного тяжелыми углеводородами, с получением охлажденного потока природного газа, обедненного тяжелыми углеводородами. При этом паровой поток природного газа, обедненный тяжелыми углеводородами, нагревают, и по меньшей мере часть потока природного газа, обедненного тяжелыми углеводородами, охлаждают в экономайзере-теплообменнике путем косвенного теплообмена между исходным паровым потоком природного газа, обедненного тяжелыми углеводородами, и по меньшей мере части потока природного газа, обедненного тяжелыми углеводородами. Также изобретение относится к устройству. Предлагаемое изобретение позволяет лучше извлекать тяжелые углеводороды из потоков природного газа. 2 н. и 9 з.п. ф-лы, 4 ил., 2 табл., 1 пр.

Изобретение относится к способу и устройству для удаления азота из криогенной углеводородной композиции. По меньшей мере первая порция криогенной углеводородной композиции подается в колонну отпаривания азота в виде первого потока сырья для колонны отпаривания азота. Обедненная азотом жидкость отводится из колонны отпаривания азота. Получение потока жидкого углеводородного продукта и технологического пара включает по меньшей мере стадию сброса давления обедненной азотом жидкости до давления мгновенного испарения. Технологический пар сжимают и селективно делят на отпарную порцию и неотпарную порцию. Поток отпарного пара, содержащий по меньшей мере отпарную порцию, поступает в колонну отпаривания азота. Паровая фракция отводится в виде отходящего газа, содержащего отводимую фракцию пара головного погона из колонны отпаривания азота и по меньшей мере перепускаемую порцию из неотпарной порции сжатого пара, которая обходит десорбционную секцию, расположенную в колонне отпаривания азота. Техническим результатом является предотвращение нарушения равновесия в колонне отпаривания азота и уменьшение потери пара. 2 н. и 15 з.п. ф-лы, 2 ил., 3 табл.

Изобретение относится к способу и устройству для удаления азота из криогенной углеводородной композиции. По меньшей мере первую часть криогенной углеводородной композиции подают в колонну десорбции азота. Колонна десорбции азота работает при давлении десорбции. В колонну десорбции азота подают десорбирующий пар, содержащий по меньшей мере десорбирующую часть сжатого технологического пара, который был получен из обедненной азотом жидкости, в которой было сброшено давление после отведения ее из колонны десорбции азота. Обратное орошение образуется с участием частично сконденсированного пара головного погона колонны десорбции азота с помощью передачи тепла от пара головного погона к потоку вспомогательного хладагента в количестве производительности по холоду. Отходящий газ, состоящий из несконденсированной паровой фракции из пара головного погона, отводится. Производительность по холоду корректируется для регулирования теплотворной способности отводимой паровой фракции. Техническим результатом является обеспечение возможности регулирования теплотворной способности отводимой паровой фракции. 2 н. и 18 з.п. ф-лы, 2 ил., 3 табл.

Изобретение относится к криогенной технике. Установка для сжижения газов содержит компрессор негорючего газа 17 для сжатия негорючего газового хладагента с концевым охладителем 19 для охлаждения части потока сжатого неохлажденного негорючего газового хладагента делителя 18, догреватель части потока сжатого негорючего газового хладагента 33, компрессор продукционного газа 1, концевой охладитель 2 сжатого продукционного газа, дожимающий компрессор продукционного газа 3, концевой охладитель 4 дожимающего компрессора продукционного газа 3, насос жидкого криопродукта 11, детандерный сборник-отделитель 10 негорючего сжиженного газового хладагента с погружным теплообменником-охладителем сжиженного криопродукта. Компрессор продукционного газа 1 механически связан с газовым детандером 22. Дожимающий компрессор продукционного газа 3 механически связан с влажно-паровым детандером 20. Насос жидкого криопродукта 11 механически связан с жидкостно-паровым детандером 8. Техническим результатом является повышение пожаровзрывобезопасности и экономичности компрессорно-детандерной криогенной установки для сжижения газов. 2 ил.

Изобретение относится к способу и установке для сжижения природного газа в криогенном теплообменнике (ЕС1) посредством протекания этого газа в непрямом контакте с потоком (S1) жидкого хладагента, входящего в этот теплообменник (ЕС1) при температуре Т0 и под давлением Р1. Затем хладагент расширяется на холодном конце (ВВ) теплообменника (ЕС1) с целью возвращения в газообразное состояние под давлением Р'1, более низким, чем давление Р1, и при температуре Т1, более низкой, чем температура Т0, перед тем, как покинуть горячий конец (АА) этого теплообменника (ЕС1) в газообразном состоянии при температуре Т0. Затем хладагент повторно сжижается и подается во входное отверстие (АА1) теплообменника при помощи сжатия в первом компрессоре (С1) с последующей частичной конденсацией в первом конденсаторе (Н0) и разделением фаз. Первая жидкая фаза (d1a) подается, по меньшей мере, частично в первое входное отверстие (АА1). Первая газообразная часть (d1b) сжимается при помощи второго компрессора (С1А) и затем охлаждается в пароохладителе (DS) путем контакта с частью (d1c) первой жидкой фазы (d1a) на выходе из первого сепаратора перед конденсацией во втором конденсаторе (Н1). Техническим результатом является повышение стабильности и надежности. 2 н. и 13 з.п. ф-лы, 5 ил.
Наверх