Конденсационный способ получения газовых гидратов

Изобретение относится к получению газовых гидратов для хранения и транспортировки газа в энергетике и газовой промышленности. Газовые гидраты, например гидрат метана, получают низкотемпературной конденсацией молекулярных пучков разреженного пара и газа. Молекулярные пучки поступают в вакуумную камеру в зону распыления по раздельным паропроводам через сопла Лаваля, размещенные на выходе из паропроводов, и имеют на выходе из сопел температуру ниже 100 К. Технический результат - повышение скорости и экономичности получения газовых гидратов. 1 ил.

 

Изобретение относится к получению газовых гидратов с целью применения гидратных технологий хранения и транспорта газа в энергетике и газовой промышленности. Хранение и транспортировка природного газа в виде гидратов рассматривается в настоящее время в качестве альтернативы технологиям хранения и транспорта сжиженного и сжатого газа. По имеющимся оценкам для освоения небольших и средних по запасам газовых месторождений гидратная технология хранения и транспорта природного газа экономически более выгодна и безопасна. В таких месторождениях находится около 80% мировых запасов природного газа. В связи с этим актуальными являются разработки экономичных способов получения газовых гидратов и интенсификации процесса гидратизации.

ОБЛАСТЬ ТЕХНИКИ

Известные в настоящее время способы получения газовых гидратов связаны с использованием высоких давлений в диапазоне от 30 до 250 бар в лабораторном и технологическом оборудовании при температурах ниже равновесной температуры образования гидрата. Например, давление, соответствующее условиям образования гидрата метана при температурах, близких 0°C, составляет десятки бар. Формирование гидратов при этом требует длительного и интенсивного перемешивания водно-газовой смеси. Такие условия используются в большинстве известных и запатентованных способов получения газовых гидратов. Для интенсификации процесса гидратообразования предлагаются различные способы, среди которых высокодисперсное распыление водно-газовой смеси в атмосфере газа, воздействие ударными волнами на водную среду, насыщенную газом, вибрационное и ультразвуковое воздействие. В ряде западных стран разрабатываются и введены в эксплуатацию опытно-промышленные установки по получению гидратов природного газа. Проводятся активные исследования по возможности использования газогидратной технологии в связи с развитием водородной энергетики. Обсуждаются проекты перевода парниковых газов (главным образом двуокиси углерода) в газогидратное состояние и захоронение их на дне мирового океана.

Предлагаемый способ получения газовых гидратов обеспечивает непрерывность процесса и содержит ряд очевидных технологических преимуществ (прежде всего по производительности и энергетическим затратам) перед известными способами.

В настоящее время известен ряд способов получения газовых гидратов.

Известен способ получения газовых гидратов в газогидратных методах опреснения и очистки морской и минерализованной воды (патент RU 2405740 C2, 24.02.2009, МПК C02F 1/00, B01F 3/04), согласно которому образование гидрата происходит в реакторе в условиях сжатия и охлаждения газожидкостной смеси ниже равновесной температуры образования гидрата при воздействии на смесь ударными волнами с повышением давления и с возникновением дробления капель сжиженного газа и газогидратных оболочек на поверхности жидких капель. Однако практическая реализация способа связана с высокими энергетическими затратами и конструктивной сложностью технологического оборудования.

Известен способ получения гидрата метана либо иного газа (патент GB 2347938 А, 20.09.2000, МПК С07С 7/152), при котором взаимодействие газа с водой происходит в реакторе при термобарических условиях, соответствующих образованию гидрата. Поступление воды в реактор, заполненный газом, происходит через сопла в распыленном виде. Для интенсификации гидратообразования используется ультразвуковой излучатель, который должен разрушать гидратные оболочки на поверхности крупных капель воды. Однако невозможность получения достаточно больших амплитуд давления из-за большой сжимаемости газожидкостной среды и сильного затухания излучения с увеличением расстояния от излучателя не позволяет обеспечить необходимое увеличение межфазной поверхности и количество центров зародышеобразования газогидрата и, как следствие, высокую эффективность процесса.

Известен способ (патент RU 2293907 С2, 24.08.2004, МПК F17C 11/00) перевода природного газа и других гидратообразующих газов в гидратное состояние с целью его хранения. При хранении природного газа в емкостях в качестве водной гидратообразующей среды используется водный раствор поверхностно-активных веществ. Раствор выдерживают при давлении на 20-30% выше равновесного значения, соответствующего образованию гидрата при заданной температуре. Использование способа, как предполагается, приведет к увеличению массы хранимого газа на единицу объема емкости-хранилища и упрощению способа хранения. Однако низкая скорость образования гидратов при таких условиях не обеспечивает необходимую эффективность использования способа на практике.

Наиболее близким по техническому решению к заявляемому изобретению следует считать способ получения газовых гидратов (патент RU №2457010, 2010, B01D 9/00), в котором молекулярные пучки воды и газа осаждаются в вакууме на охлажденную подложку. Кристаллизация полученных неравновесных конденсатов приводит к образованию газового гидрата. Указанный способ решает задачу получения газовых гидратов в термобарических условиях, позволяющих обходиться без применения техники высоких давлений и сжатия водно-газовой среды. Однако достичь более высоких скоростей образования газовых гидратов не удается из-за ограничений, связанных с отводом тепла от подложки, выделяющегося при конденсации водно-газовой смеси.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Предлагаемое изобретение лишено вышеуказанного недостатка, связанного с необходимостью отвода теплоты конденсации, и позволяет решить задачу не только значительного повышения скорости образования газового гидрата, но и существенного понижения расхода хладагента, необходимого для охлаждения подложки.

Задача решается тем, что молекулярные пучки разреженного пара и газа-гидратообразователя, например метана, подаются в вакуумную камеру через сопла Лаваля, которые позволяют разогнать молекулярные пучки до сверхзвуковых скоростей. Адиабатическое расширение сверхзвуковых молекулярных потоков приводит к падению температуры на выходе из сопел ниже 100 К.

При изучении способов получения газовых гидратов не найдено вариантов синтеза гидратов из аморфного твердого состояния водно-газовой смеси с предварительным ее охлаждением за счет адиабатического расширения сверхзвуковых молекулярных потоков.

Изобретение решает задачу повышения скорости и экономичности получения газовых гидратов без применения техники высокого давления, требующего значительных энергетических затрат для его генерации и сложных технических решений при разработке и изготовлении технологического оборудования.

Поставленная задача решается тем, что в предложенном способе для организации динамики молекулярных пучков используются сопла Лаваля. Адиабатическое расширение сверхзвуковых молекулярных потоков приводит к уменьшению температуры на выходе из сопел ниже 100 К и обеспечивает повышение производительности процесса гидратообразования и экономии хладагента в 4 раза.

ПРИМЕРЫ КОНКРЕТНОГО ВЫПОЛНЕНИЯ

Заявляемый способ получения газовых гидратов реализован для метана, этана, пропана и диоксида углерода в лабораторных условиях Федерального государственного бюджетного учреждения науки Института теплофизики УрО РАН (г. Екатеринбург) при использовании оборудования и приборов, выпускаемых отечественными предприятиями или закупаемых у зарубежных производителей.

КРАТКОЕ ОПИСАНИЕ РИСУНКА

Рис. 1. Схема способа получения газового гидрата в вакуумном криостате. 1 - вакуумная камера, 2 - медная подложка, 3 - окно, 4 - маска, 5 - экран, 6 - жидкий азот, 7 - емкостный датчик, 8 - водно-газовый конденсат, 9 - паропроводы, 10 - сопла Лаваля.

Описание способа получения газового гидрата на примере гидрата метана сводится к следующему. Конденсат аморфного льда, насыщенного газом, образуется в вакуумной камере (1) криостата (Рис. 1) конденсацией молекулярных пучков разреженного пара и газа на охлаждаемую жидким азотом поверхность медной подложки (2). Резервуары для воды и газа находятся при комнатной температуре за пределами вакуумной камеры. Молекулярные пучки компонентов поступают в зону распыления по раздельным паропроводам (9). Осаждение при фиксированных расходах воды и метана позволяет получать конденсаты постоянного состава. Для организации динамики молекулярных пучков используются сопла Лаваля (10), которые размещаются на выходе из паропроводов. Адиабатическое расширение сверхзвуковых молекулярных потоков приводит к падению температуры на выходе из сопел ниже 100 К. Значение температуры в молекулярном пучке водяного пара на выходе из сопла определяется уравнением идеального газа

pV=RT,

где p - давление, V - удельный объем, Т - температура, R - универсальная газовая постоянная, и уравнением Гюгонио

p 1 V 1 γ = p 2 V 2 γ ,

где p1 и V1 - давление и удельный объем пара на входе в сопло, р2 и V2 - давление и удельный объем на выходе из сопла, γ - показатель адиабаты, равный отношению изобарной и изохорной теплоемкостей пара: γ=cp/cV. При комнатной температуре для воды γ=1,33 (для метана γ=1,32). Отсюда для температуры пара на выходе из сопла имеем:

T 2 = T 1 ( p 1 p 2 ) 1 γ γ .

При T1=298 К, p1=24 мм рт.ст. в резервуаре и p2=0,1 мм рт.ст. в молекулярном пучке для температуры на выходе из сопла получим: Т2=77 К.

Формирование аморфного состояния обеспечивается высокой скоростью охлаждения, которая достигает в таких условиях 1015 К/с. В камере криостата поддерживается вакуум не хуже 10-5 мм рт.ст. Температура на поверхности подложки контролируется медь-константановой термопарой с точностью 0,5 К. Для наблюдения за конденсатом используется емкостный датчик (7), который размещается на подложке и представляет собой пленочный конденсатор, изготовленный методом фотолитографии. Обкладками конденсатора служат тонкие медные полоски (шириной 0.1 мм, высотой 1-3 мкм), нанесенные на диэлектрическую пластинку с поверхностью 20×20 мм, толщиной 0.5 мм. По изменению диэлектрических свойств при изменении температуры можно следить за превращениями в конденсате - переходом из твердого аморфного состояния в жидкое вязкотекучее и последующей кристаллизацией.

Кристаллизация аморфных конденсатов в условиях сильной метастабильности приводит к образованию газового гидрата. Лавинообразное зарождение центров кристаллизации замораживает молекулы газа и не приводит к их вытеснению фронтом кристаллизации. Концентрация метана в закристаллизованном конденсате достигает 15 массовых процентов. Это отвечает полному заполнению полостей образующегося клатратного каркаса молекулами метана. Единичный объем полученного газового гидрата содержит 160-170 объемов газообразного метана.

Предложенный способ пригоден для получения гидрата любого газа с температурой конденсации выше температуры подложки. Промышленный вариант установки для производства газового гидрата может быть реализован при увеличении объемов вакуумной камеры, количества поступающей водно-газовой смеси и увеличения охлаждаемой поверхности, на которой происходит осаждение конденсата и последующий синтез гидрата. Далее после его извлечения из установки и гранулирования можно получать продукт, пригодный для хранения и транспортировки.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Патент RU 2405740 C2, 24.02.2009, МПК C02F 1/00, B01F 3/04.

2. Патент GB 2347938 A, 20.09.2000, МПК С07С 7/152.

3. Патент RU 2293907 C2, 24.08.2004, МПК F17C 11/00.

4. Патент RU №2457010, 2010, B01D 9/00.

Способ получения газовых гидратов, например гидрата метана, для их хранения и транспортировки, полученных низкотемпературной конденсацией молекулярных пучков разреженного пара и газа, отличающийся тем, что молекулярные пучки поступают в вакуумную камеру в зону распыления по раздельным паропроводам через сопла Лаваля, размещенные на выходе из паропроводов, и имеют на выходе из сопел температуру ниже 100 К.



 

Похожие патенты:

Изобретение относится к способу и устройству для очистки загрязненного внесением диоксидов серы растворителя на основе амина. В загрязненный растворитель вводят соединение калия и окислитель, в результате чего сульфит окисляется в сульфат, при этом окислитель и соединение калия смешивают между собой перед введением в раствор соли аминокислоты.

Изобретение относится к способу обработки потока жидких углеводородов, содержащего воду, в котором поток жидких углеводородов вводится в первый сепаратор, отделяющий по меньшей мере свободную воду из указанного потока жидких углеводородов.

Изобретение относится к способу запуска процесса очистительного выделения кристаллов акриловой кислоты из суспензии S ее кристаллов в маточнике с применением гидравлической промывочной колонны, имеющей контур циркуляции расплава кристаллов, включая пространство плавки кристаллов, а также рабочее и распределительное пространства, которые отделены друг от друга дном со сквозными проходами, соединяющими оба пространства, при реализации которого для первоначального формирования слоя кристаллов контур циркуляции расплава кристаллов и по меньшей мере частично рабочее пространство сначала заполняют содержащей акриловую кислоту стартовой жидкостью, температура кристаллообразования акриловой кислоты в которой ниже или равна повышенной на 15°C температуре суспензии S, а затем продолжают заполнение промывочной колонны суспензией S и, необязательно, регуляторным маточником, пока разность между давлением в контуре циркуляции расплава кристаллов и давлением в распределительном пространстве внезапно не упадет, причем вплоть до этого момента среднее арифметическое значение протекающего в совокупности через фильтры фильтровальных труб промывочной колонны потока регуляторного маточника относительно площади всех фильтров составляет не более 80 м3/(м2·ч).

Изобретение относится к химической промышленности. Способ очистки и выделения химического соединения из суспензии его кристаллов в маточном растворе включает транспортировку слоя кристаллов (5) сверху вниз в промывочной колонне.

Изобретение относится к технологиям создания новых материалов и предназначено для использования в области технологии кристаллических и стеклокристаллических материалов.

Изобретение относится к способу формирования микрочастиц. Заявленный способ включает обеспечение первого раствора, включающего анион, и обеспечение второго раствора, включающего катион, смешивание указанных первого и второго растворов в присутствии первого соединения, имеющего молекулярную массу по меньшей мере 20 кДа, для формирования пористых матриц.

Изобретение относится к вариантам способа разделения. Один из вариантов включает выделение пара-ксилола и молекулярного кислорода из суспензии, содержащей пара-ксилол и другие изомеры ксилола, при котором на стадии разделения устанавливают давление, которое на 0.5-30 psi выше атмосферного давления.
Изобретение относится к установке для кристаллизации адипиновой кислоты, содержащей резервуар для кристаллизации, снабженный средствами для перемешивания, средствами для охлаждения и/или концентрирования раствора адипиновой кислоты, где по меньшей мере часть стенок резервуара для кристаллизации и/или средств для охлаждения и/или концентрирования, находящихся в контакте с раствором адипиновой кислоты, выполнена из материала, выбранного из аустенитных нержавеющих сталей типа AISI 310L в соответствии с номенклатурой AISI (USA) или XlCrNi25-21 (1.4335) в соответствии с европейской номенклатурой.

Изобретение относится к способу омыления сложных эфиров и к способу утилизации натриевых солей в производстве капролактама, а также к установкам для их осуществления.

Изобретение относится к способу получения газовых гидратов, например гидратов метана, пропана и двуокиси углерода, с целью хранения и транспорта газа в газогидратном состоянии.

Группа изобретений относится к пищевой, химической, фармацевтической промышленности и может быть использовано, в частности, для разделения газопаровых смесей в сублимационных сушильных установках.

Изобретение относится к десублимационной технике и может быть использовано в химической и фармацевтической промышленности для получения смеси мелко- и ультрадисперсных материалов в малых объемах продукта.

Изобретение относится к десублимационной технике и может быть использовано в химической и фармацевтической промышленности для получения смеси мелко и ультрадисперсных материалов в малых объемах продукта.

Изобретение относится к технике очистки газов от паров растворителей с переводом этих паров в конденсат, пригодный для дальнейшего применения по прямому назначению, и может быть использовано в машиностроении, нефтехимической, химической и других отраслях промышленности.

Изобретение относится к устройствам для выделения из газовой фазы кристаллических веществ и может быть использовано в химической, нефтехимической и других отраслях промышленности.

Изобретение относится к устройствам для осушки газа. .

Изобретение относится к оборудованию для переработки сублимирующихся материалов, в частности для проведения процесса десублимации гексафторида урана, обогащенного изотопом уран-235.

Изобретение относится к десублимационной технике и может быть использовано в химической и фармацевтической промышленности для получения композиционных материалов, в том числе мелко- и ультрадисперсных.

Изобретение относится к оборудованию для переработки сублимирующихся материалов и предназначено для проведения процесса сублимации-десублимации гексафторида урана, обогащенного ураном-235.

Изобретение относится к способу получения полимолочной кислоты. Способ получения полимолочной кислоты включает стадии: (i) осуществления полимеризации с раскрытием цикла, с использованием катализатора, и либо соединения деактиватора катализатора, либо добавки, блокирующей концевые группы, для получения неочищенной полимолочной кислоты с молекулярной массой более 10000 г/моль, (ii) очистки неочищенной полимолочной кислоты путем удаления и отделения низкокипящих соединений, включающих лактид и примеси, из неочищенной полимолочной кислоты посредством удаления летучих низкокипящих соединений в виде газофазного потока, (iii) очистки лактида из стадии удаления летучих компонентов и удаления примесей из газофазного потока испаренных низкокипящих соединений с помощью кристаллизации десублимацией из газовой фазы, в котором лактид очищают, и удаленные примеси включают остаток катализатора и соединение, содержащее по меньшей мере одну гидроксильную группу, при этом очищенный таким образом лактид затем полимеризуют, подавая его обратно в полимеризацию с раскрытием цикла. Заявлено также устройство для осуществления способа. Технический результат - упрощение технологии. 2 н. и 23 з.п. ф-лы, 10 ил., 2 табл., 2 пр.
Наверх