Устройство для определения динамических характеристик термодатчика

Изобретение относится к контрольно-измерительной технике и может быть использовано при испытании и калибровке средств измерения температуры (термодатчиков), преимущественно датчиков температур газовых и воздушных потоков. Устройство содержит последовательно соединенные блок (1) формирования ступенчатого воздействия температуры на термодатчик с температурным и сигнальным выходами, термодатчик (2), измерительный преобразователь (3), вычитающий блок (4), блок (5) преобразования сигнала с термодатчика в затухающий импульсный сигнал и анализатор (6) спектра. Второй вход вычитающего блока (4) подключен к регулируемому источнику (7) сигнала постоянного уровня. Сигнальный выход блока (1) формирования ступенчатого воздействия температуры на термодатчик подключен ко второму входу блока (5) преобразования сигнала с термодатчика в затухающий импульсный сигнал. Технический результат - повышение точности определения динамических характеристик термодатчика за счет получения амплитудного спектра сформированного в устройстве сигнала, связанного с искомыми характеристиками. 9 ил.

 

Изобретение относится к контрольно-измерительной технике, в частности к способам и устройствам для испытания или калибровки средств измерения температуры (термодатчиков), преимущественно датчиков температур газовых и воздушных потоков.

Известно устройство (авторское свидетельство СССР 1012049, МПК G01K 15/00, опубл. 15.04.1983, Бюл. №14) - [1] для измерения коэффициентов передаточной функции термопреобразователя, содержащее блок памяти, где запоминается напряжение, пропорциональное сигналу с термопреобразователя до его перенесения в среду с меньшей температурой, резистивный делитель, на выходе которого устанавливается напряжение с 50% и 90% уровнем от зафиксированного в блоке памяти напряжения, двух блоков сравнения, состоящих их нуль-органов, логических элементов, генераторов и счетчиков импульсов, измеряющих интервалы времени t90 и t50 от начала переходного процесса до достижения выходного сигнала термопреобразователя соответственно его 50% и 90% от начального уровня и три дополнительных блоки памяти с блоками цифрового отсчета, с записанными по предварительно рассчитанной таблице коэффициентами (постоянными времени) передаточной функции второго порядка в зависимости от значений t90, t50 и t90/t50.

Однако известное устройство не позволяет определять параметры динамических характеристик термопреобразователя, если его переходный процесс требуется описать суммой более двух экспоненциальных составляющих для повышения точности определения динамических характеристик.

Известно также устройство (авторское свидетельство СССР 1024750, МПК G01K 15/00, опубл. 23.06.1982, Бюл. №23) - [2] для определения динамических характеристик измерительных преобразователей неэлектрического параметра, преимущественно температуры, содержащее блок формирования воздействующего параметра, температурные выходы которого связаны с входами формирователя сигнала воздействующего параметра и исследуемого измерительного преобразователя, выходы последних соединены с блоком записи, двухканальный усилитель, расположенный между блоком записи и вычислительным блоком, два компаратора, входы первого из которых соединены с одним из выходов вычислительного блока и одним из выходов блока памяти, а входы второго компаратора соединены со вторыми выходами вычислительного блока и блока памяти и с выходами двух блоков выделения сигналов, входы которых соединены с выходами первого компаратора, и блок индикации, соединенный с выходом второго компаратора.

Формирователь сигнала воздействующего параметра в известном устройстве предназначен для создания сигнала в виде импульса и выполняет функцию сигнального выхода блока формирования воздействующего параметра, с которого сигнализируется о начале воздействия скачка температуры на измерительный преобразователь.

Принцип работы известного устройства заключается в формировании по программе из переходной характеристики исследуемого измерительного преобразователя вычислительным блоком сигналов, отражающих его амплитудно-частотную и фазово-частотную характеристики, затем сравнении этих характеристик с набором нормированных амплитудно-частотных и фазово-частотных характеристик, последовательно поступающих из блока памяти, и выделении с помощью блоков выделения сигналов тех нормированных амплитудно-частотных и фазово-частотных характеристик, которые имеют наименьшее отклонение от амплитудно-частотной и фазово-частотной характеристики исследуемого измерительного преобразователя. Если допустимые отклонения амплитудно-частотной и фазово-частотной характеристики исследуемого измерительного преобразователя, которые хранятся в блоке памяти, не превышают нормированных значений, то эти характеристики в виде сигналов поступают в блок регистрации через второй компаратор,

Однако известное устройство также не позволяет определять параметры динамических характеристик термопреобразователя, если его переходный процесс требуется описать суммой более двух экспоненциальных составляющих для повышения точности определения динамических характеристик.

Технический результат, на достижение которого направлено заявляемое изобретение, заключается в повышении точности определения динамических характеристик термодатчика за счет определения параметров трех или более экспоненциальных составляющих, обеспечивающих повышение точности описания переходного процесса.

Такой технический результат достигается тем, что в устройстве для определения динамических характеристик термодатчиков, содержащем последовательно соединенные блок формирования ступенчатого воздействия температуры на теродатчик, термодатчик и измерительный преобразователь, новым является то, что устройство дополнительно содержит последовательно соединенные вычитающий блок, блок преобразования сигнала с термодатчика в затухающий импульсный сигнал и анализатор спектра, при этом выход измерительного преобразователя подключен к первому входу вычитающего блока, второй вход которого подключен к регулируемому источнику сигнала постоянного уровня, сигнальный выход блока формирования ступенчатого воздействия температуры на термодатчик подключен ко второму входу блока преобразования сигнала с термодатчика в затухающий импульсный сигнал, а выходом устройства является выход анализатора спектра с сигналом в виде амплитудного спектра | S ( j ω ) | , определяющим искомые динамические характеристики термодатчика согласно формуле

,

где | S ( j ω ) | - амплитудный спектр сформированного сигнала;

n - требуемое число экспоненциальных составляющих в переходном процессе (порядок переходного процесса термодатчика);

τ - время переходного процесса, начиная с момента размещения термодатчика в среде с меньшей температурой, c;

Uн - значение сигнала с термодатчика в момент размещения термодатчика в среде с меньшей температурой;

Uк - конечное значение сигнала с термодатчика;

Ci - параметр (весовой коэффициент) в i-ой экспоненциальной составляющей переходного процесса;

Ti - параметр (постоянная времени) в i-ой экспоненциальной составляющей переходного процесса, c;

ω - угловая скорость (частота), c-1.

Сущность изобретения поясняется на фиг. 1-3.

Фиг. 1 - блок-схема устройства, где:

1 - блок формирования ступенчатого воздействия температуры на термодатчик с температурным и сигнальным выходами;

2 - термодатчик;

3 - измерительный преобразователь;

4 - вычитающий блок с двумя входами и одним выходом;

5 - блок преобразования сигнала с темодатчика в затухающий импульсный сигнал;

6 - анализатор спектра;

7 - регулируемый источник сигнала постоянного уровня.

Фиг. 2 - диаграммы работы устройства, где:

фиг. 2, а - сигнал с температурного выхода устройства;

фиг. 2, б - сигнал с выхода термодатчика 2;

фиг. 2, в - сигнал с выхода измерительного преобразователя 3;

фиг. 2, г - сигнал с выхода вычитающего блока 4;

фиг. 2, д - сигнал с выхода блока 5 преобразования сигнала с термодатчика в затухающий импульсный сигнал;

фиг. 2, е - сигнал с выхода анализатора 6 спектра.

Фиг. 3 - пример схемы на базе реле, реализующей формирование сигнала с термодатчика в затухающий импульсный сигнал, где:

фиг. 3, а - положение контактов реле при τ<0;

фиг. 3, б - положение контактов реле при τ≥0.

Устройство содержит последовательно соединенные блок 1 формирования ступенчатого воздействия температуры на термодатчик с температурным и сигнальным выходами, термодатчик 2, измерительный преобразователь 3, вычитающий блок 4 с двумя входами и одним выходом; блок 5 преобразования сигнала с термодатчика в затухающий импульсный сигнал с двумя входами и одним выходом и анализатор 6 спектра, при этом второй вход вычитающего блока 4 подключен к регулируемому источнику 7 сигнала постоянного уровня, а сигнальный выход блока 1 подключен ко второму входу блока 5 преобразования сигнала с термодатчика в затухающий импульсный сигнал.

Устройство работает следующим образом.

До момента формирования ступенчатого воздействия температуры на термодатчик 2 вход анализатора 6 спектра отключен от выхода блока 5 преобразования сигнала и при этом на вход анализатора спектра поступает сигнал s(τ) нулевого уровня, т.е. s(τ)=0 при τ<0 (фиг. 2, д). В момент времени τ=0 формирования ступенчатого воздействия температуры t(τ) на термодатчик 2 от начального уровня tн до меньшего уровня tк (фиг. 2, а) по сигналу с сигнального выхода блока 1 блок 5 подключает выход вычитающего блока 4 к входу анализатора 6 спектра. Анализатор 6 спектра анализирует сигнал s(τ), представляющий собой затухающий импульсный сигнал (фиг. 2, д) вида

Результатом анализа является амплитудный спектр | S ( j ω ) | сигнала s(τ), характеризующий совокупность амплитуд гармонических составляющих, образующих сигнал s(τ), в зависимости от частоты ω

Формирование сигнала s(τ) производится следующим образом.

В результате ступенчатого воздействия температуры t(τ) на термодатчик 2 его выходной сигнал y(τ), представляющий собой переходную характеристику термодатчика, меняется во времени от уровня yн до уровня yк (фиг. 2, б) по закону

.

Измерительный преобразователь 3 преобразует выходной сигнал y(τ) термодатчика 2 в пропорциональный сигналу y(τ) унифицированный электрический сигнал U(τ), меняющейся от уровня Uн до уровня Uк (фиг. 2, в), вида,

и через свой выход подает это сигнал на первый вход вычитающего блока 4. На второй вход блока 4 поступает сигнал с предварительно установленным уровнем Uк от регулируемого источника 7 сигналов. На выходе вычитающего блока 4, при этом создается сигнал Us(τ) (фиг. 2, г), равный

Далее с помощью блока 5 формируется сигнал s(τ) из сигнала Us(τ), удовлетворяющий выражению (1).

Устройство может быть создано из известных и существующих в технике блоков.

Если испытуемым термодатчиком 2 являются датчик температур газовых или воздушных потоков, то в качестве блока 1 формирования ступенчатого воздействия температуры может быть использована аэродинамическая труба, описанная в книге Петунина А.Н. Измерение параметров газового потока: приборы для измерения давления, температуры и скорости. - М.: Машиностроение, 1974 - [3, с. 211, рис. 3.32] или установка УВ-010, представленная в ОСТ 1 00418-81 «Метод и средства определения динамических характеристик датчиков температур газовых потоков» - [4, приложение 1]. Данные установки реализуют ступенчатое воздействие температуры на термодатчик от начального уровня tн до конечного уровня tк, причем tн>tк. В указанных установках испытуемые термодатчики перемещаются в рабочие части аэродинамических труб посредством пневмоцилиндров, которые управляются с помощью электропневмоклапанов через кнопки (однополюсные выключатели). Указанные кнопки предназначены для подачи напряжения на электромагниты электропневмоклапанов. При применении кнопок в виде двухполюсных выключателей второй полюс может быть использован для одновременной подачи сигнала на блок 5, т.е. выполнить функцию сигнального выхода с блока 1.

Измерительный преобразователь 3 выбирается из числа унифицированных преобразователей в зависимости от типа испытуемого термодатчика и требуемого вида выходного сигнала U(τ). Примерами подобных преобразователей является универсальный нормирующий преобразователь ОВЕН НПТ1 и нормирующий преобразователь сигналов термопар НПСИ-ТП с токовым аналоговым выходом по каталогам www.souz-pribor.ru - [5].

Вычитающий блок 4 может быть выполнен на базе известных схем или регулирующих устройств автоматики, подробно освещенных в книге Ялышев А.У., Разоренов О.И. Многофункциональные аналоговые регулирующие устройства автоматики. - М.: Машиностроение, 1981 - [6, с. 158]. На фиг. 3 вычитающий блок 4 реализован по схеме дифференциального (встречного) включения двух источников напряжения. При этом напряжение на выходе блока 4 определяется выражением

Us(τ)=U(τ)-Uк.

Блок 5 преобразования сигнала с термодатчика в затухающий импульсный сигнал может быть реализовано на базе электромагнитного реле (фиг. 3). До момента формирования ступенчатого воздействия температуры на термодатчик контакты К1 и К2 электромагнитного реле К замкнуты, а контакты К1 и К3 - разомкнуты (фиг. 3, а). При этом вход анализатора 6 спектра накоротко замкнут, что обеспечивает нулевой входной сигнал s(τ) на его входе. В момент времени τ=0, когда формируется ступенчатое воздействие температуры на термодатчик, срабатывает реле К по сигналу с сигнального выхода блока 1. При этом контакты К1 и К3 замыкаются, а контакты К1 и К2 - размыкаются и на вход анализатора 6 спектра начинает поступать сигнал Us(τ) с выхода вычитающего блока 4 (фиг. 3, б). При использовании в качестве блока 1 аэродинамических труб, описанных в [3, с. 211, рис. 3.32; 4, приложение 1], напряжение на обмотки реле К блока 5 (фиг. 3) в момент времени τ=0 может быть подано через дополнительный полюс выключателя, который подает напряжение на электромагниты электропневмоклапанов.

Анализатор 6 спектра относится к лабораторному электрорадиоизмерительному оборудованию и выбираются по ожидаемому диапазону частот. Представителями подобных анализаторов являются приборы серии АКС, АКИП, GSP, NS, LSA и др. в каталогах ООО «Союз-прибор» [5] и ЗАО «ПриСТ» www.prist.ru - [7].

Регулируемый источник 7 постоянного уровня также может быть выполнен на базе лабораторного электрорадиоизмерительного оборудования. Представителями подобных регулируемых источников питания являются приборы серии ATH, PS, РР, GP и др. в каталогах ООО «Союз-прибор» [5] и ЗАО «ПриСТ» [7].

Обоснование достижения технического результата.

Как следует из книги Ярышева Н.А. Теоретические основы измерения нестационарных температур. - Л.: Энергия, 1967 - [8, с. 136], переходный процесс охлаждения термодатчиков в среде с постоянной температурой в общем случае может быть описан суммой из бесконечного числа экспоненциальных составляющих вида

где U(τ) - преобразованный выходной сигнал с термодатчика;

.

На практике число n экспоненциальных составляющих в (3) ограничивают, в зависимости от требований к точности описания переходного процесса. Самой низкой по точности описания соответствует n=1, т.е. описание одной экспонентой. Более точно переходный процесс может быть описан суммой двух экспоненциальных составляющих. Каждое последующее увеличение числа экспоненциальных составляющих в (3) позволяет увеличить точность описания переходного термодатчика, обеспечивающих повышение точности определения его динамических характеристик.

В книге Грановский В.А. Динамические измерения: Основы метрологического обеспечения. - Л.: Энергоиздат. Ленингр. отд-ние, 1984 - [9, рис. 3.12] представлена диаграмма отклика пленочного термоприемника и его моделей 1-го, 2-го и 3-его порядков на ступенчатый испытательный сигнал и дана оценка точности аппроксимации. Из [9, табл. 3.7] видно, что каждое последующее увеличение порядка n модели увеличивает точность описания переходного процесса термоприемника. Так, например, максимальный модуль разности откликов моделей и термоприемника для n=1 составляет 19 усл. ед., для n=2-3,4 усл. ед., а для n=3-3 усл. ед.

Как известно, если сигнал задан в виде непериодической функции времени, удовлетворяющей условиям Дирихле и абсолютно интегрируемой в бесконечных пределах по времени, то эта функция имеет свой спектр S(jω), который иногда называют комплексной спектральной плотностью, спектральной плотностью или спектральной характеристикой сигнала.

Сигнал вида (3) не удовлетворяет названным условиям, так как при τ<0 преобразованный выходной сигнал термодатчика U(τ)=Uн, а при τ→+∞ преобразованный выходной сигнал U(τ)→Uк. Для возможности получения амплитудного спектра | S ( j ω ) | , связанного с параметрами Ci и Ti затухающего переходного процесса термодатчика, сигнал вида (3) предлагается в заявляемом устройстве преобразовать. Для этого, до размещения термодатчика в среде с меньшей температурой устанавливают конечное значение сигнала Uк с термодатчика, соответствующее окончанию переходного процесса, и на это значение настраивают уровень сигнала с источника 7 сигнала постоянного уровня. Затем измеряют значение сигнала Uн с термодатчика в момент его размещения в среде с меньшей температурой и формируют сигнал s(τ)=U(τ)-Uк с помощью блоков 4, 5 и 7, являющийся разностью между выходным U(τ) и конечным Uк значениями сигнала с термодатчика, начиная с момента размещения термодатчика в среде с меньшей температурой до окончания переходного процесса. С помощью анализатора 6 спектра определяют амплитудный спектр | S ( j ω ) | сформированного сигнала, который имеет аналитический вид (2).

По определенному из сформированного сигнала амплитудному спектру | S ( j ω ) | вычисляют параметры Ci и Ti затухающего переходного процесса термодатчика требуемого порядка n согласно формуле (2), используя различные известные математические методы.

Конечное значение Uк сигнала с термодатчика может быть заранее установлено либо расчетным путем, либо путем непосредственного измерения сигнала с термодатчика, предварительного размещенного в среде с меньшей температурой.

Для вычисления параметров затухающего переходного процесса термодатчика согласно формуле (2) целесообразно использовать методы регрессионного анализа, которые обеспечивают приближение аналитических выражений соответствующих амплитудных спектров к их экспериментальным спектрам с наименьшей среднеквадратичной погрешностью.

Параметры затухающего переходного процесса термодатчика могут быть вычислены также путем прямого решения системы уравнений, составленной из соответствующих аналитических выражений амплитудного спектра. Например, для n=3 необходимо решить систему относительно шести искомых параметров C1, C2, C3, T1, T2 и T3, состоящую из шести уравнений вида

,

где ωk - частоты, выбранные в диапазоне частот определенного амплитудного спектра (k=1, 2, …, 6);

| S ( j ω k ) | - значения определенного амплитудного спектра на частотах ωk.

Доказательство связи сигнала вида (1) с выражением (2) следующее.

Как известно, амплитудный спектр какого-либо непериодического сигнала f(τ), удовлетворяющему условиям Дирихле, имеет вид

Для сформированного в предлагаемом способе сигнала s(τ) выражение (4) принимает вид

.

Предложенное устройство позволит при несложном техническом решении получить искомые динамические характеристики термодатчиков с высокой точностью, за счет определения параметров трех или более экспоненциальных составляющих. Включенный в состав устройства анализатор спектра к тому же упростит последующую процедуру обработки амплитудного спектра | S ( j ω ) | , поскольку современные анализаторы спектра. имеют разнообразные встроенные возможности обработки спектрограмм, а также в них предусмотрено управление от персональных компьютеров и по сети Ethernet.

Устройство для определения динамических характеристик термодатчиков, содержащее последовательно соединенные блок формирования ступенчатого воздействия температуры на термодатчик и измерительный преобразователь, отличающееся тем, что оно дополнительно содержит последовательно соединенные вычитающий блок, блок преобразования сигнала с термодатчика в затухающий импульсный сигнал и анализатор спектра, при этом выход измерительного преобразователя подключен к первому входу вычитающего блока, второй вход которого подключен к регулируемому источнику сигнала постоянного уровня, второй выход блока формирования ступенчатого воздействия температуры на термодатчик подключен ко второму входу блока преобразования сигнала с термодатчика в затухающий импульсный сигнал, а выходом устройства является выход анализатора спектра с сигналом в виде амплитудного спектра |S(jω)|, определяющим искомые динамические характеристики термодатчика согласно формуле
,
где |S(jω)| - амплитудный спектр сформированного сигнала;
n - требуемое число экспоненциальных составляющих в переходном процессе (порядок переходного процесса термодатчика);
τ - время переходного процесса, начиная с момента размещения термодатчика в среде с меньшей температурой, c;
Uн - значение сигнала с термодатчика в момент размещения термодатчика в среде с меньшей температурой;
Uк - конечное значение сигнала с термодатчика;
Ci - параметр (весовой коэффициент) в i-ой экспоненциальной составляющей переходного процесса;
Ti - параметр (постоянная времени) в i-ой экспоненциальной составляющей переходного процесса, с;
ω - угловая скорость (частота), с-1.



 

Похожие патенты:

Изобретение предназначено для калибровки скважинных приборов, применяемых при контроле разработок газовых месторождений и при эксплуатации подземных хранилищ газа.

Изобретение относится к системам управления и контроля производственных процессов и может быть использовано для измерения температуры технологической текучей среды.

Изобретение относится к области приборостроения и может быть использовано для калибровки термометра по месту. Устройство имеет датчик (S) температуры для определения температуры (Т).

Изобретение относится к области температурных измерений и может быть использовано для калибровки многоканальных пирометров. .

Изобретение относится к измерительной технике и может быть использовано для оперативного периодического контроля стабильности эталонных и прецизионных термометров в измерительных, поверочных и калибровочных лабораториях различных отраслей науки и промышленности.

Изобретение относится к области тепловых измерений и предназначено для контроля характеристик термопар. .

Изобретение относится к способу градуировки сигналов измерений, полученных с использованием оптических волокон, и состоит в том, что на одном конце оптического волокна находится эталонное вещество с известной реперной температурой, что эталонное вещество нагревают, по меньшей мере, до его реперной температуры, что сигнал, поступивший в волокно при достижении реперной температуры, подают в измерительное устройство в качестве калибровочного сигнала и сравнивают в нем с теоретическим значением для реперной температуры, а разность используют для градуировки.

Изобретение относится к измерительной технике и может быть использовано в различных отраслях промышленности, в которых эксплуатируются твердотельные калибраторы температуры.

Изобретение относится к термометрии и может быть использовано при измерении температуры на оборудовании, применяемом в длительных технологических циклах. .

Изобретение относится к контрольно-измерительной технике и может быть использовано для испытания или калибровки средств измерения температуры (термодатчиков), преимущественно датчиков температур газовых и воздушных потоков. Способ заключается в измерении начального и конечного значений сигналов с термодатчика, размещении термодатчика в среде с меньшей температурой, формировании сигнала, равного разности между сигналом с термодатчика и его конечным значением, и определении амплитудного спектра сформированного сигнала. Параметры затухающего переходного процесса, описываемого требуемым числом экспоненциальных составляющих, вычисляют. Технический результат - повышение точности определения параметров затухающего переходного процесса термодатчика. 6 ил.

Изобретение относится к области измерительной техники и может быть использовано для дистанционного определения температур поверхностей и элементов объектов техники. Предложен способ калибровки тепловизионного прибора на микроболометрической матрице, заключающийся в том, что тепловизионный прибор включают, выдерживают во включенном состоянии для термостатирования, регистрируют величины сигналов с каждого из чувствительных элементов микроболометрической матрицы. Указанные сигналы оцифровывают, инвертируют и записывают в память контроллера тепловизионного прибора. После чего их суммируют с оцифрованными сигналами с соответствующих чувствительных элементов микроболометрической матрицы. Перед объективом тепловизионного прибора вплотную к нему периодически устанавливают непрозрачную и поглощающую излучение в рабочем диапазоне длин волн микроболометрической матрицы шторку. После чего регистрируют величины сигналов с каждого из чувствительных элементов микроболометрической матрицы. Реализующее способ устройство содержит встроенный в тепловизионный прибор контроллер, соединенный с микроболометрической матрицей, первый, второй и третий таймеры, установленную снаружи тепловизионного прибора перед его объективом шторку, снабженную приводом ее перемещения с концевым выключателем, и логический элемент «И». Технический результат - повышение точности калибровки. 2 н.п. ф-лы, 1 ил.

Изобретение относится к термометрии и может быть использовано для измерения температуры объекта. Термоэлектрический преобразователь содержит защитный чехол (1), термометрическую вставку, направляющую трубку (2) для временного размещения в ней контрольного средства измерения температуры и клеммную колодку. Термометрическая вставка состоит из двух идентичных по конструкции рабочих термопар (3), расположенных симметрично оси направляющей трубки (2) с совмещением их торцов с торцом защитного чехла (1). Холодные концы однородных термоэлектродов рабочих термопар (3) электрически соединены. В направляющей трубке (2) размещен выемной теплофизический макет (4) эталонной термопары. Предложенный способ включает периодическое размещение контрольного средства измерения температуры в направляющей трубке (2), сличение его показаний с показаниями термометрирующей вставки и извлечение контрольного средства измерения температуры из направляющей трубки (2). Измерение температуры в направляющей трубке (2) выполняют эталонной термопарой. Из направляющей трубки (2) извлекают теплофизический макет (4) эталонной термопары и устанавливают в нее эталонную термопару до совмещения ее торца с торцом защитного чехла (1). После завершения процедуры сличения эталонную термопару извлекают из направляющей трубки (2) и размещают в ней теплофизический макет (4) эталонной термопары. Технический результат - повышение точности термометрирования. 2 н. и 2 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике и может быть использовано для дистанционного измерения температуры среды или объектов в различных сферах промышленности, в том числе при криогенных температурах. Согласно заявленному изобретению используют полупроводниковый лазерный диод. Помещают его в среду или устанавливают на объект для измерения их температуры. Наблюдают за излучением светоизлучающего прибора. Определяют значения яркости Е(Т0) излучения при исходной температуре T0 и яркости Е(Tx) излучения при температуре Тх среды, и по калибровочной (градуировочной) зависимости δE(T)=Е(Т)/Е(Т0) оценивают температуру Тх среды. Технический результат - упрощение способа дистанционного определения температуры среды. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области измерительной техники и может быть использовано для контроля процесса производства. Датчик 10, контролирующий температуру процесса производства, включает температурный сенсор, предусмотренный для подачи выходного сигнала сенсора 18, связанного с температурой процесса производства. Схема измерения 26, 28 соединена с температурным сенсором 18 и предназначена для определения температуры процесса производства на основании выходного сигнала от сенсора. Выходная схема 24 подает сигнал, связанный с измеряемой температурой. Запоминающее устройство 24 предназначено для хранения данных о температуре, связанных с событиями избыточной температуры, которые испытывает температурный сенсор 18. Диагностическая схема 22 определяет состояние температурного сенсора 18 или других компонентов исходя из накопленных данных о температуре 30. Технический результат - повышение точности получаемых данных. 2 н. и 18 з.п. ф-лы, 4 ил.

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры при помощи оптического волокна. Заявлено устройство (100) температурной калибровки оптоволоконного температурного датчика, предназначенное для оборудования оптического волокна (10) оптоволоконного температурного датчика. Устройство (100) содержит корпус (101) устройства, содержащий проход (109) для оптического волокна (10), и средство передачи тепловой энергии. Устройство (100) дополнительно содержит по меньшей мере один участок (160a), называемый первой неподвижной точкой, выполненный из первого материала, имеющего по меньшей мере первую заранее определенную температуру изменения состояния. Первая неподвижная точка (160a) термически связана с оптическим волокном (10), когда устройством (100) оборудуется оптическое волокно (10). В корпусе (101) устройства расположено средство теплопередачи таким образом, чтобы во время приведения его в действие средство теплопередачи обменивалось тепловой энергией с первой неподвижной точкой (160a), с тем чтобы вызвать изменение ее состояния при первой заранее определенной температуре. Технический результат - повышение точности температурных измерений. 3 н. и 10 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к технике приборостроения и может быть использовано для визуального контроля, поверки, достоверности и исправности электроцепей термоэлектрического преобразователя. Согласно предложенному решению в излучаемый объект, преимущественно термометр световой профильный и входящие в его состав указатель температуры выходящих газов двигателя воздушного судна и колодку переходную компенсирующую, расположенные в газогенераторном контуре двигателя воздушного судна, устанавливают упомянутый термочувствительный элемент, выполненный в виде упомянутых термопар, и определяют при нагревании термопар ключевые точки значений температур. Затем отсоединяют термопары от колодки переходной и на их место посредством клемм соединительного кабеля подсоединяют второй чувствительный элемент, в качестве которого используют прибор имитатор температуры выходных газов двигателя, выполненный в виде пластикового корпуса с размещенными на нем переключателем температуры, эквивалентной ЭДС упомянутой термопары, выключателем питания и светодиодным индикатором наличия питания и включающий в себя батарейный отсек с четырьмя элементами питания суммарным напряжением 6 вольт, печатную плату с радиоэлементами схемы источников напряжения, имитирующих ЭДС термопары. Осуществляют упомянутую операцию, заключающуюся в периодическом сличении показаний температуры и напряжения, а в случае расхождения показаний от упомянутого указателя температуры выходящих газов с показаниями, снятыми с бортовой автоматизированной системы контроля, локализируют причину расхождения показаний и устраняют неисправности электроцепей термометра светового профильного и входящих в его состав вышеупомянутых указателя температуры выходящих газов двигателя воздушного судна и колодки переходной компенсирующей без запуска двигателя воздушного судна. Технический результат - улучшение характеристик точности и качества поверки и контроля электроцепей термоэлектрического преобразователя. 2 н. и 1 з.п. ф-лы, 6 ил.

Изобретение относится к области термометрии и может быть использовано для контроля технологических параметров в производственных процессах. Передатчик (12) температуры процесса выполнен по меньшей мере с одним датчиком (32) температуры, имеющим множество проводов. Передатчик (12) температуры включает в себя схему (26) измерения, выполненную с возможностью соединения по меньшей мере с одним датчиком (32) температуры для обеспечения индикации электрического параметра по меньшей мере одного датчика (32) температуры. Контроллер (30) соединен со схемой (26) измерения для получения индикации и подачи выходного сигнала температуры процесса. Источник (28) тока подает тестовый ток в множество проводов одновременно. Схема (70) диагностики измеряет отклик напряжения на каждом проводе для того, чтобы обеспечить диагностическую индикацию датчика температуры. Технический результат – повышение точности и достоверности диагностики датчиков температуры. 3 н. и 17 з.п. ф-лы, 8 ил.

Группа изобретений относится к контролю элементов систем управления. Устройство контроля работоспособности датчика содержит блок приема, блок памяти, блок анализа и блок контроля. Блок приема выполнен с возможностью приема сигналов от датчика и сохранения в блоке памяти. Блок памяти выполнен с возможностью хранения сигналов от датчика. Блок анализа выполнен с возможностью выявления шумового компонента в сохраненных сигналах от датчика и вычисления значения СКО (среднеквадратического отклонения) шумового компонента и записи этого значения в блок памяти. Блок контроля выполнен с возможностью определения изменений в принимаемых сигналах от датчика как разности между двумя последовательными сигналами от датчика и выдачи сигнала неисправности, если изменения сигналов от датчика не выходят за 6 СКО в течение предварительно определенного времени Тконт. Причем вышеуказанные блоки функционально связаны друг с другом непосредственно или опосредовано посредством линий связи. Также заявлен способ контроля работоспособности датчика. Технический результат заключается в повышении надежности и точности определения неисправности датчика. 2 н. и 12 з.п. ф-лы.

Группа изобретений относится к контролю элементов систем управления. Устройство контроля работоспособности беспроводного датчика содержит блок опроса, блок памяти, блок анализа и блок контроля. Блок опроса выполнен с возможностью запрашивания показаний от беспроводного датчика и сохранения их в блоке памяти. Блок памяти выполнен с возможностью хранения сигналов от датчика. Блок анализа выполнен с возможностью выявления шумового компонента в сохраненных сигналах от датчика и вычисления значения СКО (среднеквадратического отклонения) шумового компонента и записи этого значения в блок памяти. Блок контроля выполнен с возможностью определения изменений в принимаемых сигналах от датчика, как разности между двумя последовательными сигналами от датчика, и выдачи сигнала неисправности, если изменения сигналов от датчика не выходят за 6 СКО в течение предварительно определенного времени Тконт. Причем вышеуказанные блоки функционально связаны друг с другом непосредственно или опосредовано посредством линий связи. Также заявлен способ контроля работоспособности беспроводного датчика. Технический результат заключается в повышении надежности и точности определения неисправности датчика. 2 н. и 9 з.п. ф-лы.
Наверх