Устройство диагностики технического состояния системы "обратимая синхронная машина-маховик" агрегата бесперебойного питания

Устройство диагностики технического состояния системы «обратимая синхронная электромашина-маховик» агрегата бесперебойного питания относится к области электротехники и может быть использовано для диагностики технического состояния устройств гарантированного питания. Устройство содержит: датчики определения величины сопротивления изоляции электромашины, измерения электромагнитного поля, температуры обмоток электромашины, температуры подшипниковых узлов и учета выработки часов, преобразователя акустической эмиссии системы «обратимая синхронная электромашина-маховик» агрегата бесперебойного питания, микроконтроллер, источник опорного питания, регистр результата, причем выходы датчиков и преобразователя подключены к входам микроконтроллера; выход источника опорного питания - к аналоговому входу микроконтроллера, а выход микроконтроллера - к регистру результата и системе управления. Технический результат заключается в возможности диагностирования механической прочности с помощью преобразователя акустической эмиссии. 2 ил.

 

Изобретение относится к области электротехники и может быть использовано для определения технического состояния системы «обратимая синхронная электромашина-маховик» агрегата бесперебойного питания, применяемого в различных системах гарантированного электроснабжения (устройствах гарантированного питания (УГП), системах гарантированного электропитания (СГЭП), агрегатах бесперебойного питания (АБП) и т.п.

Известен магниточувствительный преобразователь [1]. Изобретение позволяет производить контроль и диагностику технического состояния различного электрооборудования, в том числе и электромашин, по состоянию электромагнитного поля. Достоинством данного изобретения является высокая чувствительность и возможность диагностики в условиях непосредственной эксплуатации электромашин. Недостатком изобретения является малое число регистрируемых прямым способом параметров электромашин, что в свою очередь влияет на достоверность и точность диагностики.

Известен способ эксплуатационного контроля нагрева и защиты электродвигателей [2]. Данным способом измеряют температуру обмоток электродвигателя и получают управляющий сигнал для защиты электродвигателя. Способ предполагает наличие датчика температуры, который помещается в полый болт с резьбой, который ввинчивают в гнездо рым-болта корпуса электродвигателя; получают фактическое значение сигнала температуры нагрева обмотки статора, по которому проводят диагностику электродвигателя.

Недостатками данного способа являются конструктивная сложность его реализации, диагностика технического состояния электродвигателя по малому числу параметров и недостаточная точность результатов диагностики по причине косвенного измерения температуры нагрева обмотки статора.

Известно устройство для обнаружения межвитковых замыканий в обмотках статоров электромашин [3]. Однако оно не позволяет произвести диагностику технического состояния других параметров электромашин.

Известно устройство для диагностики технического состояния асинхронного двигателя, содержащее датчики температуры, электромагнитного поля, вибрации электромашины, датчик выработки часов, микрокомпьютер для обработки данных, поступающих от датчиков, с буфером для хранения результатов, источник опорного питания [4]. Аналогичное устройство раскрыто в [5]. Устройства, раскрытые в приведенных источниках информации [6, 7], не содержат датчика определения величины сопротивления изоляции, датчика температуры подшипниковых узлов, а датчик вибрации не обеспечивает точность и достоверность диагностики электромашины.

Известно использование датчиков температуры подшипниковых узлов наряду с датчиками вибрации подшипниковых узлов для диагностики устройств с подшипниковыми узлами роторных агрегатов и турбин [8].

Известны устройства измерения сопротивления изоляции при диагностике асинхронного двигателя [9, 10]. Известна также архитектура устройства контроля технического состояния сложных технических систем, например, дизельных электрических станций, в котором выходы всех датчиков подключены ко входам микроконтроллера, выход источника опорного питания - к аналоговому входу микроконтроллера, а выход микроконтроллера - к регистру результата [9].

Однако все рассмотренные устройства [1-9] не предусматривают оценку технического состояния по полной совокупности контролируемых параметров с достаточной точностью и достоверностью диагностики.

Наиболее близким по технической сущности является устройство [6], использующее датчики вибрации подшипниковых узлов, но в нем датчик вибрации не обеспечивает точность и достоверность диагностики электромашины. Кроме того в нем не применяется преобразователь акустической эмиссии.

Целью изобретения является повышение точности и достоверности диагностики технического состояния системы «обратимая синхронная электромашина-маховик» агрегата бесперебойного питания, с использованием преобразователя акустической эмиссии и полной совокупности контролируемых параметров системы «обратимая синхронная электромашина-маховик».

Технический результат достигается тем, что предлагаемое устройство диагностики технического состояния системы «обратимая синхронная электромашина-маховик» содержит датчик определения величины сопротивления изоляции электромашины, датчик температуры обмоток электромашины, датчик электромагнитного поля электромашины, датчики температуры подшипниковых узлов, датчик выработки часов, преобразователь акустической эмиссии определения прочности системы, реализованный на основе метода акустико-эмиссионного контроля, причем выходы всех датчиков подключены к входам микроконтроллера; выход источника опорного питания - к аналоговому входу микроконтроллера, а выход микроконтроллера - к регистру результата и системе управления.

На фиг. 1 представлено устройство диагностики технического состояния системы «обратимая синхронная электромашина-маховик», где обозначено:

1 - агрегат бесперебойного питания;

2 - обратимая синхронная электромашина с маховиком;

3 - датчик сопротивления изоляции обратной синхронной электромашины;

4 - датчик температуры обмоток электромашины;

51, 52 - датчики температуры подшипниковых узлов системы «обратимая синхронная электромашина-маховик»;

6 - датчик электромагнитного поля обратимой синхронной электромашины;

7 - преобразователь акустической эмиссии системы «обратимая синхронная электромашина-маховик»;

8 - датчик выработки часов;

9 - микроконтроллер;

10 - источник опорного питания;

11 - регистр результата;

12 - система управления.

Наличие выше перечисленных датчиков и преобразователя в устройстве позволяет осуществлять достоверную диагностику технического состояния по наиболее полной совокупности контролируемых параметров системы «обратимая синхронная электромашина-маховик», а применение преобразователя акустической эмиссии повышает точность контроля механической прочности этой системы.

Устройство диагностики технического состояния обратимой синхронной машины с маховиком агрегата бесперебойного питания работает следующим образом. При включении устройства диагностики (сигнал поступает с системы управления 12) подается питание с источника опорного питания 10, сигналы с блоков 3-8 поступают на входы микроконтроллера 9, после обработки полученные сигналы поступают на регистр результата 11.

В памяти регистра результата содержатся нормируемые параметры контроля системы «обратимая синхронная электромашина-маховик», которые сравниваются с измеряемыми параметрами, по результатам сравнения делается вывод о техническом состоянии системы.

Заявляемое решение отличается от прототипа - введением преобразователя акустической эмиссии системы «обратимая синхронная электромашина-маховик», выход которого связан с входом микроконтроллера.

Следовательно, это отличие позволяет сделать вывод о соответствии заявляемого решения критерию «новизна».

Работа системы «обратимая синхронная электромашина-маховик» агрегата бесперебойного питания поясняется с помощью дополнительной фиг. 2, где обозначено:

13 - обратимая синхронная электромашина (генератор-электродвигатель);

14 - маховик;

15 - подшипники скольжения;

16 - муфта;

17 - дизель.

Обратимая синхронная машина находится на одном валу с маховиком, работает в режиме двигателя и постоянно раскручивает маховик при наличии электросети. При пропадании сети двигатель переходит в режим генератора, который вращается за счет энергии, запасенной маховиком. В это время запускается дизель, выходит на номинальный режим работы и через муфту подсоединяется к валу генератора, продолжая его вращать. Перерыв электроснабжения потребителей практически отсутствует.

Следует отметить, что в системе бесперебойного электроснабжения обратимая машина с маховиком работают постоянно, круглосуточно, а дизель подключается только при отключении сети.

Метод акустической эмиссии относится к акустическим методам неразрушающего контроля и технической диагностике, в основе которых лежит физическое явление излучения волн напряжении при быстрой локальной перестройке структуры материала [10, 11]. Источником акустико-эмиссионной энергии служит переменное поле упругих напряжений от развивающихся дефектов вращающейся системы «обратимая синхронная электромашина-маховик» при нагружении его механическим или тепловым способом. Этот метод обеспечивает обнаружение собственно разрушения и фазовых переходов, дает возможность формировать классификацию дефектов и критерии оценки технического состояния объекта, основанные на реальном влиянии дефекта на прочность и работоспособность объекта. Первым звеном в системах акустико-эмиссионного контроля и диагностики является преобразователь акустической эмиссии [11].

В процессе диагностики технического состояния системы «обратимая синхронная электромашина-маховик» в момент измерения параметры нагрузки должны быть постоянными.

Как показали практические исследования, с ухудшением технического состояния обмоток статора и подшипниковых узлов системы «обратимая синхронная электромашина-маховик» ухудшаются его выходные параметры, количественно увеличивается состояние механического износа системы в результате постоянного длительного режима работы, понижается надежность ее работы. По показаниям датчиков сопротивления изоляции, электромагнитного поля, измерений преобразователя акустической эмиссии, температуры обмоток и подшипниковых узлов, с учетом наработки системы на отказ можно судить о значениях контролируемых параметров, состоянии подшипниковых узлов и механической прочности системы. Показания преобразователя акустической эмиссии позволяют судить о развивающихся скрытых дефектах системы «обратимая синхронная электромашина-маховик». Применение всех датчиков и преобразователя в комплексе позволит так же выявить особенности и взаимосвязи контролируемых параметров, влекущие за собой потенциальную неисправность системы «обратимая синхронная электромашина-маховик».

Источники информации

1. RU 273088, 2008.

2. RU 2409884, 2010.

3. RU 2303789, 2006.

4. US 6297742 В1, 02.10.2001.

5. US 5841255, 24.11.1998.

6. RU 2376564, 2009.

7. RU 2178229, 2002.

8. RU 2428707, 2010.

9. RU 2334208, 2008.

10. ГОСТ P 52727-2007. Акустико-эмиссионная диагностика.

11. Грешников В. А., Дробот Ю. Б. Акустическая эмиссия. - М.: Изд. Стандартов, 1976. - 272 с.

Устройство диагностики технического состояния системы «обратимая синхронная электромашина-маховик» агрегата бесперебойного питания, содержащее датчик определения величины сопротивления изоляции электромашины, датчик температуры обмоток электромашины, датчик электромагнитного поля электромашины, датчики температуры подшипниковых узлов электромашины, датчик выработки часов, микроконтроллер, источник опорного питания, регистр результатов, систему управления, причем выходы всех датчиков подключены к входам микроконтроллера; выход источника опорного питания - к аналоговому входу микроконтроллера, а выход микроконтроллера - к регистру результата и системе управления, отличающееся тем, что в него введен, преобразователь акустической эмиссии системы «обратимая синхронная электромашина-маховик», причем выход преобразователя акустической эмиссии подшипникового узла маховика подключен ко входу микроконтроллера.



 

Похожие патенты:

Изобретение относится к области электромеханики. Для измерения намагничивающего тока асинхронного двигателя с фазным ротором, работающего под нагрузкой, двигатель соединяют валом с точно таким же асинхронным двигателем, обмотку ротора первого двигателя соединяют с обмоткой ротора второго двигателя, а обмотку статора второго двигателя замыкают накоротко.

Изобретение относится к электротехнике и может быть использовано для определения параметров асинхронных электродвигателей. Способ заключается в том, что в течение пуска и работы асинхронного электродвигателя одновременно измеряют мгновенные величины токов и напряжений на двух фазах статора асинхронного электродвигателя при напряжении питания асинхронного электродвигателя ниже номинального значения, при котором ротор электродвигателя остается неподвижным.

Изобретение относится к измерительной технике и предназначено для измерения угловой скорости вращения магнитного поля. Устройство состоит из ферромагнитного ротора и магнитопроводящего статора, причем ротор выполнен в форме цилиндра с осью вращения, в средней части которого осесимметрично и бесконтактно размещена обмотка подмагничивания ротора, связанная с регулируемым источником постоянного тока, измеряемого амперметром; магнитопроводящий статор выполнен в форме двух цилиндров, оси которых совпадают с осью вращения ротора.

Изобретение относится к электротехнике и предназначено для использования при испытаниях электрических машин постоянного и переменного тока. Стенд содержит трансформатор, подключенный первичной обмоткой к питающей сети, а вторичной обмоткой - к входу управляемого выпрямителя, дроссель, один из выводов которого подключен к первой выходной шине управляемого выпрямителя, и задающий генератор.

Изобретение относится к области эксплуатации асинхронных электродвигателей и может быть использовано для определения величины скольжения электродвигателя. В способе определения скольжения ротора асинхронного электродвигателя, включающем оценку величины скольжения ротора, цифровую регистрацию мгновенной величины амплитуды потребляемого тока во времени на одной из фаз кабеля питания асинхронного электродвигателя, с помощью быстрого преобразования Фурье получают амплитудный спектр зарегистрированного сигнала, определяют максимум амплитудного спектра и соответствующую ему частоту, которая близка по значению к частоте сети, с помощью метода автокоррекции времени записи сигнала путем его последовательного уменьшения определяют точное значение частоты сети, по полученному значению частоты сети и числу пар полюсов электродвигателя вычисляют границы одного диапазона частот для двигателей с одной парой полюсов, либо двух диапазонов для двигателей с числом пар полюсов большим одного на амплитудном спектре, на каждом из полученных диапазонов определяют максимум амплитудных спектров и соответствующие им частоты, которые близки по значению к частотам гармоник от эксцентриситета ротора первого порядка, с помощью метода автокоррекции времени записи сигнала путем его последовательного уменьшения определяют точные значения частот гармоник от эксцентриситета ротора первого порядка, по которым получают для двигателей с одной парой полюсов одно значение скольжения, которое является для данных двигателей конечным результатом, а для двигателей с двумя и более парами полюсов - два значения скольжения ротора, вычисляют скольжение ротора такового асинхронного электродвигателя по среднему арифметическому данных значений.

Изобретение относится к области электротехники и может быть использовано для настройки вентильных электродвигателей. Техническим результатом является обеспечение угловой стабильности момента двигателя.

Изобретение относится к области испытаний источников питания, таких как генераторы переменного тока под нагрузкой. Технический результат: выполнение испытания под нагрузкой посредством простого регулирования.

Изобретение относится к способам определения технического состояния объекта, преимущественно электроприводного оборудования, и может быть использовано для контроля электроприводной арматуры, насосов, вентиляционного оборудования атомных электростанций, приводов СУЗ для ВВЭР-440.

Изобретение относится к области электротехники и может быть использовано для испытаний и настройки коммутации коллекторных электрических машин (КЭМ). Технический результат - повышение точности диагностики состояния коммутации КЭМ.

Изобретение относится к области электротехники и может быть использовано в электрических машинах. Технический результат - повышение точности оценки токов подшипников в отношении потенциального повреждения соответствующего подшипника.

Изобретение относится к электротехнике и может быть использовано для определения параметров асинхронных электродвигателей. Способ определения параметров электродвигателя заключается в том, что в течение пуска и работы асинхронного электродвигателя одновременно измеряют мгновенные величины токов и напряжений на двух фазах статора и частоту вращения вала асинхронного электродвигателя, измеренные мгновенные величины токов и напряжений преобразуют из естественной координатной системы в прямоугольную стационарную систему координат, последовательно выполняют четыре временные задержки преобразованных токов и напряжений и частоты вращения вала асинхронного электродвигателя, полученные значения запоминают и используют для определения активного сопротивления и эквивалентной индуктивности обмотки статора, приведенных к статору активного сопротивления и эквивалентной индуктивности обмотки ротора, и индуктивности, обусловленной магнитным потоком в воздушном зазоре электродвигателя в реальном времени следующим образом: R 1 = − K 3 K 4   ,     R ′ 2 = K 3 − K 5 K 4 ,       L 1 = K 3 − K 5 K 2   ,     L m = L 1 ⋅ 1 − 1 K 4 ⋅ L 1   ,     σ = − R 1 K 3 ⋅ L 1   ,     T 2 = 1 K 2 ⋅ σ ⋅ L 1   ,     L 2 = T 2 R ′ 2 где R1 - активное сопротивление обмотки статора, Ом; R ′ 2 - приведенное к статору активное сопротивление обмотки ротора, Ом; L1 - эквивалентная индуктивность обмотки статора, Гн; Lm - результирующая индуктивность, обусловленная магнитным потоком в воздушном зазоре асинхронного электродвигателя, Гн; σ - коэффициент рассеяния ротора, о.е.; Т2 - постоянная времени ротора, с; L2 - эквивалентная индуктивность обмотки ротора, Гн; К1, К2, К3, К4, К5 - коэффициенты, определенные методом наименьших квадратов. Технический результат заключается в одновременном определении всех электромагнитных параметров асинхронного электродвигателя в реальном времени. 1 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к способам и устройствам для измерения переменных величин и может использоваться в железнодорожных депо для контроля износа пластин коллектора. Технический результат, достигаемый изобретением, - повышение точности измерений, оперативности получения данных по износу пластин коллектора тягового электродвигателя локомотива. Указанный технический результат достигается тем, что измерительные датчики одновременно контролируют всю поверхность коллектора. Сущностью изобретения является то, что при визуальном осмотре поверхность коллектора условно делят, начиная от свободного конца, на четыре равные по длине пояса: I, II, III, IV, размещают над поверхностью коллектора N пронумерованных датчиков измерения расстояния, размещенных на одном кронштейне с возможностью горизонтального перемещения по нему, и расположенных над соответствующими поясами, приводят во вращение коллектор и в течение одного оборота с помощью датчиков непрерывно фиксируют расстояние до поверхности пластин коллектора, затем перемещают датчики по кронштейну и снова вращают коллектор, результаты измерений поступают в анализатор, в котором накапливаются данные по каждому поясу, полученные фактические расстояния по поясам II, III, IV сравниваются с расстояниями по I базовому поясу и по разности величин определяют износ пластин коллектора, результаты через блок управления поступают на дисплей компьютера. 1 ил.

Изобретение относится к области определения технического состояния объекта, преимущественно электроприводного оборудования, и может быть использовано для контроля электроприводной арматуры, насосов, вентиляционного оборудования ядерных энергетических установок. Способ заключается в том, что измеряют сигнал тока двигателя диагностируемого электромеханического оборудования, проводят демодуляцию полученного сигнала тока, рассчитывают спектр демодулированного сигнала, вычитают из спектра демодулированного сигнала тока спектр демодулированного сигнала тока исправного оборудования того же типа, что и диагностируемый объект. При этом разницу спектров преобразуют в кепстр, а полученный кепстр строят в частотной области. Оценивают амплитуды и квефренции информативных компонент кепстра, соответствующих дефектам объекта, после чего линеаризуют шаг расположения информативных составляющих путем нелинейного преобразования масштаба частот и определяют частоты дефектов по величине информативных кепстральных компонент, по которым оценивают состояние объекта. Технический результат заключается в повышении эффективности обнаружения неисправности на ранней стадии возникновения. 3 ил.

Изобретение относится к испытательному нагрузочному устройству. Испытательное нагрузочное устройство 1 содержит: резистивный блок 20, который содержит одну или более резисторных групп, имеющих множество резисторов, и установлен с возможностью подключения к источнику мощности, проходящему испытания под нагрузкой; охлаждающий вентилятор 10, который охлаждает резисторы резистивного блока 20; блок 80 управления. При этом резистивный блок 20 снабжен устройством 20а определения тока/напряжения, которое определяет ток, протекающий через резисторы, резисторные группы или резистивный блок 20, или напряжение, приложенное к резисторам, резисторным группам или резистивному блоку 20, и устройством 20b определения температуры, которое определяет температуру выпуска после резистивного блока 20. Охлаждающий вентилятор 10 снабжен устройством 10а определения состояния вращения охлаждающего вентилятора. Блок 80 управления выполняет управление выключением, при этом прекращается подача мощности от испытуемого источника мощности на резистивный блок 20 на основе информации от устройства 20а определения тока/напряжения, информации от устройства 20b определения температуры и информации от устройства 10а определения состояния вращения. Технический результат заключается в повышении точности обнаружения неисправностей. 3 н. и 3 з.п. ф-лы, 9 ил.

Изобретение относится к электротехнике и может быть использовано для определения эксцентриситета ротора электрических машин, в частности асинхронного электродвигателя. Технический результат - возможность определения наличия и величины эксцентриситета ротора асинхронного двигателя в режиме холостого хода. Способ определения эксцентриситета ротора асинхронного электродвигателя заключается в том, что двигатель подготавливают к пуску и запускают его. После запуска получают график зависимости частоты вращения ротора двигателя от времени, на котором затем выделяют амплитуды изменения частоты вращения ротора на участке между временем пуска и временем установившегося режима работы и находят разность амплитуд, относящихся к эталонному и испытываемому двигателям. По найденной разности амплитуд изменения частоты вращения ротора определяют относительный эксцентриситет ротора. 2 ил.

Изобретение относится к электротехнике, а именно к стендам для проведения приемо-сдаточных испытаний частотно-управляемых гребных электродвигателей системы электродвижения. Стенд содержит синхронный генератор, соединенный с гребным электродвигателем и подключенный к рекуперативному преобразователю частоты, состоящему из выпрямителя и инвертора, при этом рекуперативный преобразователь частоты подключен к щиту сети. Для обеспечения рекуперации энергии в сеть и получения винтовой нагрузочной характеристики гребного электродвигателя применена система регулирования по каналу управления момента на валу гребного электродвигателя и каналу управления напряжения рекуперативного преобразователя частоты. Технический результат состоит в повышении эффективности испытаний системы электродвижения с частотно-управляемым гребным электродвигателем за счет снижения потерь активной мощности и обеспечения винтовой нагрузочной характеристики на валу гребного электродвигателя, а также в уменьшении объема швартовых испытаний системы электродвижения на судне. 1 ил.

Изобретение относится к области испытаний и контроля изоляции коллекторов машин постоянного тока при серийном производстве. Сущность: подают импульсное испытательное напряжение микросекундного диапазона с частотой следования импульсов, равной промышленной частоте, на нерабочую необрабатываемую внутреннюю цилиндрическую часть коллектора на каждые две смежные коллекторные пластины. Измеряют разностное импульсное магнитное поле прямого и обратного тока короткого замыкания начиная от места подачи напряжения от генератора импульсных напряжений в двух противоположных направлениях поочередно как в сторону торца, так и в сторону петушков коллектора до рабочей внешней поверхности коллектора, закороченной чугунными плашками с опрессовочным кольцом, с помощью индукционного датчика (ИД), ориентированного зазором-щелью в его магнитопроводе вдоль испытываемых коллекторных пластин несколько асимметрично по наибольшим показаниям измерителя импульсных магнитных полей. Увеличивают импульсное испытательное напряжение до максимальных показаний индикатора. Обнаруживают замыкание между коллекторными пластинами по минимальным показаниям индикатора при расположении ИД над необработанными частями торца и петушков коллектора испытываемых коллекторных пластин. Изменяют пространственную ориентацию ИД воздушным зазором-щелью в его магнитопроводе поперек и симметрично найденным пластинам и по минимальным показаниям индикатора. Перемещают ИД от места подачи напряжения вдоль найденных пластин и точно обнаруживают место короткого замыкания между коллекторными пластинами по максимальным показаниям измерителя импульсных магнитных полей и по положению ИД. Технический результат: возможность объективного точного обнаружения коротких замыканий между коллекторными пластинами ласточкина хвоста коллекторов машин постоянного тока и локализации места короткого замыкания. 7 ил.

Изобретение относится к выявлению в онлайн-режиме ухудшения состояния изоляции электродвигателя. Сущность: с помощью преобразователя на обмотку (обмотки) двигателя накладывают каскадное напряжение. Фиксируют индуцированный им ток (i) и/или его временную утечку (di/dt) в качестве измерительного сигнала с помощью датчика (6, 7, 8). Затем передискретизируют его с более высокой по сравнению с характерной для собственного колебания частотой. После чего полученный передискретизацией сигнал анализируют относительно таких параметрических значений переходного процесса, как избыточный импульс (Δh), и/или собственная частота (1/ΔТ), и/или константа затухания, для выявления возможного ухудшения состояния изоляции. Технический результат: надежность выявления в онлайн-режиме ухудшения состояния изоляции при наименьших аппаратных затратах. 2 н. и 13 з.п. ф-лы, 9 ил.

Изобретение относится к нефтедобывающей промышленности, а именно к автоматизированным системам контроля работы установок электроцентробежных насосов (УЭЦН). Сущность: Система контроля включает автоматизированные рабочие места (АРМ), блок ручного ввода данных, базу данных оперативного контроля (БД ОР), базу данных нормативно-справочной информации (БД НСИ), блок визуализации и формирования отчетов, отличающаяся тем, что она дополнительно содержит блок администрирования, блок форматирования данных, базу данных (БД) телеметрии, блок сбора данных телеметрии, модуль ведения объектов учета и нормативно-справочной информации (НСИ), блок ведения объектов учета, блок ведения НСИ, модуль исследования вязкости, блок исследований вязкости по пласту, блок исследований вязкости по скважине, модуль расчетов напорно-расходных характеристик (НРХ), блок расчета на основе данных телеметрии, блок анализа режима работы погружного насосного оборудования (ПНО), блок прогнозирования. Технический результат: обеспечение возможности адаптации характеристик УЭЦН в зависимости от факторов пластово-скважинных характеристик. 1 ил.

Изобретение относится к устройству нагрузочного тестирования, содержащему массив резисторов. Технический результат: эффективное выполнение внутренних соединений. Сущность: устройство содержит резистивный блок, выполненный с несколькими группами резисторов, расположенными ступенями, блок переключения соединения, содержащий основную часть, блок переключения для управления группами резисторов и первую токопроводящую шину, соединенную с первым выводом блока переключения и одной из линий источника питания от источника питания, подлежащего нагрузочному тестированию. Вывод резистора группы резисторов соединен со вторым выводом блока переключения. Основная часть содержит первую поверхность и вторую поверхность, которая перпендикулярна к первой поверхности, блок переключения прикреплен к первой поверхности, первая токопроводящая шина прикреплена ко второй поверхности с помощью изолятора с определенным зазором между первой токопроводящей шиной и второй поверхностью. Блок переключения соединения разъемно прикреплен к резистивному блоку, так что блок переключения расположен между первой токопроводящей шиной и выводом резистора, соединенного с блоком переключения с помощью кабеля. 6 н. и 6 з.п. ф-лы, 27 ил.
Наверх