Способ получения воды питьевого качества

Изобретение относится к области водоснабжения коллективных пользователей и может быть использовано для получения питьевой воды из поверхностных или подземных источников. Способ получения воды питьевого качества включает выделение из нее механических примесей и загрязнений с помощью фильтра механической очистки и обратноосмотического блока, работающих с остановкой между рабочими циклами для гидравлической очистки мембранного элемента обратноосмотического блока и удаления концентрата. На время технологического перерыва напорную емкость обратноосмотического блока заполняют пермеатом. Вначале из обрабатываемой воды с помощью фильтра выделяют механические примеси с размером частиц более 5 мкм. После чего ее подают в напорную емкость обратноосмотического блока, при этом осуществляют периодическую гидравлическую промывку мембранного элемента в течение рабочего цикла без остановки оборудования с интервалом, определяемым формулой:

где

a - эмпирическая константа, равная 3,5 мг/ дм3 час;

C - концентрация растворенных ионов, приводящих к образованию коллоидных частиц, мг/дм3.

Изобретение позволяет упростить способ очистки и повысить его производительность до 250-60000 дм3/час в течение 8-20 час/сутки. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к области водоснабжения коллективных пользователей и может быть использовано для получения питьевой воды из поверхностных или подземных источников.

В настоящее время в силу неудовлетворительной экологической обстановки, сокращения ресурсов водных источников и нарушения целостности существующих водоводных магистралей и централизованных систем водоподготовки одной из основных проблем жизнеобеспечения стала проблема обеспечения населения водой питьевого качества.

Особенно остро эта проблема возникает в районах стихийных бедствий вследствие непредвиденных катастроф (землетрясения, штормы, наводнения, засухи и т.п.), разрушения водопровода и загрязнения источников воды (родников, колодцев, рек, прудов и т.п.) самыми различными типами загрязнений.

Для сельского населения и жителей поселков, удаленных от центральных станций водоподготовки питьевая вода или отсутствует, или становится очень дорогой и невостребованной, поскольку прокладка магистралей и строительство централизованных станций водоочистки является очень затратным и долговременным мероприятием, а вода питьевого качества, расход которой на питьевые нужды составляет 5-7% от общего объема водопотребления, оказывается невостребованной из-за высоких тарифов по цене.

По этой причине разработка новых доступных методов получения воды питьевого качества и производство автономных станций для их осуществления с целью обеспечения населения районов стихийных бедствий и удаленных сельских поселений субъектов Российской Федерации водой питьевого качества, а также обеспечение чистой водой социально-значимых объектов (школы, детские сады и больницы), является весьма актуальной задачей.

Известен способ обратноосмотического обессоливания воды, включающий введение в обрабатываемую воду добавок с последующей фильтрацией воды через обратноосмотическую мембрану, причем в качестве добавок используют инертные частицы углерода, например фуллерена или сажи [Описание изобретения к патенту РФ №2216521 от 04.01.2003, МПК7 C02F 1/44, опубл. 20.11.2003]. Способ предотвращает загрязнение пермеата добавляемыми в процессе обессоливания веществами и сокращает их расход.

К недостаткам способа следует отнести снижение производительности за счет забивания по истечении некоторого времени поверхности мембраны механическими частицами добавок.

Известен способ очистки природных вод, включающий две стадии механической обработки, опреснение обратным осмосом, после двух стадий механической обработки проводят дехлорирование сульфитом натрия, далее воду очищают микрофильтрацией и добавляют ингибитор, опреснение обратным осмосом проводят в две стадии, после первой стадии концентрат сбрасывают, а в пермеат добавляют ингибитор и едкий натр, повышая pH до 10,4, затем проводят вторую стадию опреснения обратным осмосом, причем концентрат после второй стадии обратного осмоса подмешивают в поток на вход первой стадии опреснения, а в пермеат добавляют кислоту и пропускают его через фильтры-кондиционеры с кальциево-магниевой загрузкой [Описание изобретения к патенту РФ №2225369 от 13.03.2003, МПК7 C02F 9/08, опубл. 10.03.2004]. Способ обеспечивает снижение капитальных затрат и затрат на обслуживание опреснительных станций, повышение качества очищенной воды-пермеата до уровня, соответствующего рекомендациям ВОЗ, в том числе по бору и солям жесткости.

К недостаткам этого способа следует отнести его многостадийность и сложность аппаратного оформления. Кроме этого производительность способа отличается нестабильностью и зависит от степени загрязнения обратноосмотических мембран.

Известен способ глубокого обессоливания пресных и солоноватых вод, включающий последовательные процессы по ступеням: осветление, обработку осветленной воды на ионообменных фильтрах и обессоливание в обратноосмотической ступени с отводом концентрата из каждой ступени очистки, при этом процесс обратноосмотического обессоливания ведут двухстадийно при более высоком давлении очищаемой воды на каждой последующей стадии обессоливания, причем давление очищаемой воды устанавливают на первой стадии не более 1,6 МПа и не более 4,0 МПа на последней стадии при отношении расходов пермеата к концентрату обратноосмотической ступени в пределах n=7-99, отвод концентрата из обратноосмотической ступени производят в каждой стадии на регенерацию ионообменных фильтров, а пермеат после обратноосмотической ступени очистки подвергают H-OH-ионированию [Описание изобретения к патенту РФ №2283288 от 23.11.2004, МПК7 C02F 9/08, B01D 61/12, C02F 1/42, C02F 1/44, опубл. 10.09.2006]. Достигаемые результаты - увеличение выхода пермеата, уменьшение расхода концентрата, повышение качества обессоленной воды, сокращение сбросов концентрата по ступеням обессоливания и уменьшение расходов воды на собственные нужды установки.

К недостаткам способа, как и в предыдущем случае, следует отнести многостадийность и сложность аппаратного оформления, а также периодичность работы, связанную с необходимостью восстановления рабочих функций оборудования.

Также известен способ получения осветленной воды для питания водооборотных циклов аммиачного производства, заключающийся в заборе исходной воды, ее последующем осветлении, флокуляции, фильтрации от механических и взвешенных частиц и подаче на установку получения деминерализованной воды нанофильтрацией и обратным осмосом, а по мере загрязнения мембранных элементов проводят их очистку путем подачи и выдержки по времени моющих растворов: 50% серной кислоты и 42% щелочи или 20% гипохлорита натрия [Описание изобретения к патенту РФ №2294794 от 25.11.2004, МПК B01D 61/14, C02F 9/08, C02F 1/52, опубл. 10.03.2007]. Использование изобретения обеспечивает получение качественной воды, пригодной для надежной и эффективной работы нанофильтрационных и обратноосмотических установок, используемых в схемах водоподготовок химических производств.

К недостаткам способа следует отнести большие капитальные затраты на подготовку воды к подаче в обратноосмотический блок.

Наиболее близким по совокупности существенных признаков заявляемому способу является способ очистки и обеззараживания воды, включающий последовательное выделение из нее в несколько стадий механических примесей и загрязнений с помощью двух напорных сорбционных фильтров и обратноосмотического блока, работающих с остановкой между рабочими циклами для гидравлической очистки мембранного элемента обратноосмотического блока и удаления концентрата, причем на время простоя напорный канал мембранного элемента (напорная емкость обратноосмотического блока) заполняют фильтратом (пермеатом) [Описание изобретения к патенту РФ №2360870 от 25.10.2007, МПК C02F 9/08, опубл. 10.07.2009]. Способ обеспечивает единичную производительность 250-500 дм3/час в течение 8-20 час/сутки для компактно расположенных коллективных пользователей, при обеспечении заданного по физико-химическим свойствам качества питьевой воды.

Несмотря на то, что этот способ получил широкое применение при обессоливании воды с различной исходной концентрацией растворенных веществ, как и все подобные методы разделения, он имеет существенные недостатки, к которым следует отнести его многостадийность, необходимость тщательной подготовки воды для обратноосмотической очистки, что влечет большие капитальные и эксплуатационные затраты, недостаточную производительность и, соответственно, сложность аппаратного оформления.

По этой причине разработка технологических схем, включающих обратноосмотическое обессоливание и управление режимами их эксплуатации с целью снижения капитальных и энергетических затрат, является первостепенной, актуальной и востребованной.

Задача, решаемая первым изобретением группы, и достигаемый технический результат заключаются в упрощении способа очистки и повышении его производительности до 250-60000 дм3/час в течение 8-20 час/сутки.

Для решения поставленной задачи и достижения заявленного технического результата в способе получения воды питьевого качества, включающем выделение из нее механических примесей и загрязнений с помощью фильтра механической очистки и обратноосмотического блока, работающих с остановкой между рабочими циклами для гидравлической очистки мембранного элемента обратноосмотического блока и удаления концентрата, причем на время технологического перерыва напорную емкость обратноосмотического блока заполняют пермеатом, при этом вначале из обрабатываемой воды с помощью фильтра выделяют механические примеси с размером частиц более 5 мкм, после чего ее подают в напорную емкость обратноосмотического блока, при этом также осуществляют периодическую гидравлическую промывку мембранного элемента в течение рабочего цикла без остановки оборудования с интервалом, определяемым формулой:

где

a - эмпирическая константа, равная 3,5 мг/ дм3 час;

C - концентрация растворенных ионов, приводящих к образованию коллоидных частиц, мг/ дм3.

Размерность константы a - миллиграмм на дециметр кубический в час - мг/ дм3 час, а физический смысл - удельная временная концентрация, которая не имеет иного прикладного значения, кроме заявленного в качестве некой эмпирической константы.

Кроме этого:

- в воду, очищенную от механических примесей с размером частиц более 5 мкм перед подачей в напорную емкость обратноосмотического блока вводят ингибиторы из расчета 1,5-4,5 г/м3 обрабатываемой воды;

- используют ингибиторы на основе полифосфатов или полиакрилатов;

- на время технологического перерыва, после проведения гидравлической промывки мембранного элемента обратноосмотического блока и удаления концентрата с поверхности мембраны, осуществляют растворение солей неорганических кислот путем заполнения напорной емкости обратноосмотического блока пермеатом с pH=5,0-6,0.

Изобретение поясняется чертежом, на котором изображена схема автономной станции, реализующей способ получения воды питьевого качества.

Способ получения воды питьевого качества реализован на автономной станции, которая включает установленные в технологической последовательности фильтр 1 механической (грубой) очистки, напорный насос 2, связанный с напорной емкостью 3 обратноосмотического блока 4, безнапорная емкость 5 которого соединена с накопительной емкостью 6 пермеата, при этом напорная емкость 3 обратноосмотического блока 4 имеет единый штуцер 7 для отвода концентрата и подвода пермеата из накопительной емкости 6 посредством дополнительного насоса 8, и систему управления (условно не показана), при этом фильтр 1 механической очистки выполнен с возможностью отделения механических примесей с размером частиц более 5 мкм, а к выходу 9 фильтра 1 механической очистки подключен расходный бак 10 ингибитора.

Следует отметить, что под термином «напорная емкость обратноосмотического блока» понимают внутренний объем трубопроводов, примыкающих к мембране обратноосмотического блока 4, и где сосредоточена подлежащая очистке вода. В свою очередь, «безнапорная емкость» - внутренний объем трубопроводов на выходе с мембраны обратноосмотического блока 4, где сосредоточена очищенная вода (фильтрат, пермеат).

Пример 1

Для выделения из воды механических примесей и загрязнений с помощью фильтра 1 механической очистки и обратноосмотического блока 4, работающих с остановкой между рабочими циклами для гидравлической очистки мембранного элемента 11 (показан условно) обратноосмотического блока 4 и удаления концентрата, причем на время технологического перерыва напорную емкость 3 обратноосмотического блока 4 заполняют пермеатом, при этом вначале из обрабатываемой воды с помощью фильтра 1 выделяют механические примеси с размером частиц более 5 мкм, после чего ее подают в напорную емкость 3 обратноосмотического блока 4, при этом осуществляют периодическую гидравлическую промывку мембранного элемента 11 в течение рабочего цикла без остановки оборудования с интервалом в часах, определяемым формулой:

, где

a - эмпирическая константа, равная 3,5 мг/ дм3 час;

C - концентрация растворенных ионов, приводящих к образованию коллоидных частиц (концентрация взвешенных частиц), мг/дм3.

Воду, очищенную от механических примесей с размером частиц более 5 мкм, перед подачей в напорную емкость 3 обратноосмотического блока 4 вводят ингибиторы на основе полифосфата «ИОМС-1» из расчета 1,5 г/м3 обрабатываемой воды, а на время технологического перерыва, после проведения гидравлической промывки мембранного элемента 11 (или мембраны) обратноосмотического блока 4 и удаления концентрата с поверхности мембраны, осуществляют растворение солей неорганических кислот путем заполнения напорной емкости 3 обратноосмотического блока 4 пермеатом с pH=5,0.

Пример 2

В воду, очищенную от механических примесей с размером частиц более 5 мкм, перед подачей в напорную емкость 3 обратноосмотического блока 4 вводят ингибиторы на основе полифосфата «Аминат Д» из расчета 4,5 г/м3 обрабатываемой воды, а на время технологического перерыва, после проведения гидравлической промывки мембранного элемента 11 (или мембраны) обратноосмотического блока 4 и удаления концентрата с поверхности мембраны, осуществляют растворение солей неорганических кислот путем заполнения напорной емкости 3 обратноосмотического блока 4 пермеатом с pH=6,0.

Пример 3

В воду, очищенную от механических примесей с размером частиц более 5 мкм, перед подачей в напорную емкость 3 обратноосмотического блока 4 вводят ингибиторы на основе полиакрилата VITEK из расчета 1,7 г/м3 обрабатываемой воды, а на время технологического перерыва, после проведения гидравлической промывки мембранного элемента 11 (или мембраны) обратноосмотического блока 4 и удаления концентрата с поверхности мембраны, осуществляют растворение солей неорганических кислот путем заполнения напорной емкости 3 обратноосмотического блока 4 пермеатом с pH=5,5.

Пример 4.

В воду, очищенную от механических примесей с размером частиц более 5 мкм, перед подачей в напорную емкость 3 обратноосмотического блока 4 вводят ингибиторы на основе полиакрилата ROPUR из расчета 4,3 г/м3 обрабатываемой воды, а на время технологического перерыва, после проведения гидравлической промывки мембранного элемента 11 (или мембраны) обратноосмотического блока 4 и удаления концентрата с поверхности мембраны, осуществляют растворение солей неорганических кислот путем заполнения напорной емкости 3 обратноосмотического блока 4 пермеатом с pH=5,9.

Преимущество изобретения обусловлено следующим. Традиционно установки с обратноосмотическими блоками включают сложные системы предварительной подготовки воды для ее подачи на мембрану. Фактически воду максимально очищают от механических примесей. При этом между рабочими циклами установок (как правило, это одна рабочая смена) производят восстановление фильтров и гидравлическую очистку мембранного элемента обратноосмотического блока с удалением концентрата. На время технологического перерыва напорную емкость обратноосмотического блока заполняют пермеатом для предотвращения выпадения солей на поверхность мембранного элемента.

В настоящем техническом решении способ получения воды существенно упрощен.

Вначале из обрабатываемой воды с помощью фильтра 1 выделяют механические примеси с размером частиц более 5 мкм. Это наиболее простой, доступный, высокопроизводительный и дешевый вид подготовки воды. Такую заведомо «недоочищенную» воду подают в напорную емкость 3 обратноосмотического блока 4. При работе на такой воде происходит загрязнение мембраны обратноосмотического блока 4 и быстрое снижение его производительности по пермеату. Наблюдения работы обратноосмотических систем на различных типах загрязненных вод показали, что по истечении одного месяца работы производительность снизилась в 3 раза.

Для удаления рыхлых осадков взвешенных частиц и коллоидного железа с поверхности мембранного элемента 11 в обратноосмотических блоках 4 рулонного типа была применена схема, использующая периодическую гидравлическую промывку поверхности мембран. Был проведен анализ гидродинамики потоков в рулонном мембранном элементе 11 обратноосмотического блока 4, и рассмотрено влияние гидродинамических параметров на процесс обратноосмотической очистки.

Оказалось, что для достижения эффективной гидравлической промывки достаточно повысить скорость потока воды в напорном канале 12 примерно в 2-3 раза путем сброса давления на мембране (в напорной емкости 3). Для реализации этого, на линии 13 концентрата установлен магнитный клапан 14, включающий процесс быстрой гидравлической промывки.

В связи с этим, представляется важным определить оптимальную периодичность гидравлических промывок мембранного элемента 11 обратноосмотического блока 4. Для этого выбран комбинированный параметр S, т.н. концентрация взвешенных частиц, - равный сумме концентраций растворенных ионов, которые могут привести к образованию коллоидных частиц Ci, мг/дм3:

Таким образом параметр S определяется исходя из качества исходной питающей воды.

На основании собственного массива экспериментальных данных о работе обратноосмотической системы на исходной воде различного состава (с предварительной очисткой и без нее) и литературных данных установлено, что интервал гидравлических промывок т (час) в зависимости от S описывается аналитическим выражением

где a - эмпирическая константа, равная 3,5 мг/ дм3 час.

Пример расчета.

Например, концентрация растворенных ионов, приводящих к образованию коллоидных частиц (концентрация взвешенных частиц), в воде составляет 3,7 мг/дм3. Интервал промывок составит 3,7/3,5=1,06 час или менее, что может быть увязано с продолжительностью рабочей смены на станции получения воды или удобством настойки ее системы управления. Длительность интервала гидравлической промывки, большее расчетного будет способствовать избыточному загрязнению мембранного элемента 11, а, следовательно, снижению производительности станции, в зависимости от величины превышения нормируемого параметра.

Экспериментально установлено, что применение периодических гидравлических промывок позволило увеличить фильтроцикл системы обратноосмотической очистки воды более чем в 2 раза.

Поскольку в составе концентрата преобладают соединения CaCO3+CaSO4 и взвешенные вещества, была рассмотрена схема с ингибированием осадкообразования.

Анализ количества и состава осадка показал, что на поверхности мембранного элемента 11 образуются плотные осадки взвешенных веществ, карбоната и сульфата кальция, которые в свою очередь значительно снижают эффективность работы систем обратноосмотической очистки. Объясняется этот факт тем, что действие ингибитора основывается на образовании пленок на поверхности мембранного элемента 11, что уменьшает количество центров кристаллообразования и предотвращает образование отложений минеральных солей на поверхности мембран. В случае использования установок обратноосмотической очистки без предварительной подготовки воды на поверхности мембранных элементов 11 образуются осадки взвешенных и коллоидных частиц, и ингибитор перестает действовать эффективно. Также действие ингибиторов уменьшает высокое содержание в исходной воде растворенное и коллоидное железо.

Отсюда можно сделать вывод, что основными загрязнителями мембранных элементов 11 являются быстро накапливающиеся на поверхности мембран рыхлые осадки. Также отмечено, что эти осадки эффективно удаляются с помощью гидравлических промывок. При этом, в случае работы с гидравлической промывкой продолжительность фильтроцикла напрямую зависит от накопления плотных карбонатных отложений, для предотвращения которых ранее ничего не применялось. Поэтому было исследовано поведение обратноосмотической системы, при проведении процесса с ингибированием осадкообразования и гидравлической промывкой. Полученные данные показали, что в случае применения ингибиторов осадкообразования совместно с гидравлическими промывками, удается значительно увеличить фильтроцикл системы обратноосмотической очистки по сравнению со всеми известными схемами. Эффективное удаление рыхлых осадков, взвешенных веществ и гидроксида железа позволяет работать ингибиторам гораздо эффективнее на поверхности мембранного элемента 11.

Ингибиторы вводят из расчета 1,5-4,5 г/м3 обрабатываемой воды, в зависимости от ее качественного состава. Меньшее из указанного предела количество ингибиторов не позволяет осуществить эффективную защиту поверхности мембраны. Большее - ведет к перерасходу ингибитора, что экономически нецелесообразно. Многочисленные опыты позволили выявить наиболее эффективные ингибиторы. Ими оказались ингибиторы на основе полифосфатов, такие, например, как «ИОМС-1», «Аминат Д» и другие, или полиакрилаты, такие, например, как VITEK, ROPUR и другие.

Применение совместно гидравлических промывок и ингибирования дает хорошие результаты и позволяет эксплуатировать системы обратноосмотической очистки на неподготовленной воде, теоретически позволяет увеличить продолжительность фильтроциклов в 5-6 раз до проведения химических моек мембран, при этом срок службы мембранных элементов 11 не сокращается, что позволяет конкурировать с системами, имеющими в своем составе блоки предварительной подготовки воды перед ее подачей в обратноосмотические блоки. При этом состав воды после очистки в конце фильтроцикла соответствует нормативным требованиям.

Дополняя вышеописанную технологию очистки воды заполнением напорной емкости 3 обратноосмотического блока 4 на время технологических перерывов пермеатом, можно реализовать еще более эффективную схему проведения процесса обратноосмотической очистки - в сочетании с периодической гидравлической очисткой мембранного элемента 11 и ингибированием осадкообразования. Пермеат обратноосмотического блока 4 не только является глубоко деминерализованной водой, которая растворяет оставшуюся часть осадков, но также благодаря пониженным значениям pH (pH=5,0-6,0) значительно повышает растворимость в нем солей неорганических кислот. Несмотря на то, что количество неудаленных в результате промывки солей невелико, это позволяет восстановить свойства мембранного элемента практически до исходного состояния, а, следовательно, улучшить условия его работы и обеспечить более высокую производительность. Применяя гидравлическую промывку и ингибирование, а также заполняя на время остановки станции напорной емкости 3 обратноосмотического блока 4 пермеатом, можно добиться практически полного удаления загрязнений с поверхности мембранного элемента 11, что приводит к устойчивой работе системы обратноосмотической очистки на воде с повышенным содержанием загрязнений.

При сопоставлении различных схем проведения обратноосмотической очистки (обессоливания) реализация заявленного способа позволяет существенно снизить не только капитальные, но и эксплуатационные затраты без изменения качества получаемой воды.

Как видно из описания и примеров, создан способ получения воды питьевого качества, который отличается доступностью и простотой реализации и обеспечивает производительность до 250-60000 дм3/час в течение 8-20 час/сутки.

1. Способ получения воды питьевого качества, включающий выделение из нее механических примесей и загрязнений с помощью фильтра механической очистки и обратноосмотического блока, работающих с остановкой между рабочими циклами для гидравлической очистки мембранного элемента обратноосмотического блока и удаления концентрата, причем на время технологического перерыва напорную емкость обратноосмотического блока заполняют пермеатом, отличающийся тем, что вначале из обрабатываемой воды с помощью фильтра выделяют механические примеси с размером частиц более 5 мкм, после чего ее подают в напорную емкость обратноосмотического блока, при этом осуществляют периодическую гидравлическую промывку мембранного элемента в течение рабочего цикла без остановки оборудования с интервалом, определяемым формулой:
, где
a - эмпирическая константа, равная 3,5 мг/дм3 час;
C - концентрация растворенных ионов, приводящих к образованию коллоидных частиц, мг/дм3.

2. Способ по п. 1, отличающийся тем, что в воду, очищенную от механических примесей с размером частиц более 5 мкм, перед подачей в напорную емкость обратноосмотического блока вводят ингибиторы из расчета 1,5-4,5 г/м3 обрабатываемой воды.

3. Способ по п. 2, отличающийся тем, что используют ингибиторы на основе полифосфатов или полиакрилатов.

4. Способ по п. 1, отличающийся тем, что на время технологического перерыва, после проведения гидравлической промывки мембранного элемента обратноосмотического блока и удаления концентрата с поверхности мембраны, осуществляют растворение солей неорганических кислот путем заполнения напорной емкости обратноосмотического блока пермеатом с pH=5,0-6,0.



 

Похожие патенты:

Изобретение относится к сельскому хозяйству и пищевой промышленности и может быть использовано при круглогодичной утилизации отходов консервных комбинатов для орошения и повышения плодородия почвы.

Группа изобретений относится к пищевой промышленности и может быть использована для получения питьевой воды. Для этого проводят забор воды из природного источника, отстаивание воды с доступом кислорода воздуха в емкости объемом 20-40 м3 в течение 10-15 часов, обработку воды, путем пропускания через устройство, имеющее внешний и внутренний цилиндр.

Изобретение может быть использовано для очистки хозяйственно-бытовых сточных вод и близких к ним по составу сточных вод средних и малых населенных пунктов и отдельно стоящих домов.

Изобретение относится к области очистки природной воды для хозяйственно-питьевого и производственного водоснабжения, в том числе маломутной цветной низкотемпературной воды.

Изобретения относятся к биотехнологии. Предложены подпитываемые способы продуцирования высокомолекулярных полигидроксиалканоатов (PHA) в биомассе (варианты).

Переносная система обработки воды включает по меньшей мере одну подсистему для обработки воды, включающую систему флокуляции, систему хлорирования и систему биопесочной фильтрации.

Изобретение относится к способам и устройствам получения особо чистой воды для аналитического, лабораторного анализа и может быть использовано в научных учреждениях, на предприятиях медицинской, радиотехнической, электронной, фармацевтической промышленности.
Способ очистки водного потока, поступающего после реакции Фишера-Тропша, включает дистилляцию и/или обработку отпаркой, обработку по меньшей мере одним неорганическим основанием и обработку по меньшей мере одним органическим основанием.

Изобретение относится к области многоступенчатой очистки воды с автоматизированной системой управления, а именно к автомату для розничной продажи очищенной воды.

Изобретение относится к технологии переработки нефтеносных песков, в частности к области увеличения потока воды из отстойного резервуара процесса переработки нефтеносных песков через мембранную систему разделения и улучшения очистки воды, содержащейся в этом потоке.

Изобретение относится к области водоснабжения, а именно к установкам водоподготовки подземных вод, в частности для источников высокоцветной и высокомутной воды, и может быть использовано в системах водоснабжения баз отдыха, коттеджных поселков, садоводческих товариществ и иных потребителей воды питьевого качества. Блочно-модульная станция очистки воды для систем водоснабжения позволяет обеспечить потребителей чистой питьевой водой при одновременном сокращении расхода реагентов на очистку и объема образующихся в результате очистки загрязненных технологических стоков, сбрасываемых в канализацию, за счет того, что содержит размещенные в транспортируемом контейнере блок механической очистки, состоящий из водозаборного узла с системой автоматического управления расходом и давлением воды и механического фильтра, соединенный с блоком аэрации, содержащим компрессор и аэрационную колонну. Блок аэрации последовательно соединен с блоком фильтра-осветлителя, содержащим напорный фильтр обезжелезивания, блоком ионообменного фильтра с узлом регенерации, блоком дозирования реагентов, резервуарами чистой воды, насосной станцией второго подъема с блоком обеззараживания, в качестве которого используют установки ультрафиолетового обеззараживания, и баком-аккумулятором. Узел регенерации блока ионообменного фильтра снабжен двумя баками регенерационного солевого раствора, насосом подачи регенерационного солевого раствора в ионообменный фильтр, на напорной линии которого установлен сетчатый фильтр, и соединен с узлом механического обезвоживания осадка. Технический результат заключается в обеспечении степени очистки воды до нормативов СанПин при одновременном сокращении расхода реагентов на очистку и объема образующихся в результате очистки загрязненных технологических стоков, сбрасываемых в канализацию. 2 з.п. ф-лы, 1 ил.

Способ очистки и обезвреживания сточных вод с применением трехкамерной установки относится к области защиты окружающей среды и биотехнологии и направлен на осуществление контролируемого сорбционно-микробиологического непрерывного процесса очистки промышленных сточных вод. Способ очистки и обезвреживания сточных вод, включающий подачу сточных вод и адсорбционно-микробиологические процессы очистки стоков, проводится в три стадии: первая - отстаивание воды от примесей, вторая - адсорбционно-микробиологические процессы очистки стоков, третья - обеззараживание очищенной воды с помощью ультрафиолетового облучения. Причем очищаемая вода с одной стадии на другую поступает самотеком, по мере накопления, адсорбционно-микробиологические процессы очистки ведут с помощью аборигенной иммобилизованной на углеродном композите микрофлоры, изначально присутствующей в стоках и подверженной стимулированию и биоаугментации. В установке для очистки и обезвреживания сточных вод, содержащей корпус, внутренние перегородки, секции первичного отстаивания и окончательной очистки, в качестве секций используют образованные внутренними перегородками три камеры: камеру-отстойник, камеру адсорбционно-микробиологической очистки стоков, камеру ультрафиолетовой обработки. Технический результат заключается в расширении функциональных возможностей и повышении эффективности очистки промышленных сточных вод. 2 н. и 14 з.п. ф-лы, 1 ил.

Изобретение относится к устройству для обработки пищевых отходов. Устройство содержит кожух, выполненный для образования пространства для дегидратирования и сушки пищевых отходов. Кожух имеет входное отверстие для введения пищевых отходов и выходное отверстие для выгрузки пищевых отходов, подвергшихся дегидратированию и сушке, цилиндрический дегидратор для удаления воды, содержащейся в пищевых отходах посредством центробежной силы внутри кожуха. Дегидратор имеет сообщающее отверстие, выполненное для сообщения со входным отверстием или выходным отверстием путем его вращения. В дегидраторе установлен смеситель с возможностью вращения одновременно или независимо от вращения дегидратора. Смеситель служит для селективного открывания или закрывания сообщающего отверстия и для перемешивания и измельчения пищевых отходов внутри дегидратора посредством его вращения. Также устройство содержит сушилку для сушки пищевых отходов путем подачи сухого воздуха в кожух. Использование изобретения позволит провести качественную обработку пищевых отходов. 18 з.п. ф-лы, 27 ил.

Изобретение относится к области водоочистки и, в частности, к техническому оборудованию, обеспечивающему возможность получать питьевую воду, добываемую из природных источников, содержащих загрязнения всех видов, встречающихся в поверхностных и подземных (артезианских) водах и попадающих в эти источники в результате природных и техногенных катаклизмов. Мобильная водоочистная установка содержит установленное в технологической последовательности и сообщенное между собой трубопроводами рабочее оборудование, содержащее центробежный многоступенчатый насос, блок механической очистки воды, блок аппаратов ультрафильтрации, фильтр адсорбционной очистки воды, емкость фильтрата и блок ультрафиолетового обеззараживания, при этом блок механической очистки воды снабжен обратной связью с блоком аппаратов ультрафильтрации и для непрерывности работы выполнен с двумя параллельно установленными фильтрами механической очистки, а для очистки керамических мембран блока аппаратов ультрафильтрации емкость фильтрата обратной связью с дополнительным центробежным многоступенчатым насосом сообщена с выводом фильтрата блока аппаратов ультрафильтрации, причем в трубопровод связи фильтра адсорбционной очистки с емкостью фильтрата подключен расходомер, а блок ультрафиолетового обеззараживания снабжен кварцевой лампой. Изобретение обеспечивает повышение эффективности водоочистки. 1 ил.

Изобретение относится к очистке сточных вод, образующихся при мойке средств хранения нефти и нефтепродуктов, с использованием процесса пневматической флотации. Установка состоит из вертикальной емкости 1, внутри которой имеется вертикальная перегородка 2, оборудованная обратным клапаном 17, разделяющая емкость на две индивидуальные полости 3 и 4, в нижней части которых установлены перфорированные трубы 5 с закрепленными на них мелкопористыми чехлами, перфорированная труба полости 3 дополнительно соединена с дозатором 7 для флокулянтов, над перфорированными трубами установлены перегородки 8 и 9, выполненные из пластин, в полости 3 они сделаны в виде объемной решетки, в полости 4 высота перегородок убывает от периферии к центру, также в полости 4 имеются два ультразвуковых излучателя 10, расположенные на диаметрально противоположных стенках выше перфорированных труб, перфорированные трубы 5 подсоединены к компрессору сжатого воздуха 11, расход которого измеряется ротаметром 12, узел сбора отделенного нефтепродукта размещен с наружной стороны вертикальной емкости 1 и выполнен в виде лотка 13, прикрепленного к емкости 1 по периметру под углом к верхней образующей вертикальной емкости. Высота отбортовки лотка 13 выбрана из условий отсутствия перелива, в нижней части лотка имеется патрубок 14 слива отделенного нефтепродукта. Подача воздуха от компрессора 11 в полость 3 и 4 осуществляется открытием запорных кранов 15 и 16. Установка имеет запорный кран 18 для слива очищенной воды. Технический результат изобретения - повышение эффективности очистки воды от нефтепродуктов и создание возможности оперативного применения в сочетании с любыми средствами очистки при относительно низкой себестоимости процесса очистки. 2 ил., 1 табл.

Изобретение относится к обработке сточных вод. Способ обработки сточных вод включает предоставление мембранного биореактора, содержащего мембраны, имеющие пленку на поддерживающей конструкции, и поддержание в мембранном биореакторе концентрации частиц сорбента, составляющей по меньшей мере 200 мг/л, где указанные частицы контактируют с мембранами. Мембранный биореактор включает мембраны, имеющие поддерживающую конструкцию, и блок подачи, выполненный для дозированного добавления частиц сорбента в часть мембранного биореактора в жидкостном соединении с мембранами без промежуточного этапа отделения твердых веществ и для поддержания в мембранном биореакторе концентрации частиц сорбента, составляющей по меньшей мере 200 мг/л. Изобретение обеспечивает эффективную очистку сточных вод. 3 н. и 16 з.п. ф-лы, 5 ил., 8 пр.
Изобретение относится к устройствам для комплексной очистки жидкостей от механических нерастворимых примесей, преимущественно песка, нефтепродуктов, тяжелых металлов и болезнетворных микробов в непрерывном цикле с большой производительностью, и может быть использовано при очистке скважинных вод, смесей нефть-вода, сточных вод, жидких промышленных и канализационных стоков до параметров чистой питьевой воды. Способ очистки жидких смесей включает многоступенчатую механическую обработку смеси в емкости проточного типа, с грубой и промежуточной фильтрацией, обработку магнитным полем и финишную фильтрацию в конце очистки, одновременно с механической обработкой поток жидкости подвергается электролизу, перед фильтрованием на промежуточной фильтрации производится обработка окислителем и УФ-обработка, а между промежуточным фильтрованием и финишной фильтрацией поток дополнительно отстаивается. Изобретение обеспечивает упрощение конструкции, улучшение качества отделения жесткой нерастворимой фазы от жидкости. 4 з.п. ф-лы.

Изобретение относится к устройствам для очистки сточных вод и может быть использовано для очистки воды от хрома, хлоридов, сульфатов, взвешенных веществ, СПАВ, БПК И ХПК. Устройство для очистки сточных вод состоит из последовательно расположенных по спирали отстойника, флотатора, вторичного отстойника, зернистого фильтра, сорбционного фильтра, емкости очищенной воды, которые находятся под единым цилиндрическим корпусом, выполненным из стеклопластика, являющегося наиболее легким, прочным и не поддающимся агрессивному воздействию материалом. Изобретение позволяет рационально и эффективно осуществлять очистку сточных вод, а также простую конструкцию, технологическое обслуживание и мобильность устройства. 4 ил.

Изобретение относится к способу и устройству для обработки промышленных сточных вод и/или питьевой воды с помощью электрохимических способов и процессов дополнительного окисления. После подготовительной фазы гравитационного осаждения следует основная обработка, состоящая из электрокоагуляции, электроокисления и электрофлотации за счет действия металлических наборов электродов, изготовленных из нержавеющей стали, стали и алюминия соответственно с одновременной дезинфекцией/окислением озоном, УФ-излучением и ультразвуковой обработкой, а также рециркуляцией в электромагнитном поле. По окончании основной обработки смесь флокул и воды подвергают коагуляции/флокуляции под действием электрохимически образованных из стали и алюминия флокул при медленном введении озона. Следующая фаза представляет собой отделение осадка от чистой воды, которую выгружают в сборный резервуар через песочный фильтр и фильтр из активированного угля для удаления легких плавучих флокул. При необходимости воду подвергают окислению при одновременном действии УФ-излучения и озона для окончательного разложения органических веществ и аммиака, а также возможных остатков микробиологического загрязнения. Изобретение обеспечивает установку для обработки промышленных сточных вод, в которой используют электрохимические способы. 2 н. и 45 з.п. ф-лы, 4 ил., 8 табл., 4 пр.

Изобретение относится к комплексам очистки сточных вод, предназначенным для глубокой физико-химической и биологической (комбинированной) очистки производственных сточных вод от взвешенных веществ, соединений азота, фосфора, поверхностно-активных веществ и других загрязнителей с обеспечением качества очистки до требований, допускающих сброс очищенной воды в водоемы рыбохозяйственного назначения. Технический резервуар комплекса очистки сточных вод состоит из корпуса и крышки. Днище корпуса выполнено конической формы и обеспечивает систему автоматического сброса илового осадка за счет гидростатического давления. Крышка имеет отвод для организованного выброса вредных веществ. Комплекс очистки сточных вод блочно-аппаратного типа состоит из напорного коллектора и приемной камеры; механической решетки, песколовки и первичного отстойника; анаэробной зоны биореактора и аэробной зоны биореактора; вторичного отстойника; насоса-дозатора для ввода коагулянта на выходе из анаэробной зоны биореактора перед вторичным отстойником; промежуточной емкости; блока механической и сорбционной доочистки, состоящего, из скорого механического фильтра и скорого сорбционного фильтра; насоса, компрессора для аэрации, переносной пластиковой корзины и/или самосвального бункера-прицепа, соединяющего трубопровода и приямка для ила и осадка; установки обеззараживания; устройства для обезвоживания осадка и установки обеззараживания осадка. Механические решетки, песколовки и первичный отстойник предназначены для механической очистки и выполнены модульно наземного исполнения с заявленными техническими резервуарами. Анаэробная зона биореактора и аэробная зона биореактора предназначены для биологической очистки и выполнены модульно с заявленными техническими резервуарами. Первичный отстойник, анаэробная зона биореактора, аэробная зона биореактора, вторичный отстойник, блок механической и сорбционной доочистки образуют единую технологическую линию. Способ очистки сточных вод комплексом очистки сточных вод блочно-аппаратного типа характеризуется тем, что стоки по напорному коллектору поступают в приемную камеру очистных сооружений; далее стоки поступают на механические решетки; с механических решеток стоки подаются на песколовку, при этом удаление осадка из песколовки осуществляется в мешковой фильтр; далее стоки поступают в первичный отстойник, при этом удаление осадка из первичного отстойника производится по трубопроводу в приямок; далее стоки самотеком поступают в анаэробную зону биореактора, в которой происходит деструкция трудноокисляемой органики на бионосителе иммобилизованными и свободноплавающими микроорганизмами; далее стоки поступают в аэробную зону биореактора, в которой происходит нитрификация под действием аэробных нитрифицирующих бактерий и аэрации; далее очищенные стоки самотеком поступают во вторичный отстойник, при этом перед вторичным отстойником на выходе из анаэробной зоны биореактора вводится коагулянт при помощи насосов-дозаторов; при этом удаление осевшего во вторичном отстойнике ила производится по трубопроводу в приямок; далее очищенные стоки поступают в промежуточную емкость, откуда насосами подаются на блок механической и сорбционной доочистки; далее очищенные стоки направляются на установку обеззараживания; осадок и ил из приямка насосами подаются на устройство для обезвоживания осадка и установку обеззараживания осадка. Техническим результатом заявленного изобретения является повышение санитарной надежности, экологической безопасности и экономичности установки, расширение области применения. 2 н. и 19 з.п. ф-лы, 7 ил.
Наверх