Способ изготовления строительных изделий из кремнистых пород



Владельцы патента RU 2569949:

Ашмарин Геннадий Дмитриевич (RU)
Илюхина Ляиля Гатиповна (RU)
Синянский Владимир Иванович (RU)
Ашмарин Дмитрий Геннадьевич (RU)
Илюхин Вячеслав Викторович (RU)
Сиенко Олег Викторович (RU)

Изобретение относится к промышленности строительных материалов, в частности к производству теплоизоляционных, теплоизоляционно-конструкционных и конструкционных изделий. В способе изготовления строительных изделий из кремнистых пород, включающем усреднение состава кремнистого сырья путем послойного конусования, первичную переработку с удалением крупных включений, введение поризующих добавок - каустической соды и кальцинированной соды, совместную их обработку до получения однородной массы, формование гранул, их термическую обработку, помол гранул, заполнение форм порошком, обжиг в формах при температуре 680-850°C, охлаждение, распалубка форм, распиловка вспученных плит на изделия требуемого размера, в качестве кремнистого сырья используют диатомит, или трепел, или опоку, или их смесь в заданной пропорции, плотностью 0,4-1,0 г/см3 с содержанием в них SiO2 53,0-92,0%, аморфного кремнезема (SiO2 растворенного в 5% KOH) 9,0-76,0%, СаО 0,5-4,5%, MgO 0,1-2,3%, термическую обработку гранул проводят при температуре 110°C до остаточной влажности 10%, обеспечивающей их помол, после помола гранул осуществляют разделение порошка по фракциям 0,1-1 мм, 1-2 мм, 2-3 мм, заполнение форм ведут порошком требуемого грансостава, позволяющего изготовление изделий с заданными параметрами по плотности и теплопроводности, крупную и пылеватую фракции отбирают и возвращают на пост помола гранул, а отходы от распиловки вспученных плит подают для производства сухих строительных смесей и/или на пост помола гранул. Технический результат - повышение качества строительных изделий. 1 пр.

 

Изобретение относится к промышленности строительных материалов, в частности к производству теплоизоляционных, теплоизоляционно-конструкционных и конструкционных изделий из широко распространенного и доступного сырья.

Известен способ изготовления керамического теплоизоляционного и теплоизоляционно-конструкционного материала, включающий обработку кремнеземсодержащего компонента, смешение его с щелочным компонентом, введенным виде гранул или раствора каустической соды и кальцинированной соды в виде порошка, гомогенизацию сырьевой смеси, предварительный обжиг гранулированной смеси, помол обожженных гранул и обжиг размолотого порошка в металлических формах /1/.

Известен способ получения конструкционно-теплоизоляционного пеностекла, включающий смешение измельченного кремнеземсодержащего компонента с раствором щелочи, при этом общее количество оксидов щелочного металла составляет от 8 до 30 мас.% от массы сухого кремнеземистого компонента, полученную после смешения массу гранулируют, осуществляют ее термообработку, помол и обжиг в металлических формах /2/.

Наиболее близким к предлагаемому техническому решению является способ получения легковесного керамического теплоизоляционного и теплоизоляционно-конструкционного строительного материала, включающий предварительную обработку кремнеземсодержащего компонента для активации кремнезема, смешение кремнеземсодержащего компонента (диатомита, трепела и/или опоку, содержащие активный кремнезем) и щелочного компонента (смесь 46%-ного водного раствора каустической соды и вспененный водный раствор кальцинированной соды в соотношении 1,0-1,1/0,5-1,3), гомогенизацию сырьевой смеси, предварительный обжиг гранулированной смеси, помол обожженных гранул и обжиг размолотого порошка в металлических формах /3/.

Недостатком известных способов является невозможность изготовления различного ассортимента изделий на одной технологической линии, недостаточно высокое качество выпускаемых изделий по однородности структуры, равномерности пористости и значительный расход дорогостоящих порообразующих добавок.

Техническим результатом предлагаемого решения является изготовление различного ассортимента строительных изделий требуемого качества (от теплоизоляционного до конструкционного) на единой технологической линии, снижение энергозатрат, повышение качества строительных изделий и значительная экономия дорогостоящих порообразующих добавок.

Технический результат достигается тем, что в способе изготовления строительных изделий на основе кремнистых пород, включающий усреднение состава кремнистых пород путем послойного конусования, первичную переработку с удалением крупных включений, введение поризующих добавок, совместную их обработку, формование гранул, их термическую обработку, помол гранул, заполнение форм порошком, обжиг в формах, распалубка форм, распиловка вспученных плит на изделия требуемого размера, отличающийся тем, что термическую обработку гранул проводят до остаточной влажности, обеспечивающей их помол в шаровых мельницах или стержневых смесителях, после помола гранул осуществляют разделение порошка по фракциям, заполнение форм ведут порошком требуемого грансостава, обеспечивающего изготовление изделий с заданными параметрами по плотности и теплопроводности, а крупную, пылеватую фракции отбирают и возвращают на пост помола гранул, а отходы от распиловки вспученных плит подают для производства сухих строительных смесей и/или на пост помола гранул, при этом в качестве кремнистого сырья используют кремнистые породы плотностью 0,4-1,0 г/см3 с содержанием в них SiO2 53,0-92,0%, аморфного кремнезема (SiO2, растворенного в 5% KOH) 9,0-76,0%, CaO 0,5-4,5%, MgO 0,1-2,3%.

Применение в предлагаемом способе низкотемпературной термической обработки гранул обеспечивает сохранение дорогостоящих поризующих добавок в заданной пропорции и активной фазе, экономии тепловой и электрической энергии.

Использование разделения порошка по фракциям после помола гранул позволяет изготавливать изделия различного ассортимента на одной технологической линии.

Заполнение форм порошком узкой фракцией определенного грансостава обеспечивает получение изделий с однородной структурой и требуемой теплопроводности и прочности для данного вида изделий.

Возврат крупной и пылеватой фракций, содержащих значительное количество нереализованных поризующих добавок в активной форме, на пост помола позволит значительно сэкономить дорогостоящие поризующие компоненты (NaOH, Ma2CO3).

Использование отходов от распиловки вспученных плит для производства сухих строительных смесей и/или на посту помола гранул позволяет получить безотходное производство.

Способ реализовали следующим образом.

Исходный кремнеземсодержащий компонент, а именно природные сырьевые материалы: диатомит, или трепел, или опоку, или их смесь в заданной пропорции, плотностью 0,4-1,0 г/см3 с содержанием в них SiO2 53,0-92,0% аморфного кремнезема (SiO2 растворенного в 5% KOH) 9,0-76,0%), CaO 0,5-4,5%, MgO 0,1-2,3%, со склада или непосредственно из карьера, где производили усреднение состава кремнистого сырья, путем послойного конусования, загружали в питатель, откуда посредством ленточного конвейера подавали на предварительную переработку в камневыделительные вальцы для удаления крупных трудно дробимых включений. В подготовленное таким образом кремнистое сырье вводили поризующие добавки (каустическую соду (NaOH), кальцинированную соду (Na2CO3), причем соотношение каустической и кальцинированной соды в щелочном компоненте зависит от содержания аморфного кремнезема в исходном сырье, совместно их обрабатывали и формовали гранулы. Отформованные гранулы подвергали низкотемпературной термической обработке до остаточной влажности, обеспечивающей их помол. После чего производили помол с разделением порошка по фракциям. Полученным размолотым порошком требуемого грансостава заполняли металлические формы изделий, при этом форма и размеры изделий могут быть самыми разнообразными. Крупную и пылеватую фракции после фракционирования порошка возвращали на пост помола гранул. Формы, заполненные порошком необходимого грансостава, отправляли на обжиг в туннельную печь, где обжигали в интервале температур 680-850°C, при которой происходило вспучивание. После обжига формы выгружали, производили их распалубку и распиловку вспученных плит на изделия требуемого размера. Отходы от распиловки плит возвращали на пост помола гранул и для производства сухих строительных смесей.

Конкретные примеры способа реализовали на трепеле Алатырского месторождения Республики Чувашия, содержащего:

SiO2 70,6%; AL2O3+TiO2 9,6%; СаО 3,7%; MgO 1,2%; SO3 0,75%;

аморфного кремнезема, растворимого в 5% KOH - 39,3%.

Из шихты в пересчете на сухой материал: трепел 86%; NaOH 5,5%; Na2CO3 8,5%, тщательно обработанной, формовали гранулы, которые подвергали сушке при температуре 110°C теплоносителем от печи до остаточной влажности 10%. Режим термообработки и остаточная влажность гранул принимались с учетом возможности помола их в шаровых мельницах или стержневых смесителях. Затем производили помол гранул и разделение порошка на фракции: 0,1-1 мм; 1-2 мм; 2-3 мм. Оставшиеся после разделения порошка на требуемые фракции крупные и пылеватые фракции возвращали на пост помола. Порошками требуемого грансостава заполняли формы, обжигали и охлаждали. Охлажденные изделия извлекали из формы и распиливали на несколько частей. Отходы от распиловки плит возвращали на пост помола и для производства сухих строительных смесей.

Структура материала однородная, пористость материала равномерная.

В результате получены следующие данные плотности и прочности готовых изделий:

при грансоставе порошка 0,1-1 мм плотность - 667 кг/м3, прочность - 167 кг/см2,

при грансоставе порошка 1-2 мм плотность - 497 кг/м3, прочность - 107 кг/см2,

при грансоставе порошка 2-3 мм плотность 327 кг/м3, прочность - 27,2 кг/см2.

Представленные выше примеры осуществления способа не являются исчерпывающими и приведены только с целью пояснения изобретения и подтверждения его промышленной применимости.

Достоинством предлагаемого технического решения является изготовление различного ассортимента строительных изделий требуемого качества (от теплоизоляционных до конструкционных) на единой технологической линии, обеспечивающей получение строительного материала с однородной структурой, требуемой теплопроводности и прочности для конкретного вида изделий при значительной экономии дорогостоящих порообразующих добавок, тепловой и электрической энергии.

Предлагаемое техническое решение промышленно применимо и может быть использовано при производстве керамических изделий без каких-либо особых условий.

Источники информации, принятые при составлении заявочных материалов:

1. RU №2442762 С04В 38/00 от 10.09.2010 г.

2. RU №2451644 С03С 11/00 от.22.10.2010 г.

3. RU №2473516 С04В 38/00 от.29.06.2011 г.

Способ изготовления строительных изделий из кремнистых пород, включающий усреднение состава кремнистого сырья путем послойного конусования, первичную переработку с удалением крупных включений, введение поризующих добавок - каустической соды NaOH и кальцинированной соды Na2CO3, совместную их обработку до получения однородной массы, формование гранул, их термическую обработку, помол гранул, заполнение форм порошком, обжиг в формах при температуре 680-850°C, охлаждение, распалубка форм, распиловка вспученных плит на изделия требуемого размера, отличающийся тем, что в качестве кремнистого сырья используют кремнистые породы: диатомит, или трепел, или опоку, или их смесь в заданной пропорции, плотностью 0,4-1,0 г/см3 с содержанием в них SiO2 53,0-92,0%, аморфного кремнезема (SiO2, растворенного в 5% KOH) 9,0-76,0%, СаО 0,5-4,5%, MgO 0,1-2,3%, термическую обработку гранул проводят при температуре 110°C до остаточной влажности 10%, обеспечивающей их помол, после помола гранул осуществляют разделение порошка по фракциям 0,1-1 мм, 1-2 мм, 2-3 мм, заполнение форм ведут порошком требуемого грансостава, позволяющего изготовление изделий с заданными параметрами по плотности и теплопроводности, крупную и пылеватую фракции отбирают и возвращают на пост помола гранул, а отходы от распиловки вспученных плит подают для производства сухих строительных смесей и/или на пост помола гранул.



 

Похожие патенты:

Изобретение относится к химической технологии, а именно к технологии производства битум-полимерных композиций, и может быть использовано для контроля и прогнозирования их параметров качества в процессе производства. Способ характеризуется тем, что в кондиционном и исследуемом образцах битум-полимерной композиции измеряют величины эффективной вязкости при температурах t=20°C, t=80°C и t=150°C и градиентах скорости сдвига Dr=5,56 с-1, Dr=11,1 с-1 и Dr=16,67 с-1, через τ=5,0 сек, τ=15,0 сек, τ=30,0 сек после начала ее приложения, и предварительно определяют доверительные интервалы относительных отклонений величин эффективной вязкости кондиционной битум-полимерной композиции и комплекс параметров качества, который соответствует технологической инструкции на данный кондиционный продукт, методика определения доверительных интервалов относительных отклонений эффективной вязкости Δηэф, определяемых методами экспертной оценки, сводится в общем виде к расчету относительного ее изменения на основании заданного соотношения с последующим формированием доверительного интервала ее отклонения для данных условий получения, причем значение Δηэф предварительно рассчитывают на основе полученных экспериментальных величин эффективной вязкости кондиционной битум-полимерной композиции, а контроль параметров качества исследуемой битум-полимерной композиции проводят, сравнивая значения полученных величин относительных изменений эффективной вязкости исследуемой битум-полимерной композиции Δηэф с соответствующими доверительными интервалами относительных отклонений величин эффективной вязкости кондиционной битум-полимерной композиции, полученных при одинаковых условиях исследований композиций, на основании результатов сравнения делают вывод о соответствии исследуемой битум-полимерной композиции свойствам кондиционной битум-полимерной композиции, а именно, если полученные значения относительного изменения величин эффективной вязкости Δηэф исследуемой битум-полимерной композиции дважды подряд входят в соответствующие различные доверительные интервалы ее относительного изменения для кондиционной битум-полимерной композиции при частично или полностью различных условиях получения исходных значений эффективной вязкости, используемых для расчета Δηэф и формирования интервалов ее доверительного отклонения для кондиционной битум-полимерной композиции, значит, испытуемая битум-полимерная композиция обладает комплексом физико-механических свойств, соответствующим технологической инструкции на данный продукт, и является кондиционной битум-полимерной композицией, если полученная величина изменения эффективной вязкости Δηэф исследуемой битум-полимерной композиции не входит в имеющийся интервал доверительного ее изменения для кондиционной битум-полимерной композиции, делают вывод о несоответствии исследуемой битум-полимерной композиции свойствам кондиционной битум-полимерной композиции по комплексу физико-механических свойств.

Изобретение относится к порошкообразному диспергирующему агенту, содержащему в качестве компонента, имеющего диспергирующее действие, комбинацию (а) по меньшей мере одного представителя эфиров поликарбоновых кислот с массовым содержанием от 0.1 до 20%, (b) по меньшей мере одного представителя сложных эфиров поликарбоновых кислот с массовым содержанием от 0 до 20% и (с) по меньшей мере одного представителя незаряженных сополимеров с массовым содержанием от 0.1 до 20%, который получают комбинированной распылительной сушкой индивидуальных компонентов и который является подходящим для регулирования текучести водных химических строительных суспензий.

Изобретение относится к производству ячеистых бетонов в разных формах. Технический результат заключается в повышении коэффициента конструктивного качества изделий из ячеистого бетона, получаемых с использованием автоклавной обработки, за счет повышения однородности поровой микроструктуры межпоровых перегородок.
Изобретение относится к способу производства строительных материалов, в частности к технологии приготовления бетонных смесей, и может найти применение при выполнении монолитных бетонных работ для изготовления стеновых блоков, которые могут быть использованы при возведении складских помещений, гаражей и ограждений.
Изобретение относится к способу производства строительных материалов, в частности к технологии приготовления бетонных смесей, и может найти применение при выполнении монолитных бетонных работ для изготовления стеновых блоков, которые могут быть использованы при возведении складских помещений, гаражей и ограждений.
Изобретение относится к способу производства строительных материалов, в частности к технологии приготовления бетонных смесей, и может найти применение при выполнении монолитных бетонных работ для изготовления стеновых блоков, которые могут быть использованы при возведении складских помещений, гаражей и ограждений.

Изобретение относится к гипсовым композициям, гипсовым плитам, к способам их изготовления и к использованию дегидроаскорбиновой кислоты (DHA) в качестве препятствующей изгибу добавки в гипсовом изделии.

Изобретение относится к области промышленности строительных материалов и может быть использовано при изготовлении теплоизоляционных изделий различной геометрической формы, преимущественно плит.

Группа изобретений относится к строительным материалам, а именно к строительной смеси и способу получения из нее теплоизоляционного легкого бетона, и может найти применение при изготовлении облегченных строительных конструкций различного назначения.

Изобретение относится к области строительства, а именно к технологии приготовления бетонных смесей и изделий из них, и может быть использовано в технологии производства изделий и конструкций в сборном домостроении и в монолитном строительстве.

Изобретение относится к производству ячеистых бетонов в разных формах. Технический результат заключается в повышении коэффициента конструктивного качества изделий из ячеистого бетона, получаемых с использованием автоклавной обработки, за счет повышения однородности поровой микроструктуры межпоровых перегородок.

Изобретение относится к производству строительных материалов, в частности к производству газобетона, и может быть использовано при изготовлении теплоизоляционных и теплоизоляционно-конструкционных блоков.

Изобретение относится к промышленности строительных материалов, а именно к составам для изготовления теплоизоляционного и конструкционно-теплоизоляционного пеносиликата с улучшенными функциональными свойствами.

Изобретение относится к промышленности строительных материалов, а именно к технологии изделий из ячеистого бетона автоклавного твердения. В способе получения изделий из ячеистого бетона автоклавного твердения путем приготовления сырьевой смеси, включающей минеральное вяжущее из цемента с известью, кремнеземистый компонент в виде шлама кварцевого песка, двуводный гипс, порообразователь - алюминиевую пудру, и воду затворения, кварцевый песок измельчают до удельной поверхности 3500-4100 см2/г, порообразователь используют с зерновой фракцией алюминия размером частиц 22-45 мкм в количестве не менее 70-75%, при этом в шлам кварцевого песка дополнительно вводят красящую добавку из ряда железоокисных пигментов, а поверхность готового изделия обрабатывают гидрофобизатором - водным раствором метилсиликоната натрия, при следующем соотношении компонентов, мас.%: портландцемент марки М500 Д0 31,975-35, известь 6,3-8,2, кварцевый песок 53,13-54, двуводный гипс 4,86-5,0, алюминиевая пудра 0,12-0,123, красящая добавка 0,59-0,701, вода затворения при температуре 42-45°C в количестве, соответствующем отношению В/Т, равному 0,58-0,63.
Изобретение относится к области строительных материалов и может быть использовано для изготовления неавтоклавного композиционного ячеистого бетона естественного твердения.
Группа изобретений относится к производству газобетонов, используемых в малоэтажном строительстве. Способ изготовления газобетона включает дозирование и смешивание 0,96 кг алюминиевой пудры с 20 кг кварцевого песка и 3,4 кг золы-уноса, их совместный помол до прохождения через сетку № 0,63, дозирование и последовательное добавление 15,6 кг портландцемента, 15,6 кг молотой негашеной извести и 18,6 кг воды, нагретой до температуры 70-100°C, укладку полученной смеси в нагретые до температуры 35-45°C формы, затвердевание, извлечение из форм и тепловлажностную обработку при температуре 175°C и давлении 0,8 МПа в течение 10-12 часов.

Группа изобретений относится к производству сухих смесей для изготовления изделий из ячеистого бетона поризованного газом и может быть использовано на заводах ячеистобетонных изделий.
Изобретение относится к промышленности строительных материалов, в частности к технологии изготовления керамзитобетонной смеси, ресурсосберегающим технологиям легких бетонов.
Изобретение относится к области строительных материалов и может быть использовано для изготовления неавтоклавного композиционного ячеистого бетона естественного твердения.

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления теплоизоляционных и конструкционно-теплоизоляционных изделий из ячеистого газобетона автоклавного твердения.
Изобретение относится к области переработки кремнеземсодержащего нерудного сырья: опал-кристобалитовых горных пород, а также глин и суглинков в пористые пеностеклокристаллические материалы, используемые в строительной индустрии и для теплоизоляции промышленного оборудования различного назначения.
Наверх