Оптическая система тепловизионного прибора с двумя полями зрения

Изобретение может быть использовано в тепловизионных приборах с охлаждаемыми матричными фотоприемными устройствами. Оптическая система состоит из расположенных вдоль оптической оси трех компонентов. Первый неподвижный компонент содержит первую отрицательную и вторую положительную выпукло-вогнутые линзы и отрицательную вогнуто-выпуклую третью линзу. Второй подвижный компонент установлен с возможностью ввода-вывода в оптический тракт и содержит первую и вторую отрицательные вогнуто-выпуклые линзы и дополнительно введенную третью двояковыпуклую линзу. Неподвижный третий компонент содержит первую положительную и вторую отрицательную вогнуто-выпуклые линзы и введенную третью положительную выпукло-вогнутую линзу и четвертую положительную вогнуто-выпуклую линзу. Подвижный второй компонент установлен в пространстве между неподвижными первым и третьим компонентами. Технический результат - повышение кратности изменения поля зрения и уменьшение значения коэффициента телеукорочения при сохранении качества изображения. 1 ил., 3 табл.

 

Изобретение относится к инфракрасным оптическим системам и может быть использовано при создании тепловизионных приборов различного назначения с охлаждаемыми матричными фотоприемными устройствами.

Известна инфракрасная система с двумя полями зрения (см. патент RU 2400784 С1, МПК7 G02B 13/14, опубл. 27.09.2010 г.), в которой трехкратное изменение поля зрения осуществляется перемещением двух компонентов вдоль оптической оси, при этом максимальное фокусное расстояние f max ' составляет 210 мм, минимальное f min ' - 70 мм, длина L - 300 мм и коэффициент телеукорочения T L = L / f max ' = 1,4 .

Также известна инфракрасная система с дискретно изменяемым фокусным расстоянием (см. патент RU 2481602 С1, МПК7 G02B 15/02 публ. 10.05.2013 г.), в которой изменение поля зрения осуществляется вводом-выводом подвижного компонента, при этом максимальное фокусное расстояние f max ' составляет 200 мм, минимальное f min ' - 70 мм, длина L - 215 мм. Кратность изменения фокусного расстояния M = f max ' / f min ' = 2,86 и коэффициент телеукорочения TL=1,075.

Указанные системы имеют малую кратность изменения поля зрения (фокусного расстояния) и большое значение коэффициента телеукорочения.

Наиболее близкой по технической сущности к заявляемой оптической системе, принятой за прототип, является оптическая система с двумя полями зрения для среднего ИК диапазона спектра (см. патент CN 103149667 А, МПК7 G02B 13/00, опубл. 12.06.2013 г.), состоящая из расположенных вдоль оптической оси неподвижного первого компонента, содержащего первую положительную выпукло-вогнутую линзу, вторую отрицательную выпукло-вогнутую линзу, третью положительную выпукло-вогнутую линзу и четвертую положительную вогнуто-выпуклую линзу, подвижного второго компонента, содержащего первую отрицательную двояковогнутую линзу и вторую положительную двояковыпуклую линзу, неподвижного третьего компонента, содержащего первую положительную выпукло-вогнутую линзу и вторую отрицательную выпукло-вогнутую линзу, и фотоприемного устройства. Изменение поля зрения осуществляется вводом-выводом подвижного второго компонента в оптический тракт в пространстве между третьей и четвертой линзами неподвижного первого компонента. Оптическая система работает с относительным отверстием 1:4, в узком поле зрения фокусное расстояние объектива f max ' = 240 м м , в широком поле зрения - f min ' = 60 м м , длина L=260 мм, при этом коэффициент телеукорочения T L = L / f max ' = 1,08 . Кратность изменения фокусного расстояния (поля зрения) M = f max ' / f min ' = 4 . В узком и широком полях зрения оптическая система имеет достаточно высокое качество изображения.

Недостатками указанной оптической системы являются малая кратность изменения поля зрения, что не позволяет обеспечить достаточное поле обзора в режиме широкого поля зрения, и большое значение коэффициента телеукорочения, что приводит к увеличению габаритов и массы тепловизионного прибора.

Задачей, на решение которой направлено изобретение, является повышение кратности изменения поля зрения и уменьшение значения коэффициента телеукорочения при сохранении качества изображения.

Указанная цель достигается тем, что в оптической системе тепловизионного прибора с двумя полями зрения, состоящей из расположенных вдоль оптической оси неподвижного первого компонента, содержащего первую и вторую выпукло-вогнутые линзы и третью линзу, установленного с возможностью ввода-вывода в оптический тракт подвижного второго компонента, содержащего первую отрицательную и вторую линзы, неподвижного третьего компонента, содержащего первую положительную и вторую отрицательную линзы, и фотоприемного устройства, в неподвижном первом компоненте первая линза выполнена отрицательной, вторая линза выполнена положительной, третья линза выполнена отрицательной вогнуто-выпуклой, в подвижном втором компоненте первая линза выполнена вогнуто-выпуклой, вторая линза выполнена отрицательной вогнуто-выпуклой и дополнительно введена третья положительная двояковыпуклая линза, в неподвижном третьем компоненте первая и вторая линзы выполнены вогнуто-выпуклыми и дополнительно введены третья положительная выпукло-вогнутая линза и четвертая положительная вогнуто-выпуклая линза, причем подвижный второй компонент установлен в пространстве между неподвижными первым и третьим компонентами.

На чертеже представлена схема оптической системы тепловизионного прибора с двумя полями зрения.

Оптическая система состоит из расположенных вдоль оптической оси неподвижного первого компонента I, содержащего первую отрицательную выпукло-вогнутую линзу 1, вторую положительную выпукло-вогнутую линзу 2 и третью отрицательную вогнуто-выпуклую линзу 3, подвижного второго компонента II, содержащего первую 4 и вторую 5 отрицательные вогнуто-выпуклые линзы и третью положительную двояковыпуклую линзу 6, неподвижного третьего компонента III, содержащего первую положительную вогнуто-выпуклую линзу 7, вторую отрицательную вогнуто-выпуклую линзу 8, третью положительную выпукло-вогнутую линзу 9 и четвертую положительную вогнуто-выпуклую линзу 10, и фотоприемного устройства 11 с охлаждаемой диафрагмой 12. Подвижный второй компонент II установлен с возможностью ввода-вывода в оптический тракт в пространстве между неподвижными первым I и третьим III компонентами.

В таблице 1 приведены технические характеристики системы, работающей в среднем инфракрасном (ИК) диапазоне спектра.

Конструктивные параметры системы приведены в таблице 2.

В таблице 3 приведены расчетные значения концентрации энергии, характеризующие качество изображения объектива.

В узком поле зрения, соответствующем максимальному фокусному расстоянию, оптическая система работает следующим образом: излучение от бесконечно удаленного объекта проходит через линзы 1-3 неподвижного первого компонента I и фокусируется в плоскости промежуточного изображения, затем проходит через линзы 7-10 неподвижного третьего компонента III и попадает в фотоприемное устройство 11, в плоскости чувствительных элементов которого формируется изображение, при этом охлаждаемая диафрагма 12 фотоприемного устройства 11 выполняет функцию апертурной диафрагмы системы.

В широком поле зрения, соответствующем минимальному фокусному расстоянию, излучение проходит через линзы 1-3 неподвижного первого I и 4-6 подвижного второго II компонентов и фокусируется в той же плоскости промежуточного изображения, затем проходит через линзы 7-10 неподвижного третьего компонента III и попадает в фотоприемное устройство 11, при этом изображение формируется в той же плоскости чувствительных элементов и охлаждаемая диафрагма 12 фотоприемного устройства 11 является апертурной диафрагмой системы.

Изменения поля зрения (фокусного расстояния) оптической системы осуществляется вводом-выводом подвижного второго компонента II в оптический тракт в пространстве между неподвижными первым I и третьим III компонентами.

Оптическая система тепловизионного прибора с двумя полями зрения работает с относительным отверстием 1:4, в узком поле зрения фокусное расстояние f max ' = 230 м м , в широком поле зрения - f min ' = 34 м м , длина L=159,7 мм, при этом коэффициент телеукорочения T L = L / f max ' = 0,7 . Кратность изменения фокусного расстояния (поля зрения) M = f max ' / f min ' = 6,76 .

Таким образом, выполнение оптической системы тепловизионного прибора с двумя полями зрения в соответствии с предлагаемым техническим решением позволяет повысить кратность изменения поля зрения в 1,7 раза и уменьшить значение коэффициента телеукорочения в 1,5 раза при сохранении качества изображения. Это позволяет увеличить поле обзора в режиме широкого поля зрения и уменьшить габариты и массу тепловизионного прибора.

Оптическая система тепловизионного прибора с двумя полями зрения, состоящая из расположенных вдоль оптической оси неподвижного первого компонента, содержащего первую и вторую выпукло-вогнутые линзы и третью линзу, установленного с возможностью ввода-вывода в оптический тракт подвижного второго компонента, содержащего первую отрицательную линзу и вторую линзу, неподвижного третьего компонента, содержащего первую положительную и вторую отрицательную линзы, и фотоприемного устройства, отличающаяся тем, что в неподвижном первом компоненте первая линза выполнена отрицательной, вторая линза выполнена положительной, третья линза выполнена отрицательной вогнуто-выпуклой, в подвижном втором компоненте первая линза выполнена вогнуто-выпуклой, вторая линза выполнена отрицательной вогнуто-выпуклой и дополнительно введена третья положительная двояковыпуклая линза, в неподвижном третьем компоненте первая и вторая линзы выполнены вогнуто-выпуклыми и дополнительно введены третья положительная выпукло-вогнутая линза и четвертая положительная вогнуто-выпуклая линза, причем подвижный второй компонент установлен в пространстве между неподвижными первым и третьим компонентами.



 

Похожие патенты:

Изобретение может быть использовано в тепловизионных приборах с плавным изменением угловых размеров наблюдаемого пространства. Объектив содержит последовательно расположенные вдоль оптической оси неподвижный первый компонент, состоящий из положительной выпукло-вогнутой линзы, подвижные второй компонент, состоящий из первой отрицательной выпукло-вогнутой и второй двояковогнутой линз, и третий компонент, содержащий двояковыпуклую линзу, установленные с возможностью перемещения вдоль оптической оси, неподвижные четвертый компонент, содержащий отрицательную вогнуто-выпуклую линзу и дополнительно введенную положительную выпукло-вогнутую линзу, и пятый компонент, состоящий из первой отрицательной выпукло-вогнутой и второй двояковыпуклой линз.

Изобретение может быть использовано в тепловизионных приборах с плавным изменением угловых размеров наблюдаемого пространства. Устройство состоит из последовательно расположенных неподвижного первого компонента, подвижных второго и третьего компонентов, установленных с возможностью перемещения вдоль оптической оси, неподвижных четвертого и пятого компонентов, между которыми формируется промежуточное изображение, и приемника излучения с охлаждаемой диафрагмой.

Изобретение может быть использовано в тепловизионных приборах с охлаждаемыми матричными приемниками излучения. Устройство состоит из объектива, матричного приемника излучения с охлаждаемой диафрагмой, блока обработки информации, блока позиционирования, блока стабилизации и блока калибровки.

Микрообъектив может быть использован в микроскопах для визуального наблюдения, вывода на TV-камеру и фотографирования малоконтрастных микроскопических структур, находящихся на пределе разрешающей способности световых микроскопов.
Изобретение может быть использовано в микроскопах, а также для визуального наблюдения и фотографирования малоконтрастных микроскопических структур, находящихся на пределе разрешающей способности световых микроскопов.

Изобретение может быть использовано в микроскопах, а также для визуального наблюдения и вывода на TV-камеру малоконтрастных микроскопических структур, находящихся на пределе разрешающей способности световых микроскопов.

Изобретение может быть использовано в микроскопах для наблюдения и фотографирования малоконтрастных микроскопических структур, находящихся на пределе разрешающей способности световых микроскопов.

Изобретение может использоваться в видеокамере с ПЗС-матрицей. Вариообъектив содержит четыре компонента и апертурную диафрагму, расположенную перед четвертым компонентом.

Микрообъектив содержит пять компонентов. Первый компонент содержит мениск, обращенный выпуклостью к пространству изображения и склеенный из отрицательного мениска, обращенного выпуклостью к пространству изображения, и размещенной перед ним положительной линзы.

Использование: относится к оптико-электронному приборостроению и может быть использовано в тепловизионных устройствах с матричными фотоприемными устройсвами. Цель: повышение разрешающей способности оптической системы тепловизионного прибора при сохранении ее компактности.

Изобретение относится к инфракрасным оптическим системам и может быть использовано в тепловизорах. .

Изобретение относится к области оптики, к системам с переменным фокусным расстоянием, а именно к панкратическим системам, и может применяться в видеокамерах, цифровых фотоаппаратах или подобных им оптоэлектронных устройствах, имеющих приемник изображения.

Изобретение относится к оптическому приборостроению и может быть использовано в телевизионных системах, в системах наведения, оптической связи, управления и в наблюдательных приборах.

Изобретение относится к измерительной технике, а также к области автоматизации технологических процессов в машиностроении. .

Изобретение относится к оптическому приборостроению и может быть использовано в телевизионных системах. .

Изобретение относится к специальным объективам и может использоваться для наблюдения местности в ближней ИК-области спектра. .

Изобретение относится к специальным объективам и может быть использовано в прицепах. .

Изобретение относится к оптическому приборостроению, а именно к объективам с дискретным изменением фокусного расстояния, предназначенным для работы в наблюдательных приборах с телевизионными приемниками.

Изобретение относится к светосильным объективам и может быть использовано при работе с различными приемниками изображения. .

Изобретение может быть использовано в тепловизионных приборах с плавным изменением угловых размеров наблюдаемого пространства. Объектив содержит последовательно расположенные вдоль оптической оси неподвижный первый компонент, состоящий из положительной выпукло-вогнутой линзы, подвижные второй компонент, состоящий из первой отрицательной выпукло-вогнутой и второй двояковогнутой линз, и третий компонент, содержащий двояковыпуклую линзу, установленные с возможностью перемещения вдоль оптической оси, неподвижные четвертый компонент, содержащий отрицательную вогнуто-выпуклую линзу и дополнительно введенную положительную выпукло-вогнутую линзу, и пятый компонент, состоящий из первой отрицательной выпукло-вогнутой и второй двояковыпуклой линз.
Наверх