Установка для испытаний на высокотемпературную эрозию

Изобретение относится к испытательной технике и может быть использовано для испытания сплавов, покрытий и других материалов, работающих в условиях высокотемпературной эрозии, характерных для труб топочных экранов бойлеров тепловых электростанций. Установка содержит стойку, закрепленную в фундаменте, станину, установленную на стойке, камеру и бункер абразива, расположенные на станине, тракт подачи абразива, соединенный с бункером, и тракт подачи воздуха, служащие входами в смеситель, выходом из смесителя является сопло подачи воздушно-абразивной смеси, которое, как и держатель образца, расположено в камере. В установку дополнительно введены нагреватель воздушно-абразивной смеси, закрепленный на смесителе, нагреватель образца, закрепленный на держателе, патрубок, установленный в камеру через резьбовое отверстие на боковой поверхности ее корпуса, для фиксации сопла в камере и расстояния до рабочей поверхности испытуемого образца в держателе, фланец, установленный на основании камеры с помощью резьбовых соединений, для фиксации держателя с испытуемым образцом в камере под углом к оси сопла. Технический результат: расширение функциональных возможностей установки и повышение достоверности испытаний. 1 ил.

 

Техническое решение относится к испытательной технике и может быть использовано для испытания сплавов, покрытий и других материалов, работающих в условиях высокотемпературной эрозии, характерных для труб топочных экранов бойлеров тепловых электростанций.

Известна установка для испытаний материалов на газоабразивное изнашивание [1], в которой реализуется механическое ускорение частиц абразива с помощью центробежных сил, реализуемых при вращении ротора электродвигателем, за счет чего обеспечивающим возможность регулирования скорости подачи частиц абразива. При этом образцы закрепляются симметрично относительно оси ротора в держателе, обеспечивающем возможность изменения угла атаки абразива. Недостатком установки является неоднородность струи абразива по сечению, что снижает достоверность результатов при испытании покрытий [2], кроме того отсутствует возможность проведения испытаний при высоких температурах.

Техническое решение, расширяющее функциональные возможности установки [1] и обеспечивающее возможность проведения испытаний покрытий на высокотемпературное газоабразивное изнашивание [3], предполагает размещение вращающихся образцов в электропечи, заполненной взвешенными частицами абразива. Недостатками технического решения являются отсутствие возможности регулирования скорости соударения частиц с образцом и угла атаки абразива, что снижает достоверность результатов при испытании покрытий.

В качестве прототипа выбрана установка [4], в которой реализуется ускорение абразива сжатым воздухом, благодаря чему обеспечивается возможность регулирования скорости подачи частиц абразива. Установка включает камеру, бункер абразива, тракт подачи абразива, тракт подачи воздуха, смеситель, сопло подачи воздушно-абразивной смеси и держатель образца. В отличие от установки для испытаний на высокотемпературную эрозию [5] сопло подачи воздушно-абразивной смеси размещается в электропечи. Благодаря наличию сопла устраняется неоднородность струи абразива по сечению. Температура нагрева испытуемого образца, закрепляемого в держателе, устанавливается при контакте с нагретым в электропечи воздухом, после чего по соплу подается абразив.

К недостаткам прототипа относятся: использование одного нагревателя (электропечи) для совместного регулирования температуры нагрева воздушно-абразивной смеси и испытуемого образца, что не отражает условия работы при высокотемпературной эрозии широкого круга деталей, например, в электроэнергетике труб топочных экранов бойлеров и снижает достоверность результатов испытаний на высокотемпературную эрозию; жесткая конструкция держателя образца, позволяющая проводить испытания только при двух углах атаки абразива (20 и 90°) и при фиксированном расстоянии от сопла до испытуемого образца (10 мм).

Задачей технического решения является расширение функциональных возможностей установки и повышение достоверности испытаний.

Поставленная задача решается тем, что в установке для испытаний на высокотемпературную эрозию, содержащей стойку, закрепленную в фундаменте, станину, установленную на стойке, камеру и бункер абразива, расположенные на станине, тракт подачи абразива, соединенный с бункером, и тракт подачи воздуха, служащие входами в смеситель, выходом из смесителя является сопло подачи воздушно-абразивной смеси, которое, как и держатель образца, расположено в камере, отличающейся тем, что дополнительно введены нагреватель воздушно-абразивной смеси, закрепленный на смесителе, и нагреватель образца, закрепленный на держателе, патрубок, установленный в камеру через резьбовое отверстие на боковой поверхности ее корпуса, для фиксации сопла в камере и расстояния до рабочей поверхности испытуемого образца в держателе, фланец, установленный на основании камеры с помощью резьбовых соединений, для фиксации держателя с испытуемым образцом в камере под углом к оси сопла.

На фиг. 1 изображена схема установки для испытаний на высокотемпературную эрозию, в состав которой входит камера 1, бункер абразива 2, тракт подачи абразива 3, тракт подачи воздуха 4, смеситель 5, сопло подачи воздушно-абразивной смеси 6, держатель образца 7, нагреватели 8 и 9, фиксирующий фланец 10, фиксирующий патрубок 11, станина 12, стойка 13.

Установка работает следующим образом. Образец закрепляется в держателе 7, который помещается в камеру 1 и фиксируется, под определенным углом, фланцем 10. После фиксируется сопло подачи воздушно-абразивной смеси 6 в патрубке 11, таким образом, устанавливается расстояние от сопла до рабочей поверхности испытуемого образца и угол атаки между рабочей поверхностью образца в держателе и осью сопла. При подаче сжатого воздуха по тракту 4 абразивный материал из бункера 2 поступает по тракту подачи абразива 3 в смеситель 5 за счет инжектирования. После чего происходит смешивание воздуха с абразивом и образуется воздушно-абразивная смесь. Нагрев смеси воздуха и абразива осуществляется с помощью нагревателя 8, после чего она выходит через сопло 6. После взаимодействия воздушно-абразивной смеси с испытуемым образцом абразив ссыпается в бункер, инжектируется в тракт подачи абразива 3, так замыкается круговорот абразива в представленной лабораторной установке. Отработавший воздух удаляется вытяжкой через верхнюю часть установки. Нагрев образца осуществляется с помощью нагревателя 9 посредством теплопередачи от держателя 7. После завершения испытаний образец извлекается из держателя, производится его очистка от частиц абразива и взвешивание. О величине износа судят по значению разности масс образца до и после испытания.

Изменение угла атаки между рабочей поверхностью образца в держателе 7 и осью сопла 6 в интервале 30-90° происходит за счет фиксирующего фланца 10, устанавливаемого на камере 1, что позволяет позиционировать держатель с закрепленным в нем образцом относительно оси сопла и расширить функциональные возможности установки. Указанные углы атаки являются характерными при испытаниях на газоабразивное изнашивание и эрозию сплавов и покрытий. Так закаленные стали наиболее интенсивно изнашиваются при угле атаки 60°, а твердые покрытия - при угле атаки 90°, причем при изменении угла атаки от 60° до 30° скорость изнашивания покрытий уменьшается быстрее, чем у закаленной стали. Обнаруженные закономерности связаны с тем, что твердость исследуемых покрытий выше, чем закаленной стали. Поэтому при испытаниях с большими углами атаки для исчерпания пластичности и создания наклепанного слоя, способного разрушаться, то есть для реализации основного механизма изнашивания в данных условиях испытаний, у более твердых материалов, каковыми являются покрытия, необходимо меньше времени, чем стали. При малых углах атаки, когда основным для изнашивания является механизм микрорезания, покрытия могут оказаться более стойкими, чем сталь [2].

Изменение расстояния от сопла до рабочей поверхности испытуемого образца в держателе 7 в интервале 10-50 мм происходит за счет фиксации сопла подачи воздушно-абразивной смеси 6 фиксирующим патрубком 11, установленным на камере 1, что позволяет расширить функциональные возможности установки. Интервал дистанции 10-50 мм выбран из следующих соображений. При дистанции менее 10 мм частицы абразива не успевают разогнаться до максимальной, требуемой по условиям испытаний скорости (76 м/с), а свыше 50 мм происходит снижение скорости частиц ниже минимальной, требуемой по условиям испытаний (38 м/с) [1].

Температуры нагрева воздушно-абразивной смеси и испытуемого образца изменяются раздельно с помощью двух отдельных нагревателей 8 и 9, что отражает условия работы при высокотемпературной эрозии широкого круга деталей, например, в электроэнергетике труб парогенераторов, и позволяет повысить достоверность результатов испытаний на высокотемпературную эрозию.

Литература

1. ГОСТ 23.201-78. Механические испытания. Обеспечение износостойкости изделий.

2. Л.И. Тушинский, А.В. Плохов, А.О. Токарев. В.И. Синдеев. Методы исследования материалов. - М.: Мир, 2004. - 384 с.

3. Н. Pokhmurska, В. Wielage, Т. Grund, M. Student and Y. Sirak. Arc sprayed coatings obtained from iron based cored wires under high temperature abrasive wear conditions. International Thermal Spray Conference Exposition ITSC 2008: book of abstract. Singapore: 2008. P.326-329.

4. S. Dallaire, Н. Levert, and J.-G. Legoux. Erosion Resistance of Arc-Sprayed Coatings to Iron Ore at 25 and 315°C. Journal of Thermal Spray Technology, Vol.10 (2), 2001. P.337-350.

5. DIN 50332-1989. Solid particle erosion test; basic rules.

Установка для испытаний на высокотемпературную эрозию, содержащая стойку, закрепленную в фундаменте, станину, установленную на стойке, камеру и бункер абразива, расположенные на станине, тракт подачи абразива, соединенный с бункером, и тракт подачи воздуха, служащие входами в смеситель, выходом из смесителя является сопло подачи воздушно-абразивной смеси, которое, как и держатель образца, расположено в камере, отличающаяся тем, что дополнительно введены нагреватель воздушно-абразивной смеси, закрепленный на смесителе, нагреватель образца, закрепленный на держателе, патрубок, установленный в камеру через резьбовое отверстие на боковой поверхности ее корпуса, для фиксации сопла в камере и расстояния до рабочей поверхности испытуемого образца в держателе, фланец, установленный на основании камеры с помощью резьбовых соединений, для фиксации держателя с испытуемым образцом в камере под углом к оси сопла.



 

Похожие патенты:

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации.

Изобретение относится к машиностроению, в частности к железнодорожному транспорту, и может быть использовано при испытаниях пар трения по определению предельных нагрузок и триботехнических характеристик.

Использование: для определения эрозионной стойкости твердых микро- и нанообъектов при воздействии кавитации. Сущность изобретения заключается в том, что одну грань исследуемого объекта упрочняют, после чего проводят кавитационное воздействие в герметичной камере с жидкостью при избыточном гидростатическом давлении, обработку исследуемого объекта ведут гидроакустическим потоком при плотности мощности ультразвукового излучения, достаточной для нахождения исследуемого образца во взвешенном состоянии, оценивают эрозионную стойкость по состоянию рельефа поверхности, его геометрическим и объемным параметрам по сравнению с первоначальным состоянием объекта.

Изобретение относится к технологии оценки качества смазочных масел, в частности к определению их смазочной способности. Способ определения смазывающей способности масел заключается в том, что эксплуатируют пару трения в присутствии смазки, пропускают через нее электрический ток, измеряют постоянный ток при неподвижной паре трения и при установившемся режиме трения, пробу масла постоянной массы нагревают при определенной температуре в течение постоянного времени.

Изобретение относится к области определения свойств материалов в условиях сухого трения, преимущественно для испытания структурных зон металла, образующихся в результате сварочных технологических процессов или локальной поверхностной термической обработки концентрированными источниками нагрева.

Изобретение относится к испытательной технике, в частности к устройствам для испытания металлов и сплавов, а также композиционных материалов и покрытий на стойкость к абразивному изнашиванию при нормальной и повышенных температурах.

Изобретение относится к области триботехнических испытаний материалов и может быть использовано при создании новых сталей и сплавов с особыми свойствами для тяжелых условий эксплуатации, а также при оценке работоспособности модифицированных поверхностей и покрытий.

Трибометр // 2559798
Изобретение относится к испытательным и обкаточным стендам. Трибометр состоит из предметного стола, ограничивающей рамки, заполняемой пробой насыпного груза, навески и тягового органа для предметного стола с прибором для определения его тягового усилия.

Техническое решение относится к устройствам для измерения величины износа и температуры изделий при трении. Устройство для измерения величины износа и температуры изделия при трении содержит последовательно соединенные источник лазерного излучения, светоделитель и как минимум один измерительный волоконно-оптический световод, второй конец которого размещен в изделии на глубине Н, равной или меньшей расстояния R до трущейся поверхности.

Изобретение относится к машиностроению и может быть использовано для изучения процесса работы поверхностей деталей машин. Согласно заявленному способу определения длительности этапов эксплуатации циклически нагруженных поверхностей деталей машин регистрируют изменения во времени параметра состояния контактирующих поверхностей деталей, нагруженных в соответствии с реальными условиями эксплуатации.

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытание на изменение величины исходного параметра от свойств поверхностной и приповерхностной структур, сформированных в процессе изготовления твердосплавного режущего материала. Проводят эталонные испытания на износостойкость в процессе резания материалов, вызывающие интенсивный диффузионный износ при оптимальной или близкой к ней скорости резания. Строят эталонную корреляционную зависимость «износостойкость - исходный параметр». Осуществляют статистический контроль только величины исходного параметра у текущей партии твердосплавных режущих инструментов, а прогнозирование износостойкости для текущей партии твердосплавных инструментов - на основании зависимости. В качестве исходного параметра используют величину обратимой упругой составляющей глубины внедрения наноиндентора в поверхность и приповерхностную область сложных карбидных зерен, содержащихся в поверхностной и приповерхностной структурах твердого сплава, с увеличением которой износостойкость твердосплавных режущих инструментов группы применяемости Р возрастает. Технический результат: повышение точности и снижение трудоемкости при прогнозировании износостойкости твердосплавных режущих инструментов. 2 ил.

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины исходного параметра от свойств поверхностной и объемной структуры, сформированной в процессе изготовления твердосплавного режущего материала. Проводят эталонные испытания на износостойкость в процессе резания материалов, вызывающих интенсивный адгезионный износ при оптимальной или близкой к ней скорости резания. Строят эталонную - корреляционную зависимость «износостойкость - исходный параметр». Контролируют только величину исходного параметра у текущей партии твердосплавных режущих инструментов и прогнозируют износостойкость для текущей партии твердосплавных режущих инструментов на основании зависимости. В качестве исходного параметра используют величину площади гистерезисной петли, полученной при измерении удлинения и последующего укорочения твердосплавного образца, соответственно при нагревании и последующем охлаждении, с увеличением которой износостойкость твердосплавных режущих инструментов, группы применяемости К, возрастает. Технический результат: повышение точности и снижение трудоемкости при прогнозировании износостойкости твердосплавных режущих инструментов. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области машиностроения и может быть использовано при определении стойкости инструмента методом, основанным на корреляции между магнитными и физико-механическими свойствами. Для определения стойкости инструмента, работающего в составе пресса для холодной обработки металлов давлением при рабочей нагрузке в плоскости, перпендикулярной плоскости обработки, измеряют коэрцитивную силу на наиболее нагруженных участках инструмента в процессе его эксплуатации. Измерение производят в плоскости обработки в направлениях, параллельном и перпендикулярном плоскости рабочей нагрузки на инструмент. Полученные значения сопоставляют с критическими и производят оценку текущего ресурса инструмента. Для оценки используют наименьшее из рассчитанных по приведенным формулам значений текущего ресурса. В результате при определении стойкости инструмента обеспечивается учет влияния конструкции и материала инструмента, степени износа и рабочей нагрузки на технологической операции, что позволяет повысить точность определения. 2 ил., 2 табл., 1 пр.

Изобретение относится к способам и устройствам для измерения переменных величин и может использоваться в железнодорожных депо для контроля износа пластин коллектора. Технический результат, достигаемый изобретением, - повышение точности измерений, оперативности получения данных по износу пластин коллектора тягового электродвигателя локомотива. Указанный технический результат достигается тем, что измерительные датчики одновременно контролируют всю поверхность коллектора. Сущностью изобретения является то, что при визуальном осмотре поверхность коллектора условно делят, начиная от свободного конца, на четыре равные по длине пояса: I, II, III, IV, размещают над поверхностью коллектора N пронумерованных датчиков измерения расстояния, размещенных на одном кронштейне с возможностью горизонтального перемещения по нему, и расположенных над соответствующими поясами, приводят во вращение коллектор и в течение одного оборота с помощью датчиков непрерывно фиксируют расстояние до поверхности пластин коллектора, затем перемещают датчики по кронштейну и снова вращают коллектор, результаты измерений поступают в анализатор, в котором накапливаются данные по каждому поясу, полученные фактические расстояния по поясам II, III, IV сравниваются с расстояниями по I базовому поясу и по разности величин определяют износ пластин коллектора, результаты через блок управления поступают на дисплей компьютера. 1 ил.

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины исходного параметра от свойств поверхностной и объемной структуры, сформированной в процессе изготовления твердосплавного режущего материала, проведение эталонных испытаний на износостойкость в процессе резания материалов, вызывающих интенсивный диффузионный износ при оптимальной или близкой к ней скорости резания, построение эталонной - корреляционной зависимости «износостойкость - исходный параметр», статистический контроль только величины исходного параметра у текущей партии твердосплавных режущих инструментов и прогнозирование износостойкости для текущей партии твердосплавных режущих инструментов на основании зависимости. В качестве исходного параметра используют величину площади гистерезисной петли, полученной при измерении удлинения и последующего укорочения твердосплавного образца, соответственно при нагревании и последующем охлаждении, с уменьшением которой износостойкость твердосплавных режущих инструментов группы применяемости Р возрастает. Технический результат: повышение точности и снижение трудоемкости при прогнозировании износостойкости твердосплавных режущих инструментов. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области физики, а именно к исследованию материалов механическими способами. Устройство содержит основание, ленту шлифовальной шкурки, приводной механизм. На валу приводного механизма зафиксирован трос, второй конец которого закреплен к нагружающему устройству с прикрепленными на нем испытательными панелями. Технический результат: повышение точности испытаний, снижение трудоемкости и уменьшение времени проведения испытаний. 1 з.п. ф-лы, 2 ил.

Изобретение относится к машиностроению и может быть использовано для точного измерения торцевого износа ротора в процессе работы. Устройство содержит ротор, механически соединенный со статором, источник излучения, выход которого оптически соединен с входом блока оптики, два объектива, выходы которых оптически соединены с входами соответствующих фотоприемников, выходы которых соединены с соответствующими входами дифференциального усилителя, выход которого соединен с входом импульсного вольтметра. На ротор нанесены две метки одинакового размера, выполненные в виде полосок с коэффициентом отражения, отличным от коэффициента отражения ротора. Первая метка нанесена на край ротора, а вторая метка сдвинута вдоль оси вращения ротора. Выходы блока оптики через первую и вторую метки оптически соединены с входами соответствующих объективов, при это в заявленное устройство введены усилитель, два аналого-цифровых преобразователя и микропроцессор. Технический результат - повышение точности измерения. 1 ил.

Изобретение относится к способу испытания на абразивный износ деталей машин при высокой температуре и высоких удельных давлениях и устройству для исследования абразивного износа деталей машин при высокой температуре и высоких удельных давлениях, позволяющее определить абразивный износ, возникающий при работе механического оборудования, работающего в экстремально неблагоприятных эксплуатационных условиях. Сущность: контробразец (4) в виде стержня размещается по оси в контейнере (1), нагретом до температуры в пределах (500-1000) K, заканчивающийся образцом (5) с отверстием (6) и боковым каналом (7), после чего образец выдавливается через зазор, закрытый передвижным элементом (8), образованный между поверхностью скользящего элемента (8) и боковым каналом (7) в образце (5), путем воздействия на контробразец (4), расположенный в отверстии (6) образца (5), стержнем (9) пуансона (10), вызывая удельное давление в пределах (300-1200) МПа, причем скорость перемещения передвижного элемента (8) по отношению к зазору составляет 100 м/мин. Устройство для испытания на абразивный износ содержит контейнер (1), выполненный с возможностью нагрева до температуры в пределах (500-1000) К, в отверстии (3) которого размещены стержень (9) пуансона (10) и контробразец (4), входящий в отверстие (6) образца (5) с боковым каналом (7), и скользящий элемент (8), закрывающий отверстие (6), причем стержень (9) пуансона (10) выполнен с возможностью создания удельного давления (300-1200) МПа, а скользящий элемент (8) закрывает отверстие (6) при скорости перемещения относительно зазора (0,1-100) м/мин. Технический результат: возможность испытания материалов на абразивный износ, в частности металлов, характеризующийся изменением формы радиуса между отверстием и боковым каналом, а также изменением веса образца после прохождения заданного пути пластифицированным контробразцом. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к способам оценки эксплуатационных свойств топлив, в частности к оценке противоизносных свойств топлив для реактивных двигателей, и может быть использовано в нефтехимической, авиационной и других отраслях промышленности. Сущность: к вращающемуся относительно горизонтальной оси контробразцу - усеченному конусу, погруженному в испытуемое топливо с заданной температурой, прижимают с постоянной нагрузкой сферический образец в форме шарика, жестко закрепленный в держателе. Держатель имеет возможность свободно вращаться относительно вертикальной оси с периодическим притормаживанием. По окончании испытания замеряют максимальный и минимальный диаметры дорожки износа на поверхности шарика и рассчитывают значение показателя износа. Показатель износа характеризует противоизносные свойства топлив. Технический результат: повышение достоверности оценки противоизносных свойств топлив для реактивных двигателей за счет приближения условий испытания к реальным условиям работы плунжерной пары топливного насоса газотурбинных двигателей. 1 табл., 2 ил.

Изобретение относится к области испытательной техники и предназначено для определения стойкости гранулированных материалов к истирающим нагрузкам в интенсивном режиме, в частности катализаторов крекинга. Устройство содержит испытательную камеру, состоящую из корпуса и крышки, жестко закрепленную на штоке, совершающем вертикально возвратно-поступательное перемещение 1300 раз в минуту посредством кривошипно-шатунного механизма. Испытательная камера имеет овальную внутреннюю геометрию, позволяющую снизить вклад ударной нагрузки и увеличить роль истирающей нагрузки на гранулированные материалы в процессе испытаний. Технический результат: возможность моделировать процессы истирания частиц в реакторах с движущимся слоем катализаторов. 2 ил., 3 табл.
Наверх