Способ формирования астатических систем управления объектами с неопределенными параметрами на основе встроенных моделей и модальной инвариантности

Изобретение относится к области астатического автоматического управления динамическими объектами с неопределенными параметрами на основе встроенной модели движения объекта и модальной инвариантности. Способ заключается в том, что формируют с помощью встроенной эталонной модели движения объекта модально-инвариантную подсистему, обладающую интегрирующим свойством (при инвариантном нулевом корне ее характеристического многочлена), формируют входной задающий сигнал для сформированной подсистемы в виде усиленной разности заданной и измеряемой управляемой координаты объекта, что обеспечивает астатизм замкнутой системы. На примере автоматического управления объектом второго порядка показано получение астатизма по управляющему и возмущающему воздействиям, а также уменьшение чувствительности сформированной системы к неопределенности параметров объекта. Изобретение направлено на уменьшение чувствительности астатической системы к неопределенности параметров объекта. 4 ил.

 

Изобретение относится к способам формирования астатических систем автоматического управления динамическими объектами авиационной техники с неопределенными параметрами, известными лишь приближенно.

Известен способ (прототип) формирования статических систем автоматического управления динамическими объектами с неопределенными параметрами на основе теории модально-инвариантных систем управления (Елисеев В.Д., Комаров А.К. Модально-инвариантные системы управления: Учебное пособие. - М.: Изд-во МАИ, 1983, - 69 с., ил.) в соответствии с изобретением (Петров Б.Н., Елисеев В.Д., Соколов Н.И., Комаров А.К. Система автоматического управления многомерным нестационарным объектом. Авт.св. №429642, СССР, 28.01.74), заключающийся в том, что формируют эталонную модель движения объекта с приближенно известными параметрами, которой управляет наряду с объектом астатическое исполнительное устройство системы, формируют эталонный входной сигнал исполнительного устройства на основе суммирования усиленных сигналов переменных состояния модели, суммируют его с задающим сигналом, измеряют координаты объекта, формируют разностные сигналы координат объекта и соответствующих координат модели, формируют сигнал коррекции в виде суммы усиленных разностных сигналов, суммируют его с входным эталонным и задающим сигналами исполнительного устройства, а также со своими коэффициентами усиления суммируют с входными сигналами каждого интегратора модели, т.е. с производными ее переменных состояния.

Достоинством прототипа является существенное уменьшение чувствительности динамики системы к неопределенности параметров объекта

Недостатком прототипа является отсутствие астатизма по управляющему и возмущающим воздействиям.

Отличие предлагаемого способа от прототипа состоит в том, что для обеспечения астатизма предварительно формируют по прототипу подсистему так, чтобы она обладала интегрирующим свойством независимо от вариаций параметров объекта, формируют входной задающий сигнал сформированной подсистемы в виде усиленной разности сигналов заданной и измеряемой управляемой координаты объекта.

Такая последовательность действий над измеряемыми и дополнительно формируемыми сигналами позволяет синтезировать астатическую систему с одновременным уменьшением чувствительности к неопределенности параметров объекта при увеличении коэффициентов усиления разностных сигналов.

Суть изобретения поясняется фиг. 1, где изображена схема астатической системы автоматического управления объектом с неопределенными параметрами, сформированная по предлагаемому способу; на фиг. 2 представлены конкретизированные схемы эталонной модели объекта управления второго порядка с приближенно известными параметрами и модели самого объекта при возможных разбросах его параметров. На фиг. 3 и фиг. 4 представлены переходные процессы изменения управляемой координаты объекта по результатам моделирования сформированной в примере системы.

Принятые обозначения:

1 - усилитель сигнала разности заданной xз и измеряемой x управляемой (выходной) координаты объекта;

2 - астатическое исполнительное устройство системы, управляющее объектом и эталонной моделью его движения;

3 - объект управления;

4 - эталонная модель движения объекта (виртуальный объект);

5 - блок формирования эталонного сигнала (суммы усиленных сигналов переменных состояния модели, формирующих эталонный контур);

6 - блок формирования сигнала коррекции (суммы усиленных разностных сигналов координат объекта и модели);

xз - заданное значение управляемой координаты объекта;

x - измеряемое значение управляемой координаты объекта;

xм - управляемая координата модели;

d - выходная координата и сигнал исполнительного устройства (вход объекта и модели);

uз - входной задающий сигнал подсистемы (усиленный сигнал разности заданного xз и измеряемого x значений управляемой координаты объекта);

uэ - эталонный входной сигнал исполнительного устройства (сумма усиленных сигналов переменных состояния модели);

uк - сигнал коррекции (сумма усиленных разностных сигналов координат объекта и соответствующих координат модели);

u - результирующий входной сигнал исполнительного устройства (u=uз-uэ-uк).

Последовательность действий по способу заключается в следующем.

Формируют эталонную модель 4 движения объекта 3 с приближенно известными параметрами уравнений объекта 3 с входным сигналом в виде выходного сигнала исполнительного устройства 2 системы.

Формируют в блоке 5 эталонный входной сигнал uэ исполнительного устройства 2 в виде суммы усиленных сигналов переменных состояния модели 4. Коэффициенты усиления эталонного сигнала выбирают так, чтобы образовавшийся эталонный контур обладал интегрирующим свойством (имел по крайней мере нулевой корень характеристического уравнения). Это обеспечивают выбором коэффициента усиления обратной связи по управляемой координате xм модели 4.

Измеряют координаты объекта 3.

Формируют разностные сигналы координат объекта 3 и соответствующих координат модели 4.

Формируют в блоке 6 сигнал коррекции uк как сумму усиленных разностных сигналов.

Суммируют сигнал коррекции uк с эталонным uэ и задающим uз сигналами, а также со своими коэффициентами усиления с входными сигналами интеграторов модели, т.е. с производными переменных состояния, как это делается в наблюдающих устройствах. Сигнал коррекции позволяет уменьшить чувствительность сформированной подсистемы к неопределенности параметров объекта. Коэффициенты усиления должны быть выбраны или рассчитаны так, чтобы не нарушить интегрирующее свойство получающейся подсистемы.

Отметим, что в упрощенном варианте сигнал коррекции модели 4 суммируют только с входным сигналом модели (дополнительно к сигналу d), что резко упрощает расчет формируемой подсистемы, обладающей интегрирующим свойством.

Формируют задающий сигнал uз подсистемы в виде усиленного в усилителе 1 сигнала разности заданного xз и измеряемого x значений управляемой координаты объекта. Этот сигнал uз суммируют с эталонным сигналом uэ и сигналом коррекции uк, получая тем самым результирующий входной сигнал u=uз-uэ-uк исполнительного устройства 2.

В результате сформированная по предлагаемому способу система обеспечивает астатизм как по управляющему, так и по возмущающим воздействиям, а также уменьшение чувствительности к неопределенности параметров объекта при увеличении коэффициентов усиления разностных сигналов.

Рассмотрим предлагаемый способ на примере упрощенного синтеза астатической системы управления объектом 3 второго порядка, имеющего дифференциальное уравнение

d2x/dt2+a1dx/dt+a0x=bd+f,

где a1, a0, b - неопределенные параметры уравнения объекта с априорно известными значениями: a1=5, a0=100, b=50, которые реально могут иметь в 1,5 раза большие или в 1,5 раза меньшие значения в непредвиденные стороны;

f - постоянное неопределенное возмущение, которое может принимать максимальные значения, равные по величине 75 возможно разных знаков.

Пусть измеряются координаты объекта dx/dt и x, где x - управляемая координата объекта 3.

Пусть исполнительное устройство 2 имеет передаточную функцию вида

WИУ(s)=625/(s2+32s+625).

Последовательность действий для рассматриваемого примера

Формируют встроенную модель 4 движения объекта 3, которой управляет исполнительное устройство 2 по сигналу d, описываемую уравнением объекта 3 с приближенно известными параметрами объекта, т.е. в виде

d2xм/dt2+5dxм/dt+100xм=50d.

Формируют эталонный входной сигнал исполнительного устройства 2 для управления объектом и виртуальным объектом (эталонной моделью) с обеспечением интегрирующего свойства образующегося эталонного контура, например, полагая при WИУ(s)=1 в виде желаемого уравнения

d2xм/dt2+8dxм/dt=50uз.

Предполагая в упрощенном расчете WИУ(s)=1, найдем требуемые коэффициенты блока 5: по координате dxм/dt, равный (8-5)/50, а по координате xм, равный -100/50.

Это означает, что сигнал uэ равен

uэ=3/50dxм/dt-2xм.

На исполнительное устройство этот сигнал попадает с отрицательным знаком.

Положительная обратная связь 2xм обеспечивает интегрирующее свойство эталонной системы, состоящей из исполнительного устройства (или его модели в усложненном варианте), модели объекта (виртуального объекта), блока 5.

Формируют сигнал коррекции uк в виде суммы усиленных разностных сигналов (dx/dt-dxм/dt) и (x-xм) с выбираемыми коэффициентами усиления, которые возьмем вначале равными 0,5 и 1 соответственно. В другом случае увеличим их в 20 раз для демонстрации уменьшения чувствительности системы к неопределенности параметров объекта (фиг. 4).

Формируют входной задающий сигнал uз для сформированной подсистемы в виде

uз=к(xз-x),

где коэффициент к усилителя 1 находят моделированием сформированной системы, обеспечивая приемлемые процессы управления при неблагоприятных значениях неопределенных параметров объекта, когда его уравнения имеют два крайне неблагоприятных вида

d2x/dt2+3.3dx/dt+67x=75d+75,

d2x/dt2+7dx/dt+150x=33.3d+75.

Схема моделирования сформированной системы показана на фиг. 1, где схемы имитационного моделирования объекта 3 и его эталонной модели 4 приведены на фиг. 2.

Переходные процессы управляемой координаты x при заданном значении xз=10 приведены на фиг. 3 при выбранном коэффициенте усилителя 1, равном 0,8, для расчетных значений параметров объекта и двух крайне неблагоприятных. Этот коэффициент выбран из условия минимальной длительности наиболее медленного переходного процесса при допустимом перерегулировании наиболее быстрого процесса, равном 16%. На фиг. 4 приведены аналогичные процессы, но при увеличенных в 20 раз значениях коэффициентов усиления разностных сигналов.

Сравнение процессов на фиг. 3 и 4 показывает уменьшение чувствительности системы к неопределенности параметров объекта при увеличении коэффициентов усиления разностных сигналов, что проявляется в уменьшении разброса длительности и перерегулирования переходных процессов. На 4-й секунде показано влияние возмущающего воздействия f=75. Как видно, астатизм также обеспечивается.

Технический результат от использования изобретения заключается в том, что способ позволяет устранить недостаток прототипа в части отсутствия астатизма и сохранить его достоинства в части уменьшения чувствительности астатической системы к неопределенности параметров объекта при увеличении коэффициентов усиления разностных сигналов, что связано с особенностью модально-инвариантных систем, допускающих такую возможность.

Изобретательский уровень предлагаемого способа подтверждается отличительной частью формулы изобретения, а именно предварительным формированием модально-инвариантной подсистемы, понижающей чувствительность к неопределенности параметров объекта с одновременным обеспечением интегрирующего свойства разомкнутой системы для получения астатизма по управляющим и возмущающим воздействиям замкнутой системы.

Способ формирования астатических систем управления объектами с неопределенными параметрами на основе встроенных моделей и модальной инвариантности, заключающийся в том, что формируют эталонную модель движения объекта с приближенно известными параметрами, которой управляет наряду с объектом астатическое исполнительное устройство системы, формируют эталонный входной сигнал исполнительного устройства на основе суммирования усиленных сигналов переменных состояния модели, суммируют его с задающим сигналом, измеряют координаты объекта, формируют разностные сигналы координат объекта и соответствующих координат модели, формируют сигнал коррекции в виде суммы усиленных разностных сигналов, суммируют его с входным эталонным и задающим сигналами исполнительного устройства, а также со своими коэффициентами усиления суммируют с входными сигналами каждого интегратора модели, т.е. с производными ее переменных состояния, отличающийся тем, что формируют по прототипу подсистему так, чтобы она обладала интегрирующим свойством независимо от вариаций параметров объекта, формируют входной задающий сигнал для сформированной подсистемы в виде усиленной разности сигналов заданной и измеряемой управляемой координаты объекта.



 

Похожие патенты:

Изобретение относится к компьютерной технике. Технический результат - автоматизированное управление климатом на ограниченной территории.

Изобретение относится к области электротехники и может быть использовано в промышленных технологических комплексах прокатного производства. Технический результат - повышение качества регулирования и снижение динамических нагрузок путем ограничения колебаний, вызванных нелинейной зависимостью момента прокатки от угловой скорости электропривода при коррекции контура тока электропривода.

Изобретение относится к области систем автоматического управления. Технический результат заключается в повышении быстродействия системы управления.

Изобретение относится к области средств автоматизации и может использоваться в системах управления технологическими процессами в химической промышленности, теплотехнике, энергетике.

Изобретение относится к области электротехники и может быть использовано в системе управления электроприводами. Техническим результатом является повышение быстродействия и уменьшение динамической погрешности при регулировании скорости рабочего органа в электромеханической системе с упругими связями.

Изобретение относится к области систем автоматического управления, в частности к технике формирования управляющих сигналов, и может найти применение в следящих системах автоматического управления и регулирования с люфтом в механической передаче.

Изобретение относится к области электротехники и может быть использовано в следящих электроприводах с исполнительными двигателями постоянного тока или с синхронными машинами, работающими в режимах вентильного двигателя или бесколлекторного двигателя постоянного тока.

Изобретение относится к электроприводам и может быть использовано при создании их систем управления. .

Изобретение относится к области электротехники и может быть использовано в промышленных установках для обработки позиционными электроприводами заданных программ перемещения.

Изобретение относится к области электротехники и может быть использовано в любой следящей системе с вентильным двигателем. .

Изобретение относится к счетчикам, измеряющим ресурсы и, в частности, относится к системам измерения ресурса энергопотребления, снабженным устройством записи данных и выполненным с возможностью переноса собранных данных в базу данных и к способу использования счетчика энергии для интеллектуального энергопотребления. Техническим результатом является создание автоматической энергоизмерительной системы сбора данных от измерительных приборов, расположенных вблизи точки использования или потребления, которая эффективно мотивирует потребителя улучшать свое поведение при использовании энергии, не пренебрегая при этом приоритетами пользователя. Предложена система измерения ресурса, содержащая: конечное устройство (25), потребляющее ресурс энергопотребления для использования в здании (2) или в уличной осветительной системе, причем устройство содержит блок обнаружения, который генерирует информацию состояния и индикатор полезности (эффективности использования); интеллектуальный счетчик (20), содержащий схему связи c интерфейсом, выполненным с возможностью приема от упомянутого устройства информации состояния и упомянутого индикатора полезности; измерительное устройство, подключенное к среде (17), которая доставляет ресурс на упомянутое устройство; и управляющую схему, подключенную к измерительному устройству, для сбора данных потребления ресурса, причем управляющая схема подключена к схеме связи и выполнена с возможностью генерации данных мониторинга, подлежащих передаче в защищенном режиме на сервер (10), после обработки информации состояния и упомянутого индикатора. Данные мониторинга используются при определении тарифов на потребление, для стимулирования использования энергосберегающих устройств. 3 н. и 12 з.п. ф-лы, 3 ил.

Изобретение - способ автоматической компенсации влияния гармонических колебаний момента нагрузки в электромеханической системе и устройство для его осуществления относятся к электроавтоматике и могут найти применение при создании автоматизированных электроприводов постоянного и переменного тока. Технический результат - обеспечивается сокращение аппаратных или программных затрат при технической реализации системы. Способ заключается в исследовании спектрограммы скоростей электромеханической системы, выделении частоты наиболее существенного возмущения, вычислении полинома, формирующего математическую модель возмущения, введении этого полинома сомножителем в знаменатель передаточной функции регулятора, синтезе коэффициентов регулятора и обратных связей внутреннего контура. Устройство содержит внеконтурный формирователь, регулятор, силовой преобразователь, электродвигатель постоянного тока, измерительный блок, первый и второй элементы сравнения. Кроме этого в него введены три безынерционных звена обратных связей по напряжению, току и скорости. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области электротехники и может быть использовано при регулировании параметров сложных электромеханических систем, например электроприводов постоянного и переменного тока. Технический результат: улучшение динамической точности и сокращение аппаратных или программных затрат при технической реализации системы. Способ компенсации влияния гармонических колебаний момента нагрузки в электромеханической системе заключается в исследовании спектрограммы скоростей электромеханической системы, выделении частоты наиболее существенного возмущения, вычислении полинома, формирующего математическую модель возмущения, введении этого полинома сомножителем в знаменатель передаточной функции регулятора, синтезе коэффициентов регулятора и обратных связей внутреннего контура. При этом математическая модель возмущения делится на интегральную и колебательную составляющие. Устройство, реализующее способ, содержит последовательно соединенные внеконтурный формирователь, первый элемент сравнения, регулятор, второй элемент сравнения, интегратор, третий элемент сравнения, силовой преобразователь, подключенный к электродвигателю постоянного тока, измерительный блок, выполненный с возможностью измерения напряжения силового преобразователя, тока и скорости двигателя постоянного тока. Выходы измерительного блока соединены обратной связью по напряжению, току и скорости через соответствующие безынерционные звенья обратной связи по напряжению с коэффициентом передачи К1, по току с коэффициентом передачи К2, по скорости с коэффициентом передачи К3, с соответствующими инвертирующими входами третьего элемента сравнения, при этом выход блока измерения по скорости дополнительно подключен и инвертирующим входам первого и второго элементов сравнения.. 2 н.п. ф-лы, 4 ил.

Система адаптивного управления электрогидравлическим следящим приводом с контролем содержит сдвоенный золотник, сдвоенный исполнительный гидродвигатель, датчик обратной связи, линейный электродвигатель (ЛЭД) с обмоткой управления, модуль электрогидравлического усилителя, двухсистемную рулевую машинку, четыре канала адаптивного управления (КАУ), четыре контроллера межмашинного обмена (КМО), четыре приемопередачика. Канал адаптивного управления содержит задатчик, МКО-контроллер, процессор, узел МКО, PID – контроллер, микроконвертер, узел контроля, пять усилителей, усилитель мощности, элемент ИЛИ, соединенные определенным образом. Узел контроля содержит схему контроля узла МКО, модель рулевого привода (РП), формирователь импульса, два элемента задержки, три элемента И, элемент ИЛИ, соединенные определенным образом. Схема контроля узла содержит шесть регистров, сумматор, две схемы сравнения, пять триггеров, элементы И и ИЛИ, соединенные определенным образом. Модель РП содержит три усилителя, три ограничителя, четыре сумматора, интегрирующее и дифференцирующее звено, компаратор, соединенные определенным образом. Обеспечивается повышение помехозащищенности, точности и надежности системы адаптивного управления. 4 з.п. ф-лы, 11 ил.

Изобретение относится к автоматике. Способ расширения диапазона регулирования автоматических систем регулирования без потери устойчивости включает настройку регулятора, реализующего пропорциональную и интегральную составляющие закона регулирования, при которой сигнал управляющего воздействия зависит от величины ошибки регулирования и значений коэффициентов пропорциональной и интегральной составляющих. Сигнал управляющего воздействия формируют, корректируя значения коэффициентов пропорциональной и интегральной составляющих. Корректирующие воздействия происходят в соответствии со значениями степенной функции для пропорциональной составляющей ПИ-регулятора, а интегральной составляющей - с помощью обратно пропорциональной степенной зависимости, аргументом которой является ошибка регулирования. Для каждой составляющей закона регулирования в зависимости от значения ошибки величины пропорциональной и интегральной составляющих изменяются. Расширяется диапазон регулирования АСР. 3 ил.

Изобретение относится к области электротехники, в частности к позиционным электроприводам постоянного тока, и может быть использовано для автоматизации металлорежущих станков, электромеханических роботов, управления аэродинамическими рулями и в других механизмах систем радиотехники, автоматики и вычислительной техники. Техническим результатом является повышение надежности путем исключения перегрева обмоток электродвигателя сервопривода, вызванных потерей устойчивости сервопривода и переходом в режим автоколебаний. В сервоприводе, содержащим датчик входного сигнала, выход которого подключен к первому входу измерителя рассогласования, второй вход которого подсоединен к выходу датчика положения, а выход - ко входу цифрового компаратора, выход которого подключен ко входу драйвера электродвигателя, связанного через механический редуктор с исполнительным органом, на котором установлен датчик положения, для исключения перегрева обмоток электродвигателя, обусловленного потерей устойчивости управления сервоприводом в заданной точке позиционирования вследствие воздействия различных механических возмущающих факторов, например из-за износа рабочих поверхностей механической части редуктора, компаратор снабжен блоком задания зоны нечувствительности, вход которого соединен через детектор автоколебаний с выходом компаратора. 2 ил.

Изобретение относится к области электротехники, в частности к позиционным электроприводам постоянного тока, и может быть использовано для автоматизации металлорежущих станков, электромеханических роботов, управления аэродинамическими рулями и в других механизмах систем радиотехники, автоматики и вычислительной техники. Техническим результатом является исключение перегрева обмоток электродвигателя, обусловленного потерей устойчивости управления сервоприводом в заданной точке позиционирования вследствие воздействия различных механических возмущающих факторов, например из-за износа рабочих поверхностей механической части редуктора. В сервопривод, содержащий датчик входного сигнала, выход которого подключен к первому входу измерителя рассогласования, второй вход которого подсоединен к выходу датчика положения, а выход - ко входу компаратора, выход которого подключен ко входу управления преобразователя, соединенного с электродвигателем, связанным через механический редуктор с исполнительным органом, на котором установлен датчик положения, компаратор снабжен блоком задания зоны нечувствительности, вход которого соединен через последовательную цепь из ключа, усилителя с задержкой, выпрямителя и фильтра высоких частот с выходом компаратора. 1 ил.
Наверх