Светодиодная матрица

Светодиодная матрица относится к области информационной техники и может быть использована при построении крупногабаритных матричных экранов и иных средств отображения визуальных данных. Светодиодная матрица содержит несущий элемент, имеющий верхнее основание, на котором расположены светодиоды, и нижнее основание, на котором расположены элементы для управления светодиодами. При этом светодиодная матрица имеет защитное покрытие, однородно сформированное по всей площади верхнего основания из эластичного светопрозрачного эпоксидного компаунда с вязкостью 5050…6050 сП и твердостью 50…60 Шор А, полностью закрывающее все светодиоды. Использование изобретения позволит получить повышение надежности от механических повреждений, повышение степени защиты от электростатических повреждений кристалла светодиода. А также обеспечивается теплоперенос, стабилизируется температура светодиодов за счет прямого контакта компонента с корпусом светодиода, что увеличивает в 3-5 раз время эксплуатации видеоэкрана. 1 ил.

 

Изобретение относится к области информационной техники и может быть использовано при построении крупногабаритных матричных экранов и иных средств отображения визуальных данных.

Одним из требований к светодиодным матрицам является их надежность в эксплуатации, защищенность от механических повреждений при сохранении требуемых характеристик.

Известен светодиодный модуль {RU 67340}, содержащий полупроводниковый светоизлучающий кристалл, помещенный в расположенном в металлокерамическом корпусе отражателе, имеющим наклонные стенки, при этом полость отражателя заполнена оптически прозрачным компаундом.

Однако это покрытие для защиты кристалла от механических повреждений не обеспечивает требуемых оптических характеристик за счет невозможности получения равномерного светового излучения.

Известен светодиодный модуль {RU 2069418}. Он содержит несущий элемент-подложку, имеющую верхнее и нижнее основания и боковую поверхность. На верхнем основании подложки помещен, по меньшей мере, один полупроводниковый светоизлучающий элемент, поверх которого нанесено покрытие, выполненное из оптически прозрачного эпоксидного полимерного компаунда.

Это покрытие защищает светоизлучающий элемент от механических повреждений. Однако в конкретном данном случае покрытие обладает хрупкостью и недостаточной устойчивостью к воздействию тепла и света, что снижает надежность конструкции.

Известен светодиодный модуль {RU 2402110}. Он содержит несущий элемент, выполненный в виде объемного тела, имеющего верхнее и нижнее основания и боковую поверхность. На верхнем основании несущего элемента расположен, по меньшей мере, один полупроводниковый светоизлучающий элемент. Поверх полупроводникового светоизлучающего элемента расположено покрытие, выполненное из оптически прозрачного силиконового компаунда. Покрытие имеет куполообразную форму, при этом основание покрытия вписано в площадь верхнего основания несущего элемента. Угол между боковой поверхностью несущего элемента и его верхним основанием составляет величину не более 120°. Покрытие сформировано путем нанесения поверх полупроводникового светоизлучающего элемента капли указанного компаунда, который имеет вязкость от 2000 до 20000 сП, с последующим отверждением нанесенного компаунда.

Возможно обеспечивается повышение надежности конструкции и улучшение оптических свойств светодиодного модуля. Но экспериментальные исследования авторов показывают, что использованный материал для покрытия является непригодным для защиты светодиодных матриц, использованных в экранах отображения графической и видеоинформации коллективного пользования и иных средств отображения визуальных данных из-за низкой степени адгезии, которая не позволяет закрепить силиконовое покрытие на поверхность светодиодной матрицы.

Этот материал непригоден для использования в экранах коллективного пользования, так как на протяжении всего времени эксплуатации экран выделяет в атмосферу вредные для здоровья человека вещества.

Задачей заявляемого изобретения является создание светодиодной матрицы с покрытием, которое обеспечивает надежную защиту от механических повреждений при сохранении необходимого качества отображения видеоинформации.

В конкретном случае, учитывалось использование светодиодной матрицы непосредственно при построении крупногабаритных матричных экранов коллективного пользования.

Технический результат при использовании изобретения состоит в повторяемости светотехнических характеристик покрытия светодиодных матриц, что приводит к получению однородного покрытия по всей площади видеоэкрана, исключению образования бликов от внешних источников света и обеспечивает необходимую контрастность отображения видеоинформации, а также к повышению надежности от механических повреждений, повышению уровня защиты от электростатических повреждений кристалла светодиодов.

Поставленная задача с указанным техническим результатом достигается новой совокупностью существенных признаков. Причем материал, используемый для покрытия светодиодной матрицы, проявил новые свойства, неизвестные автору.

Сущность изобретения состоит в том, что светодиодная матрица содержит несущий элемент, имеющий верхнее основание, на котором расположены светодиоды, и нижнее основание, на котором расположены элементы для управления светодиодами. При этом светодиодная матрица имеет защитное покрытие, однородно сформированное по всей площади верхнего основания из эластичного светопрозрачного эпоксидного компаунда с вязкостью 5050…6050 сП и твердостью 50…60 Шор А, полностью закрывающее все светодиоды.

Такое выполнение защитного покрытия позволяет получить однородную по структуре верхнюю поверхность, полностью скрывающую расположенные на ней светодиоды. Новая совокупность существенных признаков необходима и достаточна для достижения указанного технического результата.

Исследования авторов показали, что использование такого защитного покрытия обеспечивает теплоперенос, стабилизируя температуру светодиодов за счет прямого контакта компонента с корпусом светодиода, что увеличивает в 3-5 раз время эксплуатации видеоэкранов.

Формирование диффузной поверхности светодиодной матрицы препятствует образованию бликов от внешних источников света и повышает уровень контрастности, необходимый для правильного отображения видеоинформации.

В ходе экспериментальных исследований авторы определили, что также повышается влагозащищенность компонентов и печатной платы.

Сущность изобретения поясняется Фиг.1, где представлен общий вид светодиодной матрицы. Светодиодная матрица содержит несущий элемент, имеющий основание 1 верхнее, на котором расположены светодиоды 2. Основание 3 нижнее, на котором расположены элементы 4 для управления светодиодами. Покрытие 5 защитное сформировано по всей площади основания 1 верхнего так, что полностью защищают светодиоды 2. Покрытие 5 защитное выполнено из эластичного светопрозрачного эпоксидного компаунда с вязкостью 5050…6050 сП и твердостью 50…60 Шор А, полностью закрывающее все светодиоды.

Устройство работает следующим образом:

Светодиодные матрицы собраны в видеоэкран, который подключают к цепи внешнего питания. Для получения видеоизображения покрытие выполнено из эластичного светопрозрачного эпоксидного компаунда с вязкостью 5050…6050 сП и твердостью 50…60 Шор А, защитное покрытие полностью закрывает все светодиоды.

Использование изобретения позволит получить повышение надежности от механических повреждений, повышение степени защиты от электростатических повреждений кристалла светодиода. А также обеспечивается теплоперенос, стабилизируется температура светодиодов за счет прямого контакта компонента с корпусом светодиода, что увеличивает в 3-5 раз время эксплуатации видеоэкрана.

Светодиодная матрица, характеризирующаяся тем, что она содержит несущий элемент, имеющий верхнее основание, на котором расположены светодиоды, и нижнее основание, на котором расположены элементы для управления светодиодами, при этом по всей площади верхнего основания сформировано защитное покрытие, однородное по всей площади из эластичного светопрозрачного эпоксидного компаунда с вязкостью 5050…6050 cП и твердостью 50…60 Шор А, полностью закрывающее все светодиоды.



 

Похожие патенты:

Изобретение относится к светотехнике, а именно к светодиодным модулям, используемым в качестве индикаторов или в качестве источников света с различным диапазоном спектра световых волн, и приспособлениям для их монтажа.

Изобретение относится к полупроводниковым приборам, предназначенным для детектирования и испускания инфракрасного (ИК) излучения при комнатной температуре и может быть использовано, например, в устройствах, измеряющих характеристики сред, содержащих газообразные углеводороды, и в волоконно-оптических датчиках, измеряющих состав жидкости по методу исчезающей волны, для которых указанная полоса совпадает с максимумом фундаментального поглощения измеряемого компонента, например спирта или нефтепродуктов.

Предложен способ изготовления светоизлучающего устройства, выполненного с возможностью предотвращения образования неоднородностей цвета и желтого кольца с малыми затратами.

Изобретение относится к области полупроводниковых светоизлучающих приборов, а именно, к светоизлучающим устройствам, содержащим эпитаксиальные структуры на основе нитридных соединений металлов III группы - алюминия, галлия, индия (AIIIN).

Использование: для изготовления твердотельных светоизлучающих диодов. Сущность изобретения заключается в том, что светоизлучающий диод содержит множество слоев, причем первый слой из данного множества слоев содержит наноструктурированную поверхность, которая содержит квазипериодический анизотропный массив удлиненных ребристых элементов, имеющих рисунок волнообразной структуры, причем каждый ребристый элемент имеет волнообразное поперечное сечение и ориентирован по существу в первом направлении.

Изобретение относится к области электронной техники. Техническим результатом является обеспечение высокой эффективности светодиодного источника белого света с удаленным конвертером, обеспечение высокой цветовой однородности, а также возможность задавать диаграмму направленности испускаемого светового потока при малом размере светодиодного источника белого света.

Изобретение относится к светоизлучающим устройствам, которые способны преобразовывать высокоэнергетическое первичное излучение во вторичное излучение с большей длиной волны в видимой области спектра, и могут быть использованы в качестве преобразователей излучения в светоизлучающих устройствах, излучающих цветной или белый свет.

Изобретение относится к области изготовления наноструктурных материалов и может быть использовано в оптоэлектронике для производства светоизлучающих индикаторов.

Светоизлучающее диодное (СИД) устройство содержит кристалл (40) СИД, содержащий светоизлучающий полупроводниковый слой (20), эпитаксиально выращенный на подложке роста и продолжающийся, по существу, по всему кристаллу СИД, причем кристалл СИД имеет верхнюю поверхность, содержащую слой (28) растекания тока, покрывающий полупроводниковый слой; и металлический электродный рисунок (42, 44, 46) только на участке верхней поверхности для пропускания тока через СИД для питания СИД, причем упомянутый электродный рисунок содержит множество металлических контактов (42) на верхней поверхности, имеющих ширины приблизительно между 2 и 10 разами больше, чем длина Lt передачи контактов, где длина передачи определяется из соотношения связывающего поверхностное сопротивление в Омах на квадрат слоя растекания тока и контактное удельное сопротивление границы раздела контакта и слоя растекания тока в Ом/м2, причем металлические контакты, по существу, блокируют свет, излученный светоизлучающим полупроводниковым слоем; и металлические соединения (44), соединяющие одни из контактов друг с другом, причем металлические соединения имеют ширины меньше чем 2Lt.

Изобретение относится к светодиоду или лазерному диоду и способу его изготовления. Нитридный полупроводниковый элемент 1 включает в себя основную структурную часть 5 и структурную часть 11 элемента, сформированную на основной структурной части 5 и имеющую, по меньшей мере, полупроводниковый слой 6 AlGaN n-типа и полупроводниковые слои 8, 9, 10 AlGaN p-типа и дополнительно включает в себя n-электродную контактную часть 13а, образованную на полупроводниковом слое 6 AlGaN n-типа, n-электродную часть 13b контактной площадки, образованную на n-электродной контактной части 13a, и p-электрод 12, образованный на полупроводниковых слоях 8, 9, 10 AlGaN p-типа, причем мольная доля AlN в полупроводниковом слое 6 AlGaN n-типа составляет 20% или более, n-электродная контактная часть 13а включает в себя один или более металлических слоев, и p-электрод 12 и n-электродная часть 13b контактной площадки имеют общую наслоенную структуру из двух или более слоев со слоем Au как самым верхним слоем и слоем, предотвращающим диффузию Au, состоящим из проводящего оксида металла и образованным под самым верхним слоем для предотвращения диффузии Au.

Изобретение относится к устройствам автоматической и полуавтоматической блокировки железнодорожного транспорта. Предназначено для использования в качестве источника света в сигнальных установках (светофорах) железнодорожного транспорта и метрополитена с контролем работоспособности во включенном и выключенном состоянии. Технический результат: повышение надежности и снижение потребляемой мощности светофорной лампы за счет использования реактивного балласта. При этом предлагаемая лампа полностью взаимозаменяема с традиционными 2-нитевыми лампами накаливания. Светодиодная лампа для железнодорожного светофора с реактивным балластом содержит электрическую цепь с мостом, предохранителем, корпус, выполненный в виде стандартного цоколя светофорной лампы накаливания ЖС-12-15+15 или ЖС-12-25+25, а также реактивный балласт, в качестве которого могут выступать балластный конденсатор, или индуктивность, или насыщенный трансформатор, или автотрансформатор. Устройство снабжено схемой отключения лампы от сети при наличии питающего напряжения и одновременном отсутствии излучения полупроводникового излучателя или излучателей, которая управляется от светочувствительного элемента, находящегося в оптической видимости с излучателем. 8 з.п. ф-лы, 3 ил.

Изобретение относится к электронной полупроводниковой промышленности и может быть использовано в производстве светодиодных источников света. Согласно способу изготовления светодиода,полупроводниковый излучатель и прозрачный световыводящий элемент соединяют в единый излучающий элемент, на наружную поверхность световыводящего элемента наносят защитное просветляющее покрытие. Защитное просветляющее покрытие выполняют из материала, показатель преломления которого в n П n Э раз меньше показателя преломления материала световыводящего элемента, где nП - показатель преломления материала защитного просветляющего покрытия, nЭ - показатель преломления материала световыводящего элемента. Толщину hП просветляющего покрытия задают из условия получения максимального коэффициента пропускания световыводящего элемента по формуле где d0 - оптическая толщина просветляющего покрытия, nП - показатель преломления материала защитного просветляющего покрытия. Технический результат - упрощение технологии изготовления светодиода. 3 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области светотехники. Техническим результатом является создание оптимального теплового режима работы светодиодов для получения максимальной светоотдачи, повышение надежности, долговечности и уменьшение габаритов корпуса. Светодиодная лампа содержит полый корпус, на котором закреплены колба и цоколь, а внутри корпуса расположены средство для теплоотвода с оребрением, вентилятор, плата источника питания и плата как минимум с одним источником света. Корпус выполнен состоящим из двух соединенных между собой частей - металлической, соединенной с колбой, и второй части, соединенной с цоколем. Металлическая часть выполнена с внутренним оребрением, ребра которого обращены в сторону полости корпуса, и выполняет функцию средства теплоотвода. Стенки обеих частей корпуса выполнены с выступами, обращенными наружу и совместно образующими внутри корпуса сквозные каналы, открытые в полость корпуса и сообщенные с внешней средой входными и выходными отверстиями. Входные отверстия сквозных каналов расположены со стороны торца металлической части корпуса, а выходные - со стороны противоположного торца на второй части корпуса. На внешнем плоском торце металлической части корпуса закреплена плата по меньшей мере с одним светодиодом. Вентилятор установлен на рамке внутри металлической части корпуса и расположен между платой по меньшей мере с одним светодиодом и платой источника питания, закрепленной во второй части корпуса и соединенной проводами с контактными элементами цоколя и платой по меньшей мере с одним светодиодом. 7 з.п. ф-лы, 10 ил.

Изобретение относится к полупроводниковым приборам, а более конкретно к светодиодам и лазерам на основе гетероструктур. В активную область известного типа излучающих p-n-гетероструктур предлагается ввести дополнительный узкозонный слой. Этот слой играет роль поглотителя излучения из более широкозонной области излучательной рекомбинации, в результате чего в этом узкозонном слое возникают неравновесные носители заряда. Параметры узкозоннго слоя таковы, что в результате в нем происходит накопление носителей заряда и последующий термический выброс их в широкозонный слой активной области. Выброшенные носители заново рекомбинируют в широкозонном слое и описанный процесс повторяется заново. Это приводит к заметному увеличению концентрации неосновных носителей как в узкозонном, так и в широкозонном слоях активной области. Увеличение концентрации носителей повышает внешний квантовый выход излучающих приборов на основе такой гетероструктуры. Неравновесные носители, выброшенные из узкозонного слоя, могут приводить к самоохлаждению этого слоя, улучшая тем самым условия для излучательной рекомбинации в нем. 5 з.п. ф-лы, 2 ил.

Изобретение относится к области светотехники. Техническим результатом является увеличение срока работы. Устройство (100) со светодиодом содержит внешний корпус (102), элемент (114) светодиода, который включает в себя по меньшей мере один светодиод (114а), расположенный внутри внешнего корпуса (102), выводящую свет часть (108), составляющую часть внешнего корпуса (102), герметизированную полость (104), содержащую контролируемую атмосферу, и герметик (110), предназначенный для герметизации полости. Технический результат достигается за счет того, что устройство снабжено удаленным элементом (116) с органическим люминофором и газопоглотителем, расположенными в герметизированной полости, и основанием. Выводящая свет часть (108) является внешней оболочкой корпуса (102), соединенной с основанием при помощи герметика. Удаленный элемент (116) из органического люминофора представляет собой колпак, покрывающий светодиоды (114а), и расположенный между светодиодами и внешней оболочкой. Газопоглотитель размещен между удаленным элементом (116) из органического люминофора и внешней оболочкой. 11 з.п. ф-лы, 10 ил.

Полупроводниковое светоизлучающее устройство белого цвета содержит оптически прозрачный корпус с нанесенным на стенках люминофором. Внутри корпуса установлены лазерные диоды, имеющие ось симметрии. Причем лазерные диоды расположены последовательно на оси симметрии светоизлучающего устройства таким образом, что их оси симметрии совпадают между собой. Торцы лазерных диодов соединены так, что они находятся в электрическом и механическом контакте и образуют линейку лазерных диодов, диаграмма направленности излучения которой имеет ось симметрии, совпадающую с осью симметрии светоизлучающего устройства. Технический результат заключается в создании полупроводникового светоизлучающего устройства белого света большой интенсивности светового излучения без увеличения размеров светоизлучающих элементов, обеспечивающего при этом однородную засветку люминофора. 1 з.п. ф-лы, 9 ил.

Изобретение относится к светодиодным источникам света и может быть использовано в оптико-механическом, оптико-электронном и голографическом приборостроении, когда осветительную часть прибора необходимо оснащать источником с повышенной концентрацией светового потока. Согласно изобретению в способе изготовления светодиода полупроводниковый излучатель и прозрачный световыводящий оптический элемент соединяют в единый излучающий элемент, при этом прозрачный световыводящий оптический элемент изготавливают в форме нижнего и верхнего плосковыпуклых оптических элементов со световыводящими поверхностями, которые устанавливают сферическими поверхностями навстречу друг другу с возможностью концентрации светового потока в фокальной плоскости верхнего плосковыпуклого оптического элемента, полупроводниковый излучатель устанавливают в фокальной плоскости нижнего плосковыпуклого оптического элемента, а на световыводящие поверхности нижнего и верхнего плосковыпуклых оптических элементов наносят защитное просветляющее покрытие. Изобретение обеспечивает повышение концентрации светового потока. 1 з.п. ф-лы, 1 ил.

Изобретение относится к светодиодным источникам света для растениеводства. Светодиодный источник (10) света, сформированный на подложке, включающий в себя по меньшей мере один кристалл (2) синего светодиода, который имеет максимум излучения в интервале от 400 нм до 480 нм, соответствующий максимуму поглощения света хлорофиллом в синей области спектра; красный люминофор (7b), который после приема возбуждающего светового излучения по меньшей мере из одного кристалла (2) синего светодиода излучает свет с длиной волны в максимуме излучения в интервале от 620 нм до 700 нм, который соответствует максимуму поглощения света хлорофиллом в красной области спектра; и слой смолы (7), в котором диспергирован красный люминофор 7b и которым покрыт по меньшей мере один кристалл (2) синего светодиода. Технический результат - возможность регулировать соотношение количества света в синей и красной областях спектра. 2 н. и 11 з.п. ф-лы, 1 табл., 12 ил.

Изобретение относится системе освещения, которая включает в себя: источник света, выполненный с возможностью испускания первичного излучения, элемент преобразования излучения, выполненный с возможностью преобразования, по меньшей мере, части первичного излучения во вторичное излучение, и фильтр, выполненный с возможностью блокирования сгенерированного в системе освещения излучения, обладающего длиной волны короче, чем заданное значение отсечки длины волны. В соответствии с изобретением фильтр предназначен для блокирования части вторичного излучения за счет расположения значения отсечки длины волны фильтра в эмиссионном спектре элемента преобразования излучения. Изобретение направлено на создание системы освещения, которая охватывает узкий диапазон излучения в некоторой области электромагнитного спектра, особенно в красной части спектра. 4 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к устройству управления источниками света. Техническим результатом является обеспечение надлежащей яркости, даже если выход из строя вследствие короткого замыкания возникает в каком-либо из множественных источников света. Результат достигается тем, что микрокомпьютер 900 устройства управления источниками света указывает светодиод, принадлежащий светодиодам 111-116 и вышедший из строя вследствие короткого замыкания, на основе результата обнаружения посредством схемы 200 обнаружения выходов из строя вследствие короткого замыкания и величин токов, воспринимаемых посредством схем 141-146 восприятия тока, соответственно. Микрокомпьютер 900 инструктирует соответствующему одному из переключающих элементов 121-126 прерывать подачу тока в указанный светодиод. Микрокомпьютер 900 инструктирует схеме 100 постоянного тока подавать в не указанный светодиод ток, не превышающий ток, реагирующий на число таких не указанных светодиодов. 2 н. и 7 з.п. ф-лы, 12 ил.
Наверх