Регулирующее устройство

Изобретение относится к автоматическому регулированию. Технический результат - повышение качества процессов управления в различных системах автоматики. Регулирующее устройство содержит два интегратора, сумматор, нелинейный функциональный элемент, усилитель, нормально разомкнутый управляемый ключ и нормально замкнутый управляемый ключ. Второй интегратор имеет большую постоянную времени, чем первый. Нелинейный функциональный элемент имеет характеристику

где x - входной сигнал устройства; Ue - напряжение, соответствующее уровню логической единицы; x0 - пороговое значение. 4 ил.

 

Изобретение относится к автоматическому регулированию и предназначено для использования в различных системах автоматики.

Известны регулирующие устройства, содержащие интегратор и усилитель, подключенные к входам сумматора, выход которого соединен с вторым усилителем, и нормально разомкнутый управляемый ключ (Денисенко В.В. ПИД-регуляторы: вопросы реализации / Современные технологии автоматизации, 2007, №4. - С. 86-97, рис. 6; Гельднер К., Кубик С. Нелинейные системы управления. - М: Мир, 1987, с. 265-266, рис. 164).

В известных устройствах обеспечивается формирование регулирующего воздействия для объекта, пропорциональное сумме входного сигнала рассогласования системы и интеграла от него:

,

где kп - коэффициент пропорциональности; Tи - постоянная времени, при ограничении выходного сигнала интегратора для обеспечения устойчивости и снижения колебаний в системе.

При использовании таких устройств обеспечивается быстрая реакция системы на изменения рассогласования за счет постоянной составляющей, высокая точность регулирования в установившихся режимах, обеспечиваемая интегральной составляющей, и ограничение выходного сигнала интегратора. Однако при управлении инерционными объектами при больших нагрузках известные устройства не обеспечивают высокое качество регулирования, что проявляется в появлении статической ошибки в системе. При ограничении выходного сигнала интегратора, предусмотренного для снижения колебаний и обеспечения устойчивости, изменение сигнала ошибки не приводит к изменению выходного сигнала интегратора и, следовательно, не происходит астатическое регулирование. В результате этого в системе имеет место статическая ошибка. Таким образом, недостаток известных регулирующих устройств - низкое качество регулирования при больших нагрузках.

Из известных устройств наиболее близким по достигаемому результату к предлагаемому техническому решению является регулирующее устройство, содержащее интегратор, суммирующий вход которого объединен с входами сумматора и нелинейного функционального элемента с характеристикой

где x - входной сигнал устройства; Ue - напряжение, соответствующее уровню логической единицы; x0 - пороговое значение,

усилитель, подключенный к выходу сумматора, и нормально разомкнутый управляемый ключ, присоединенный между выходом и управляющим входом интегратора, управляющий вход ключа соединен с выходом нелинейного функционального элемента (Патент РФ №2103715, МПК G05B 11/36, опубл. 27.01.1998).

При использовании известного устройства обеспечивается быстрая реакция системы на изменения рассогласования за счет постоянной составляющей, высокая точность регулирования в установившихся режимах, обеспечиваемая интегральной составляющей, и ограничение действия интегратора при больших ошибках в системе. Однако при управлении инерционными объектами при больших нагрузках известное устройство не обеспечивает высокое качество регулирования, что проявляется в появлении статической ошибки в системе в результате ограничения действия интегратора. При ограничении действия интегратора, предусмотренного для снижения колебаний и обеспечения устойчивости, регулирование является статическим, т.е. устранения статической ошибки не происходит. Таким образом, недостаток известных регулирующих устройств - низкое качество регулирования при больших нагрузках.

Таким образом, недостаток известного устройства - низкое качество регулирования при больших нагрузках.

Цель изобретения - повышение качества регулирования путем увеличения точности при больших нагрузках.

Поставленная цель достигается тем, что в известное регулирующее устройство, содержащее интегратор, суммирующий вход которого объединен с входами сумматора и нелинейного функционального элемента с характеристикой

где x - входной сигнал устройства; Ue - напряжение, соответствующее уровню логической единицы; x0 - пороговое значение,

усилитель, подключенный к выходу сумматора, и нормально разомкнутый управляемый ключ, присоединенный между выходом и вычитающим входом интегратора, управляющий вход ключа соединен с выходом нелинейного функционального элемента, дополнительно введены второй интегратор и нормально замкнутый управляемый ключ, присоединенный между вычитающим входом и выходом второго интегратора, вход которого объединен с входом первого интегратора, а выход подключен к входу сумматора, управляющий вход нормально замкнутого управляемого ключа соединен с выходом нелинейного функционального элемента, при этом второй интегратор имеет большую постоянную времени, чем первый.

По сравнению с наиболее близким аналогичным техническим решением предлагаемое регулирующее устройство имеет следующие отличительные признаки (новые операции):

- второй интегратор;

- нормально замкнутый управляемый ключ;

- второй интегратор имеет большую постоянную времени, чем первый.

Следовательно, заявляемое регулирующее устройство соответствует требованию «новизна».

По каждому отличительному существенному признаку проведен поиск известных технических решений в области автоматического управления.

Операции, состоящие в том, что определяют абсолютное значение входного сигнала, сравнивают абсолютное значение входного сигнала с пороговым уровнем и интегрируют разность входного сигнала и сигнала, пропорционального результату интегрирования, в известных технических решениях не обнаружены.

Следовательно, указанные признаки обеспечивают заявляемому техническому решению соответствие требованию «существенные отличия».

Сущность предлагаемого технического решения заключается в следующем. В установившемся режиме при малой ошибке системы регулирующее воздействие на выходе устройства формируется пропорционально сумме входного сигнала, интеграла от него (на выходе первого интегратора) и выходного сигнала второго интегратора, охваченного отрицательной обратной связью (интегро-дифференцирующего корректирующего устройства). При большом рассогласовании в системе, например, при изменении сигнала задания или возмущения, регулирующее воздействие формируется как сумма входного сигнала и выходного сигнала первого интегратора, охваченного отрицательной обратной связью (интегро-дифференцирующего корректирующего устройства) и выходного сигнала второго интегратора с малым коэффициентом передачи. При этом вследствие малого коэффициента передачи второго интегратора в течение переходного процесса его выходной сигнал изменяется значительно меньше, чем выходной сигнал первого интегратора и сигнал ошибки. Но при длительном действии больших нагрузок статическая ошибка интегрируется вторым интегратором и всегда обеспечивает переключение нелинейного функционального элемента и переход системы в режим отработки малой ошибки. В результате обеспечивается высокая точность автоматической системы в установившихся режимах и высокое качество регулирования при переходных процессах.

Следовательно, изобретение соответствует требованию «положительный эффект».

Сущность предлагаемого технического решения поясняется чертежами.

На фиг. 1 приведена функциональная схема аналогового регулирующего устройства, реализующего предлагаемый способ, и поясняющая сущность изобретения. На чертеже обозначено: 1 - нелинейный функциональный преобразователь с характеристикой

2 - первый интегратор; 3 - нормально разомкнутый управляемый ключ; 4 - нормально замкнутый управляемый ключ; 5 - второй интегратор; 6 - сумматор; 7 - усилитель.

В регулирующем устройстве объединенные суммирующие входы первого и второго интеграторов 2 и 5, один из входов сумматора 6 и вход нелинейного функционального элемента 1 объединены и являются входом устройства, нормально разомкнутый управляемый ключ 3 присоединен между выходом и вычитающим входом первого интегратора 2, управляющий вход нормально разомкнутого ключа 3 соединен с выходом нелинейного функционального элемента 1, нормально замкнутый управляемый ключ 4 присоединен между вычитающим входом и выходом второго интегратора 5, управляющий вход нормально замкнутого управляемого ключа 4 соединен с выходом нелинейного функционального элемента 1, выходы первого и второго интеграторов 2 и 5 подключены к входам сумматора, выход которого соединен с входом усилителя 7, выход которого служит выходом устройства, при этом второй интегратор 5 имеет меньший коэффициент передачи, чем первый интегратор 2.

Регулирующее устройство работает следующим образом. Входной сигнал x(t), пропорциональный ошибке регулирования, поступает одновременно на входы первого и второго интеграторов 2 и 5, первый вход сумматора 6 и вход нелинейного функционального элемента 1. Выходные сигналы первого и второго интеграторов 2 и 5 поступают на входы сумматора 6. Первый и второй интеграторы 2 и 5 охвачены отрицательной обратной связью с помощью соответственно нормально разомкнутого 3 и нормально замкнутого 4 ключей. Управление ключами осуществляется выходным сигналом нелинейного функционального элемента 1. Выходной сигнал сумматора 6 поступает на вход усилителя 7, выход которого служит выходом устройства.

При малой ошибке регулирования выходной сигнал нелинейного функционального элемента 1 имеет значение u1=0, при этом управляемый нормально разомкнутый ключ 3 разомкнут, а нормально замкнутый ключ 4 замкнут. Устройство в этом случае представляет собой регулятор с передаточной функцией

где k - коэффициент передачи усилителя 7;

T1 - постоянная времени первого интегратора 2;

T2 - постоянная времени второго интегратора 5;

k2 - коэффициент передачи цепи обратной связи второго интегратора 5.

Так как работа системы при малой ошибке регулирования соответствует установившимся процессам (низкие частоты), то с учетом соотношения Т2>T1 выражение (1) можно приближенно представить в виде

Следовательно, при установившихся режимах второй интегратор, охваченный отрицательной обратной связью, не оказывает существенного влияния на работу системы. В этом случае регулирующее устройство представляет собой обычный пропорционально-интегральный регулятор, обеспечивающий астатическое регулирование в системе. В установившемся режиме ошибка регулирования стремится к 0.

В случае превышения абсолютным значением ошибки регулирования порогового уровня x0, например, при изменении сигнала задания или возмущения, выходной сигнал нелинейного функционального элемента 1 принимает значение u1=Ue. В результате этого замыкается нормально разомкнутый ключ 3 и размыкается нормально замкнутый ключ 4. При этом регулирующее воздействие формируется как сумма трех слагаемых: пропорционального ошибке регулирования kx(t), выходного сигнала первого интегратора 2, охваченного обратной связью, и выходного сигнала второго интегратора 5. Передаточная функция устройства при этом имеет вид:

где k1 - коэффициент передачи цепи обратной связи первого интегратора 2.

Так как Т21, то при переходных процессах в системе расчетной длительности изменение напряжения на выходе второго интегратора значительно меньше изменений на выходе первого интегратора и сигнала рассогласования. Следовательно, передаточную функцию (3) для этих условий можно приближенно представить в виде

В этом случае регулирующее устройство соответствует интегро-дифференцирующему звену.

Таким образом, при предлагаемом способе осуществляется быстрая отработка большой ошибки регулирования, а при достижении ошибкой уровня х0 происходит безударное включение астатической составляющей (пропорциональной интегралу от ошибки регулирования), благодаря чему обеспечивается высокая точность регулирования.

В случае длительного действия большой нагрузки выходное напряжение второго интегратора 5 возрастает до момента достижения ошибкой регулирования значения x0, после чего происходит изменение выходного сигнала нелинейного функционального элемента 1. Далее происходит работа регулирующего устройства в режиме малой ошибки

Таким образом, второй интегратор 5 не оказывает существенного влияния на работу системы при расчетных режимах, но обеспечивает переход регулирующего устройства в режим астатического регулирования при действии больших нагрузок, вызывающих статические ошибки, превышающие порог x0 срабатывания нелинейного функционального элемента 1.

С целью подтверждения положительного эффекта, достигаемого с помощью предлагаемого технического решения, было проведено математическое моделирование процессов в автоматической системе с предложенным регулирующим устройством. Структурная схема системы показана на фиг. 2, где обозначено: 8 - элемент сравнения, 9 - регулирующее устройство (см. фиг. 1), 10 - исполнительное устройство с коэффициентом передачи kу и ограничением выходного воздействия на уровне U0, 11 - объект управления с передаточной функцией:

.

На фиг. 2 обозначено: z0 - сигнал задания; z - выходной сигнал системы.

При моделировании были приняты следующие параметры объекта и системы управления: k0=2; T0=0,6 с; τ0=1,2 с; kу=1; U0=12 В.

На фиг. 3 и 4 приведены диаграммы переходных процессов в системе для выходного сигнала z при ступенчатом изменении сигнала задания в момент t=0 с и ступенчатом изменении нагрузки при t=25 с:

- линия 1: классическая настройка традиционного пропорционально-интегрального регулятора (Кулаков Г.Т. Инженерные экспресс-методы расчета промышленных систем регулирования. Минск: Вышэйшая школа, 1984, с. 73-86). При этом параметры регулятора были установлены следующими: k=0,15; T1=0,5 с, ограничение воздействия на объект при выборе параметров не учитывалось;

- линия 2: регулирующее устройство с отключением интегратора при больших сигналах рассогласования (прототип); порог переключения функционального элемента 1 выбран равным x0=0,5 В;

- линия 3: предлагаемое регулирующее устройство. Постоянная времени первого интегратора 1.2 равна T1=0,5 с; постоянная времени второго интегратора 1.5 равна T2=4 с; порог переключения функционального элемента 1 выбран равным x0=0,5 В.

На фиг. 3 показаны графики переходных процессов при малых нагрузках и малых значениях рассогласования. В системе с классическим пропорционально-интегральным регулятором перерегулирование составляет 28% (линия 1), в системе с отключением интегратора перерегулирование равно 15% (линия 2), в предлагаемой системе перерегулирование не превышает 5% (линия 3). Время регулирования во всех трех случаях практически одинаковое и составляет 12 с. Переходные процессы при ступенчатом изменении нагрузки при t=25 с во всех случаях практически одинаковые.

На фиг. 4 приведены графики переходных процессов при больших нагрузках и рассогласованиях. В системе с классическим пропорционально-интегральным регулятором перерегулирование составляет 26% (линия 4), в системе с отключением интегратора перерегулирование равно 15% (линия 5), в предлагаемой системе перерегулирование отсутствует (линия 6). Время регулирования в первом и третьем случаях практически одинаковое и составляет 12 с. Переходные процессы при ступенчатом изменении нагрузки при t=25 c во всех случаях практически одинаковые. В системе с отключением интегратора (линия 5, прототип) возникает статическая ошибка, обусловленная тем, что не происходит переключение нелинейного функционального элемента. В предлагаемом техническом решении второй интегратор всегда обеспечивает переход регулирующего устройства в режим астатического регулирования.

Таким образом, предлагаемое техническое решение обеспечивает повышение качества регулирования: снижение перерегулирования, гарантированный режим астатического регулирования и повышение точности при больших нагрузках.

Важным достоинством предлагаемого регулирующего устройства является то, что он может быть легко реализован как аппаратным, так и программным способом.

Использование предлагаемого регулирующего устройства в различных системах автоматики позволит повысить качество процессов управления.

Регулирующее устройство, содержащее интегратор, суммирующий вход которого объединен с входами сумматора и нелинейного функционального элемента с характеристикой

где x - входной сигнал устройства; Ue - напряжение, соответствующее уровню логической единицы; x0 - пороговое значение,
усилитель, подключенный к выходу сумматора, и нормально разомкнутый управляемый ключ, присоединенный между выходом и вычитающим входом интегратора, управляющий вход ключа соединен с выходом нелинейного функционального элемента, отличающееся тем, что дополнительно введены второй интегратор и нормально замкнутый управляемый ключ, присоединенный между вычитающим входом и выходом второго интегратора, вход которого объединен с входом первого интегратора, а выход подключен к входу сумматора, управляющий вход нормально замкнутого управляемого ключа соединен с выходом нелинейного функционального элемента, при этом второй интегратор имеет большую постоянную времени, чем первый.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано в роторных механизмах на электромагнитных опорах. Техническим результатом является повышение быстродействия и динамической точности электромагнитного подвеса ротора.

Изобретение относится к электроизмерительной и вычислительной технике и может быть использовано в системах управления электроприводами для преобразования аналогового напряжения в код.

Изобретение относится к области преобразовательной техники и может использоваться при автоматизации технологических процессов, например, в регуляторах температуры.

Изобретение используется в электротехнике - преобразовательной технике. Технический результат - снижение потерь энергии и электромагнитных помех.

Изобретение относится к области электротехники и может быть использовано в электромеханических преобразователях энергии на магнитных подшипниках. Технический результат заключается в повышении точности и надежности управления магнитным подшипником.

Изобретение относится к электрическим автоматическим регуляторам. Техническим результатом является повышение точности управления техническими устройствами с электроприводом постоянного тока за счет снижения отклонения от заданной скорости вращения двигателя.

Изобретение относится к области электротехники и может быть использовано в следящих электроприводах с исполнительными двигателями постоянного тока или с синхронными машинами, работающими в режимах вентильного двигателя или бесколлекторного двигателя постоянного тока.

Изобретение относится к области электротехники и может быть использовано в промышленных установках для обработки позиционными электроприводами заданных программ перемещения.

Изобретение относится к области машиностроения и может быть использовано в роторных механизмах на электромагнитных опорах. .

Изобретение относится к области электротехники и может быть использовано в промышленных установках для обработки позиционными электроприводами заданных программ перемещения.

Изобретение относится к автоматическому регулированию. Технический результат заключается в повышении качества регулирования путем уменьшения выходного сигнала интегратора при переходных процессах и повышения точности за счет гарантированного сохранения астатического регулирования. Для этого обеспечивается малый коэффициент передачи интегратора в течение переходного процесса, при длительном действии больших нагрузок статическая ошибка всегда интегрируется, т.е. происходит астатическое регулирование. 4 ил.

Изобретение относится к области электротехники и может быть использовано для выбора оптимального по точности режима работы электрического двигателя. Технический результат - увеличение точности управления за счет применения эффективного математического метода решения обратных задач. Устройство содержит: блок хранения констант; первый, второй, третий, четвертый, пятый, шестой, седьмой, восьмой, девятый блок произведения; блок возведения в степень (-1); первый, второй, третий, четвертый блок сложения; первый, второй, третий блок модуля; блок деления; блок формирования знака выражения; первый, второй, третий блок инверсии; первый, второй блок интегрирования; блок производной; блок вычитания. 1 ил.

Изобретение относится к области электротехники и может быть использовано в следящих электроприводах с асинхронными исполнительными двигателями. Техническим результатом является повышение быстродействия следящего электропривода с асинхронным исполнительным двигателем. Следящий электропривод (фиг. 1) содержит блоки 1 и 2 задания, интегральный регулятор 3, пропорциональный регулятор 4, блок 5 деления, регуляторы 6 и 7 тока, преобразователь 8 координат, блок 9 дифференцирования, блок 10 интегрирования, сумматор 11, силовой преобразователь 12, асинхронный электродвигатель 13 с исполнительным механизмом 14, датчик 15 тока, датчик 16 положения и пропорционально-дифференциальный регулятор 17. Предлагаемый электропривод позволяет повысить быстродействие следящих систем с асинхронными исполнительными двигателями. 3 ил.

Изобретение относится к области электротехники и может быть использовано в нагнетателях, компрессорах, турбодетандерах газоперекачивающих агрегатов с тяжелыми роторами горизонтального исполнения массой, например, не менее 900 кг. Техническим результатом является обеспечение низкого уровня вибрации, высокого быстродействия. В системе автоматического управления электромагнитным подвесом ротора каждый канал содержит датчик положения ротора (1), блок задания положения вала (2), элемент сравнения (3), блок обработки сигнала вибрации (4), пропорциональный (5), интегральный (6), дифференциальный (7), пропорционально-дифференциальный (8) регуляторы, элемент сравнения (9), пропорциональный регулятор тока (10), датчик тока (11), силовой преобразователь (12) и два электромагнита (13 и 14). Выходное значение датчика положения ротора (1) вычитается из значения блока задания (2) положения ротора в элементе сравнения (3). Разница подается на вход блока (4) обработки сигнала вибрации, выходной сигнал которого подается одновременно на входы пропорционального (5), интегрального (6) и дифференциального (7) регуляторов. Сумма выходных значений регуляторов (5, 6, 7) подается на вход пропорционально-дифференциального регулятора (8), из выходного значения которого в элементе сравнения (9) вычитается значение силы тока, измеренного датчиком тока (11) в обмотках электромагнитов (13, 14). Разница подается на вход пропорционального регулятора тока (10), выход которого соединен с входом силового преобразователя (12), к выходу которого подключены обмотки электромагнитов (13 и 14). 1 з.п. ф-лы, 5 ил.

Изобретение относится к области электротехники и может быть использовано в системах автоматического управления нестационарными объектами - системах адаптивного управления электроприводом. Технический результат заключается в повышении точности и запасов устойчивости по амплитуде и фазе системы управления электродвигателем при действии на него координатно-параметрических помех. Система адаптивного управления электродвигателем дополнительно содержит ассоциативную память, дифференциатор, два блока умножения, три сумматора, цифровой датчик угловой скорости, три усилителя, два блока задержки, три блока определения модуля. Выход цифрового датчика угловой скорости через последовательно соединенные первый блок задержки, второй блок задержки, третий сумматор, первый блок определения модуля, ассоциативную память, первый блок умножения подключен ко второму входу второго сумматора, выход которого через цифро-аналоговый преобразователь соединен с входом электродвигателя, а через последовательно соединенные второй усилитель, четвертый сумматор, второй блок определения модуля - ко второму входу ассоциативной памяти. Выход цифрового датчика угловой скорости соединен с вторыми входами первого и четвертого сумматоров, а через последовательно соединенные пятый сумматор, третий блок определения модуля, ассоциативную память и второй блок умножения - с третьим входом второго сумматора. Выход первого блока задержки соединен со вторыми входами третьего и пятого сумматоров. Выход первого сумматора подключен через третий усилитель ко второму входу первого блока умножения, а через последовательно соединенные четвертый усилитель и дифференциатор - ко второму входу второго блока умножения. 1 ил.

Изобретение относится к способу адаптивного управления плохо формализуемым объектом. Для управления плохо формализуемым объектом определяют адаптивный регулятор для достижения цели за конечное число управляющих воздействий, осуществляют вначале тестовые пуски объекта управления при разных управляющих и постоянном внешнем воздействии, предусматривают исключение возможности превышения заранее известных предельно допустимых значений, осуществляют пуск объекта, после достижения регулируемым параметром установившегося значения сравнивают его с заданным определенным образом. Повторяют действия для других значений регулируемого параметра в процессе работы объекта управления во всем диапазоне регулирования. Обеспечивается точность регулирования при сравнительно небольшом количестве тестовых пусков. 1 з.п. ф-лы, 1 ил.

Изобретение относится к автоматике. Способ расширения диапазона регулирования автоматических систем регулирования без потери устойчивости включает настройку регулятора, реализующего пропорциональную и интегральную составляющие закона регулирования, при которой сигнал управляющего воздействия зависит от величины ошибки регулирования и значений коэффициентов пропорциональной и интегральной составляющих. Сигнал управляющего воздействия формируют, корректируя значения коэффициентов пропорциональной и интегральной составляющих. Корректирующие воздействия происходят в соответствии со значениями степенной функции для пропорциональной составляющей ПИ-регулятора, а интегральной составляющей - с помощью обратно пропорциональной степенной зависимости, аргументом которой является ошибка регулирования. Для каждой составляющей закона регулирования в зависимости от значения ошибки величины пропорциональной и интегральной составляющих изменяются. Расширяется диапазон регулирования АСР. 3 ил.

Изобретение относится к автоматическим регуляторам электродвигателей. Быстродействующий адаптивный регулятор частоты вращения содержит блок инвертирования, пропорциональную и интегральную части регулятора, четыре блока сравнения, два блока умножения, блок единичной функции, блок выделения модуля, нелинейный ограничитель. Первый выход пропорциональной части регулятора соединен с входом блока выделения модуля, выход которого соединен с прямым входом четвертого блока сравнения, который соединен с входом блока единичной функции, один выход которого соединен с входом первого блока умножения, а второй выход соединен с входом блока инвертирования. Второй вход первого блока умножения соединен с первым выходом интегральной части регулятора, а выход соединен с инверсным входом второго блока сравнения. Выход блока инвертирования соединен с входом второго блока умножения, выход которого соединен с инверсным входом первого блока сравнения, на прямой вход которого подается сигнал задания. Выход первого блока сравнения, прямой вход второго блока сравнения, интегральная часть регулятора, прямой вход третьего блока сравнения, пропорциональная часть регулятора и нелинейный ограничитель тока соединены последовательно. Технический результат заключается в увеличении быстродействия системы регулирования частоты вращения электродвигателя. 1 ил.

Использование – в области электротехники. Технический результат – повышение гибкости при размещении установок с сервоприводами. Согласно изобретению сервопривод (1, 1') имеет электромотор (2, 2') и блок управления (4, 4') электромотором (2, 2'), питающийся из промежуточного контура (3, 3'). При этом промежуточный контур (3, 3') имеет, по меньшей мере, один конденсатор промежуточного контура (5). Сервопривод дополнительно содержит блок контроля (9), с помощью которого определяется моментальное зарядовое состояние конденсатора промежуточного контура (5). Блок управления (4, 4') служит для регулирования потребляемой электрической мощности электромотора (2, 2') в зависимости от полученного моментального значения зарядового состояния конденсатора промежуточного контура (5). Блок управления (4, 4') служит для снижения потребляемой мощности, когда или пока выявленное зарядовое состояние соответствует заданному количеству заряда, которое накоплено на конденсаторе промежуточного контура (5) и достигает заданного первого предельного значения или меньше его. 3 н. и 9 з.п. ф-лы, 3 ил.

Изобретение относится к автоматическому регулированию. Входной сигнал регулятора преобразуется двумя нелинейными элементами 1 и 2, которые имеют характеристики соответственно: и где x - входной сигнал устройства; α и β коэффициенты пропорциональности, β>1; х0 - пороговое значение. Регулирующее воздействие на выходе устройства формируется пропорционально сумме двух сигналов: интеграла от выходного сигнала первого нелинейного элемента 1 и преобразованного фильтром нижних частот 3 выходного сигнала второго нелинейного элемента 2. При этом вследствие малого значения сигнала на входе интегратора 4 в течение переходного процесса, то есть при больших рассогласованиях, его выходной сигнал изменяется медленно, благодаря чему насыщение интегратора 4 не происходит. При длительном действии больших нагрузок статическая ошибка всегда интегрируется интегратором 4, то есть происходит астатическое регулирование. При переходных процессах, то есть при больших ошибках, происходит увеличение коэффициента передачи пропорциональной части регулирующего устройства, благодаря чему компенсируется снижение общего коэффициента передачи регулирующего устройства. В результате обеспечивается высокая точность автоматической системы в установившихся режимах и высокое качество регулирования при переходных процессах. 4 ил.
Наверх