Способ изготовления тонкопленочного транзистора

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления тонкопленочных транзисторов с низким значением тока утечки. Согласно изобретению предложен способ изготовления тонкопленочных транзисторов, включающий процессы формирования активных областей прибора и слоя аморфного кремния, при этом после формирования слоя аморфного кремния проводят имплантацию бора с энергией 30 кэВ, дозой 51 мкКул/см2 с последующим отжигом при температуре 1373-1423 К в течение 10 сек. Изобретение обеспечивает снижение токов утечек, технологичность изготовления, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. 1 табл.

 

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления тонкопленочных транзисторов с низким значением тока утечки.

Известен способ изготовления тонкопленочного транзистора (ТПТ) [Патент 5384271 США, МКИ H0IL 21/24] на аморфном кремнии cr-S путем проведения последовательно следующих этапов работы в области канала: жидкостное травление в HI7, сухое реактивное ионное травление, повторное жидкостное травление в HF, обработка в очищающем растворе, отжиг. В таких приборах из-за наличия примесей в диоксиде кремния ухудшаются электрические параметры.

Известен способ изготовления тонкопленочного транзистора [Патент 5382537 США, МКИ H0IL 21/265] путем обработки в канале ТПТ слоя α-Si через отверстия в масочных слоях Si/SiO2 эксимерным лазером с образованием затравочных кристаллов. Затем при температуре 873К в течение 40 сек в атмосфере N2 слой α-Si подвергается кристаллизации с формированием крупнозернистого активного слоя.

Недостатками этого способа являются:

- повышенные значения тока утечки;

- низкая технологичность;

- высокая дефектность.

Задача, решаемая изобретением, - снижение токов утечек, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Задача решается тем, что после формирования слоя аморфного кремния проводят имплантацию бора в слой аморфного кремния с энергией 30 кэВ, дозой 51 мкКул/см2 с последующим отжигом при температуре 1373-1423 К в течение 10 сек.

Технология способа состоит в следующем: слои аморфного кремния осаждались при давлении 9-20 Па и температуре 840 К на диоксид кремния толщиной 0,15 мкм сформированных на пластинах кремния КЭФ-4,5 (100). Толщина слоя аморфного кремния составляла 0,25 мкм, примесь бора в слои аморфного кремния вводилась ионным легированием энергией Е=30 кэВ и дозой 51 мкКул/см2. Активацию бора проводили импульсным отжигом в течение 10 сек при температуре 1373-1423К. Далее формируют затворную систему и контакты к рабочим областям полупроводникового прибора по стандартной технологии.

По предлагаемому способу были изготовлены и исследованы полупроводниковые приборы. Результаты обработки представлены в таблице.

Экспериментальные исследования показали, что выход годных приборов на партии пластин сформированных в оптимальном режиме увеличился на 16,4%.

Предлагаемый способ изготовления тонкопленочного транзистора путем формирования аморфной пленки кремния имплантацией бора в слой аморфного кремния с энергией 30 кэВ, дозой 51 мкКул/см2 с последующим отжигом при температуре 1373-1423 К в течение 10 сек позволяет повысить процент выхода годных приборов и улучшить их надежность.

Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.

Технический результат: снижение токов утечек, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Способ изготовления тонкопленочного транзистора, включающий процессы формирования активных областей прибора, слоя аморфного кремния, отличающийся тем, что после формирования слоя аморфного кремния проводят имплантацию бора с энергией 30 кэВ, дозой 51 мкКул/см2 с последующим отжигом при температуре 1373-1423 К в течение 10 сек.



 

Похожие патенты:

Изобретение относится к технологии изготовления полупроводниковых приборов, чувствительных к инфракрасному излучению, и может быть использовано при изготовлении фотодиодов на кристаллах InGaAs n-типа проводимости, фототранзисторов, фоторезисторов на основе кристаллов p-типа проводимости.

Изобретение относится к оптике. Способ изготовления дифракционной решетки заключается в формировании на поверхности исходной подложки элементов заданной структуры дифракционной решетки путем ионной имплантации через поверхностную маску, при этом имплантацию осуществляют ионами металла с энергией 5-1100 кэВ, дозой облучения, обеспечивающей концентрацию вводимых атомов металла в облучаемой подложке 3·1020-6·1022 атомов/см3, плотностью тока ионного пучка 2·1012-1·1014 ион/см2с в оптически прозрачную диэлектрическую или полупроводниковую подложку.

Предлагаемое изобретение относится к технологии изготовления полупроводниковых приборов, в частности, к способам изготовления планарных pin-фотодиодов большой площади на основе высокоомного кремния p-типа проводимости.

Изобретение относится к технологии изготовления полупроводниковых приборов, чувствительных к инфракрасному излучению, и может быть использовано при изготовлении фотодиодов на кристаллах InAs n-типа проводимости, фототранзисторов, фоторезисторов на основе кристаллов p-типа проводимости.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с пониженной плотностью дефектов.

Изобретение относится к материаловедению. Пленка оксида кремния на кремниевой подложке, имплантированная ионами олова, включает нанокластеры альфа-олова.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с пониженной плотностью дефектов.
Использование: в технологии производства полупроводниковых приборов. Сущность изобретения: полупроводниковый прибор формируют путем двойной имплантации в область канала сфокусированными пучками ионов бора дозой 6×1012-6×1013 см-2 с энергией 20 кэВ и ионов мышьяка с энергией 100 кэВ дозой (1-2)×1012 см-2 с последующим отжигом при температуре 900-1000°С в течение 5-15 секунд.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур, с пониженной плотностью дефектов.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления транзисторов кремний-на-изоляторе, с низкой плотностью дефектов.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженными значениями контактного сопротивления. Изобретение обеспечивает снижение значений контактного сопротивления, повышение технологичности, улучшение параметров прибора, повышение качества и увеличение процента выхода годных. В способе изготовления полупроводникового прибора на полуизолирующей подложке GaAs формируют тонкий слой n-GaAs толщиной 10-15 нм ионным внедрением серы при комнатной температуре с дозой 5*1012 см-2 с энергией 30 кэВ с последующей высокотемпературной обработкой при температуре 820-850°C в течение 20 мин. Затем по стандартной технологии формируют области полупроводникового прибора и контакты. 1 табл.

Способ изготовления дифракционной периодической микроструктуры на основе пористого кремния включает в себя формирование заданной дифракционной периодической микроструктуры с помощью имплантации ионами благородных или переходных металлов через поверхностную маску, с энергией 5-100 кэВ. При этом доза облучения обеспечивает концентрацию вводимых атомов металла в облучаемой подложке кремния 2.5·1020-6.5·1023 атомов/см3. Плотностью тока ионного пучка 2·1012-1·1014 ион/(см2·с) при температуре подложки во время облучения 15-450°C. Технический результат заключается в обеспечении возможности изготовления дифракционных периодических микроструктур на основе пористого кремния с наночастицами различных металлов в вакууме. 20 ил.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления силицидных слоев с низким сопротивлением. Задача, решаемая изобретением, - снижение сопротивления, обеспечивающее технологичность, улучшение параметров, повышение надежности и увеличение процента выхода годных приборов. В способе изготовления полупроводникового прибора, включающем процессы очистки пластины кремния, создания активных областей прибора, отжиг и формирование слоев силицида, перед формированием слоев силицида наносят слой поликремния, после чего структуры подвергают обработке ионами Со+ с энергией 250 кэВ при токе ионного пучка 1 мкА, интегральной дозой 4,4×1017 см-2, с последующим проведением релаксационного отжига сканирующим электронным пучком при температуре 950°С в течение 10-20 с. 1 табл.
Изобретение относится к технике, связанной с процессами ионно-плазменного легирования полупроводников и может быть использовано в производстве солнечных элементов, полупроводниковых приборов и интегральных микросхем на основе кремния. Способ легирования кремния заключается в том, что пластину кремния обрабатывают в тлеющем разряде инертных газов, не являющихся легирующими примесями, в качестве источника легирующих примесей используют сильнолегированный электрод в форме пластины, выполненный из гетерогенного сплава кремния с фосфором или бором, а процесс легирования осуществляют при периодической смене полярности импульсов напряжения, подаваемого на электроды. Плазменное легирование может проводиться без специальных мер безопасности при исключении из процесса дорогостоящих высокочистых токсичных пожаровзрывоопасных газов, что упрощает процесс и снижает затраты. До ионно-плазменной обработки сопротивление пластины кремния составляло 10 Ом, после обработки оно уменьшилось до 3 Ом, что свидетельствует об улучшении технико-экономических параметров легирования кремния.

Изобретение относится к устройствам дифракционных периодических микроструктур для видимого диапазона, выполненным на основе пористого кремния. Техническим результатом изобретения является создание дифракционной периодической микроструктуры на основе пористого кремния с различными металлосодержащими наночастицами. В дифракционной периодической микроструктуре на основе пористого кремния, содержащей подложку, выполненную из монокристаллического кремния с дифракционной периодической микроструктурой, сформированная дифракционная периодическая микроструктура на основе пористого кремния содержит ионно-синтезированные металлосодержащие наночастицы, диспергированные в приповерхностной области подложки на толщине слоя от 10 до 200 нм при концентрации металла 2.5·1020-6.5·1023 атомов/см3. 20 ил.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевых транзисторов с повышенной стабильностью параметров. Предложен способ изготовления полупроводникового прибора, включающий процессы создания активных областей прибора и подзатворного диэлектрика. Согласно изобретению после формирования подзатворного диэлектрика последовательно проводят легирование окисла ионами бора с энергией 55 кэВ, дозой 3⋅1013 см-2 и ионами фтора с энергией 55кэВ, дозой 1⋅1013 см-2 с последующим отжигом при температуре 900°C в течение 15 мин в среде азота. Изобретение обеспечивает повышение стабильности, снижение плотности дефектов, технологичность, улучшение параметров, повышение надежности и увеличение процента выхода годных приборов. 1 табл.

Изобретение относится к микроэлектронике и может быть использовано в технологии производства электронных приборов на карбиде кремния (SiC), например, МДП транзисторов с улучшенными рабочими характеристиками. В способе получения полупроводникового карбидокремниевого элемента, включающем введение ионов фосфора в SiC подложку путем ионной имплантации и дальнейшее формирование на ней слоя SiO2, имплантацию ионов фосфора проводят с энергией ионов в диапазоне 0,1-50 кэВ и дозой ионов в диапазоне 1012-1015 см-2, а слой SiO2 формируют методом осаждения и далее проводят отжиг полученной структуры. Сформированный методом осаждения слой SiO2 может иметь толщину 25-100 нм, а отжиг полученной структуры могут проводить в атмосфере сухого, либо влажного кислорода, либо в атмосфере инертного газа с парциальным давлением кислорода при температуре 900-1250°С в течение 1-180 мин. Способ позволяет повысить надежность и срок службы полупроводникового карбидокремниевого элемента при сокращении времени и затрат на его получение. 5 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженными токами утечки. В способе изготовления полупроводникового прибора после формирования подзатворного диоксида кремния на кремниевой пластине р-типа проводимости с ориентацией (111) структуры подвергают имплантации однозарядными ионами кислорода с энергией 45-50 кэВ, дозой 3*1012-3*1013 см-2, с последующей термическим отжигом при температуре 650-700°С в течение 4-6 час, в атмосфере азота. Затем формируют электроды стока, истока и затвора по стандартной технологии. Термообработка в атмосфере азота приводит, в результате реакции между избыточным кремнием и внедренным кислородом, к снижению фиксированного положительного заряда на поверхности раздела кремний-диоксид кремния и снижению токов утечек. Технический результат: снижение токов утечек, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. 1 табл.

Изобретение относиться к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковой структуры кремний на диэлектрике с низкой плотностью дефектов. В способе изготовления полупроводниковой структуры кремниевую пластину p-типа проводимости с ориентацией (100) окисляют в атмосфере сухого кислорода, затем осуществляют имплантацию ионов фосфора с энергией 100-115 кэВ, дозой 1*1015 см-2 с последующим отжигом при температуре 1150°С в атмосфере азота с образованием в подложке области n+-типа проводимости с поверхностной концентрацией примеси 1*1019 см-3. Затем на поверхность пластины осаждают слой поликремния и проводят сканирование пластины лучом Ar-лазера мощностью 5-10 Вт со скоростью 90-100 см/с в направлении, перпендикулярном затравочной дорожке, в результате которого осуществлялось локальное расплавление поликремния с последующей кристаллизацией эпитаксиального слоя. После процесса эпитаксии удаляют защитный SiO2-слой и формируют полевой транзистор по стандартной технологии. Изобретение обеспечивает снижение плотности дефектов, повышение технологичности, улучшение параметров, повышение качества и увеличение процента выхода годных.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженными токами утечки. Технология способа состоит в следующем: на кремниевой подложке p-типа проводимости с удельным сопротивлением 10 Ом⋅см, с ориентацией (111) выращивают тонкий слой окисла для структуры затвора приборов. Поверх окисла формируют слой поликристаллического кремния над областями истока, затвора и стока толщиной 45 нм при расходе силана 10 см3/мин и водорода 21 л/мин и скорости потока аргона 2,7 см/с со скоростью роста 1,5 нм/с при температуре 850-900°С, с последующим внедрением ионов азота энергией 10-15 кэВ, дозой 1⋅1017 см-2 при температуре подложки 80-90°С и проведением термообработки при температуре 300-400°С в течение 15-30 с в атмосфере водорода. Далее формируют полупроводниковые приборы по стандартной технологии. Изобретение обеспечивает снижение токов утечек, обеспечение технологичности, улучшение параметров, повышение надежности и увеличение процента выхода годных. 1 табл.
Наверх