Способ калибровки электронного магнитного компаса

Изобретение относится к способам построения устройств, используемых на подвижных объектах. Техническим результатом изобретения является устранение инструментальных погрешностей магнитного компаса и повышение точности определения азимута передвижения объекта α в плоскости. Способ калибровки магнитного компаса заключается в установке магнитного компаса на плоскости в четырех ортогональных положениях и измерение средних значений магнитного поля в каждом положении, а также средних значений по всем положениям магнитного компаса. Полученные величины позволяют впоследствии аналитически рассчитать реальный азимут движения по результатам измерений магнитного компаса. 4 ил.

 

Заявляемый способ калибровки электронного магнитного компаса (МК) относится к способам построения устройств, используемых на подвижных объектах. Способ может быть использован, преимущественно, для калибровки автономной навигационной системы пешехода, например, с целью повышения точности определения азимута передвижения объекта по данным МК при отсутствии сигналов глобальных навигационных систем (ГНС).

Магнитное поле Земли может использоваться для решения задач навигации. Однако это поле подвержено влиянию многочисленных возмущающих факторов [1], в том числе глобальных и локальных аномалий, инструментальных погрешностей аппаратуры и т.п.

Серьезный вклад в погрешности магнитометров вносят инструментальные погрешности самого прибора. Сигнал М, поступающий от любого канала магнитометра, может быть представлен в виде M=kH+m, где k - коэффициэнт передачи канала, H - действительная напряженность магнитного поля в точке измерений, m - статическая ошибка магнитометра (значение M при отсутствии магнитного поля). Проблема состоит в том, что у двух-, трехканальных магнитометров величины k и m по ортогональным осям отличаются друг от друга. В результате чего при измерении постоянного магнитного поля и произвольном вращении трехосного магнитометра получают поверхность эллипсоида с центром не в начале координат. Для калибровки (определения неизвестных параметров магнитомерта k и m) аппроксимируют полученные результаты измерений эллипсоидом и вычисляют искомые величины, используя численные методы, например метод наименьших квадратов. Такую процедуру отличает высокая трудоемкость. Во многих применениях удовлетворительной точности калибровки можно добиться, разбив задачу трехмерной калибровки в координатах 0XYZ на две двухмерных задачи: в плоскостях 0XY и 0YZ. В ряде случаев, например при перемещении по поверхности Земли, для определения азимута - направления на магнитный полюс (МП) достаточно выполнить калибровку в плоскости Земли. Однако даже для плоской задачи известные авторам алгоритмы вычисления параметров магнитометра достаточно сложны.

Известен способ калибровки [2] любых векторных измерительных приборов (магнитометров, акселерометров, антенных решеток и т.п.), заключающийся во вращении приборов на разные углы и измерении соответствующих величин с расчетом требуемых корректировок.

Недостатком данного способа является его высокая сложность.

Известен способ калибровки электронного магнитного компаса [3], заключающийся в перемещении его по определенной траектории и сопоставлении его показаний с данными ГНС.

Недостаток этого способа заключается в низкой точности калибровки, обусловленной погрешностями ГНС определения путевого угла (азимута).

Известен способ калибровки электронного магнитного компаса [4], заключающийся в измерении магнитных полей большим количеством магнитометров и формировании искажающей матрицы калибруемого электронного магнитного компаса.

Недостаток этого способа заключается в высокой сложности калибровки.

Известна методика калибровки для двухосного электронного магнитного компаса в информационно-измерительных системах [5].

Недостаток этого способа заключается также в высокой сложности вычислений.

Наиболее близким к заявляемому является способ калибровки электронного магнитного компаса [6], стр. 25-28, заключающийся в том, что устанавливают компас на выбранной плоскости, вращают компас вокруг оси, перпендикулярной этой плоскости, и фиксируют его в четырех, i=1÷4, ортогональных положениях по двум ортогональным осям X и Y, лежащим в указанной плоскости, в каждом положении принимают компасом составляющие магнитного поля.

Недостаток этого способа заключается также в высокой сложности вычислений.

Задачей, решаемой заявляемым изобретением, является создание простого в реализации способа калибровки.

Для решения этой задачи в способе калибровки электронного магнитного компаса, заключающемся в том, что устанавливают компас на плоскости, вращают компас вокруг оси, перпендикулярной этой плоскости, и фиксируют его в четырех, i=1÷4, ортогональных положениях по двум ортогональным осям X и Y, лежащим в указанной плоскости, в каждом положении принимают компасом составляющие магнитного поля, по осям X и Y измеряют средние значения магнитного поля Mxi и Nyi в каждом, i=1÷4, положении компаса и средние значения магнитного поля по всем положениям компаса mx и my, вычисляют k - степень инструментальной асимметрии коэффициентов передачи kx и ky приемников компаса по осям X и Y по формуле:

при использовании компаса совмещают ось X с направлением движения и вычисляют истинное направление на магнитный полюс в плоскости XY по формуле:

α=arctg[(By-my)/k(Bx-mx)],

где Bx и By - измереннные компасом составляющие магнитного поля по осям X и Y.

Существенные отличия заявляемого способа состоят в том, что для калибровки компаса требуется измерить лишь средние значения магнитного поля Mxi и Myi в каждом, i=1÷4, положении компаса и средние значения магнитного поля по всем положениям компаса mx и my. Результаты измерений позволяют легко, используя аналитические выражения, получить степень инструментальной ассиметрии k коэффициентов передачи kx и ky приемников компаса, а впоследствии, также аналитически, найти направление на магнитный полюс.

В прототипе калибровка компаса предполагает сложные измерения и оптимизационные расчеты.

Заявляемый способ иллюстрируют следующие графические материалы:

Фиг. 1. Датчики компаса.

Проекции вектора магнитного поля на оси 0X и 0Y при поворотах компаса.

Фиг. 2. Проекции вектора магнитного поля при поворотах компаса.

Фиг. 3. Схема определения направления на МП.

Фиг. 4. Схема устройства, реализующего способ, где:

1, 2 - датчики поля;

3, 4, 5, 6 - интеграторы;

7 - компьютер.

Рассмотрим возможность реализации заявляемого способа калибровки электронного магнитного компаса при решении простейшей задачи: определения азимута движения при перемещении по поверхности Земли.

Датчики трехосного электронного магнитного компаса, фиг. 1, располагают ортогонально в базисе 0XYZ, а на корпусе компаса отображают направления соответствующих осей. Вектор магнитного поля Н направлен на МП. Каждым из датчиков компаса принимают сигналы Mx, My и Mz, соответствующие проекциям HX, HY и HZ вектора H, однако каждый канал принимает их со свойствеными именно ему коэффициентом передачи k и статической ошибкой m:

Будем предполагать, что во время калибровки величина и направление вектора H не меняются. Этот факт можно проверить путем многократного измерения и сравнения значений Mx, My и Mz. Будем также считать, что в рассматриваемом случае проекция HZ не имеет существенного значения.

Устанавливают компас на плоскость, параллельную поверхности Земли, на которую устанавливают плоскость 0XY компаса, фиг. 2, а).

Измеряют средние значения магнитного поля Mx1 и My1. В простейшем случае среднее значение магнитного поля может быть получено в результате одного измерения. Однако действительная оценка среднего значения позволяет в определенной степени избавиться от флуктуаций магнитного поля, ошибок измерений и т.п. В аналоговом компасе для получения среднего значения производят интегрирование входных сигналов M за фиксированный интервал времени, а в цифровом - суммирование определенного количества входных отсчетов. В результате проведенных измерений получают усредненные величины:

Поворачивают компас на 90°, Фиг. 2, b), и аналогичным образом измеряют средние значения компонентов магнитного поля:

Следующий поворот компаса, Фиг. 2, с), даст значения:

Наконец четвертый поворот, Фиг. 2, d), позволит получить:

Одновременно с измерением средних значений магнитного поля по координатам X и Y в каждом из положений компаса измеряют средние координатные значения поля по всем положениям компаса. Для чего интегрируют координатные показания компаса, полученные по четырем этапам калибровки, в аналоговом варианте или суммируют - в цифровом. Сложив соотношения (2)-(5), нетрудно убедиться, что средние значения магнитного поля по всем положениям компаса являются усредненными статическими ошибками компаса по каждой координате:

Полученные значения позволяют вычислить отношение коэффициентов передачи компаса по каналам X и Y

т.е. степень асимметрии каналов X и Y компаса, причем сами значения коэффициентов kx и ky не требуются.

Знание величин mx, my и k позволяет при использовании компаса скорректировать его показания. Если ось X компаса, Фиг. 3, совместить с направлением движения (НД) объекта и измерить составляющие магнитного поля Bx и By, то азимут - угол α между осью X и направлением на МП может быть рассчитан по формуле:

При необходимости трехмерной калибровки аналогичные действия могут быть выполнены сначала в плоскости 0XY, а затем в ортогональной плоскости, 0XZ или 0YZ.

Схема устройства, реализующего заявляемый способ, приведена на Фиг. 4. Сигналы от датчиков 1 (2) магнитного поля по осям X (Y) поступают на интеграторы 3 и 4 (5 и 6) соответственно. Интегратор 3 (5) определяет среднее значение поля в каждом положении компаса, а интегратор 4 (6) - по всем четырем измерениям. Начало и конец интегрирования задает управляющими сигналами компьютер 7. Последний сохраняет значения Mxi, Myi, mx и my, а также вычисляет по формуле (6) k - степень инструментальной асимметрии коэффициентов передачи kx и ky приемников компаса по осям X и Y. После калибровки компас готов к работе. При решении навигационных задач, Фиг. 3, направляют ось X компаса по направлению движения, измеряют составляющие магнитного поля Bx и By, а компьютер 7 рассчитывает азимут α по формуле (7).

Таким образом, заявляемый способ позволяет выполнить калибровку электронного магнитного компаса в одной плоскости простыми средствами: как по технической реализаци, так и по алгоритмам вычисления, благодаря полученным аналитическим соотношениям.

Источники информации:

1. _gps//

2. Патент WO 2013188776.

3. Патент RU 2503923.

4. Патент RU 2497139.

5. http://www.masters.donntu.edu.ua/2007/kita/gems/library/calibration.htm

6. Иванов Д.С., Ткачев С.С., Карпенко C.O., Овчинников М.Ю. Калибровка датчиков для определения ориентации малого космического аппарата // Препринты ИПМ им. М.В. Келдыша. 2010. №28. 30 с. URL: http://library.keldysh.ru/preprint.asp?id=2010-28.

Способ калибровки электронного магнитного компаса, заключающийся в том, что устанавливают компас на плоскость, вращают компас вокруг оси, перпендикулярной этой плоскости, и фиксируют его в четырех, i=1÷4, ортогональных положениях по двум ортогональным осям X и Y, лежащим в указанной плоскости, в каждом положении принимают компасом составляющие магнитного поля, отличающийся тем, что по осям X и Y измеряют средние значения магнитного поля Mxi и Myi в каждом, i=1÷4, положении компаса и средние значения магнитного поля по всем положениям компаса mx и my, вычисляют k - степень инструментальной асимметрии коэффициентов передачи kx и ky приемников компаса по осям X и Y по формуле:

при использовании компаса совмещают ось X с направлением движения и вычисляют истинное направление на магнитный полюс в плоскости XY по формуле

где Bx и By - измереннные компасом составляющие магнитного поля по осям X и Y.



 

Похожие патенты:

Заявляемый способ калибровки магнитного компаса (МК) пешехода относится к способам построения устройств, предназначенных для калибровки МК, используемых на подвижных объектах.

Изобретение относится к измерительной технике и предназначено для уничтожения полукруговой девиации магнитных компасов. .

Изобретение относится к области навигационного приборостроения с использованием магнитного поля Земли и предназначено для построения приборов измерения магнитного курса и углов наклона подвижных объектов.

Изобретение относится к области измерительной техники и может быть использовано в приборах для определения координат подвижных наземных объектов. .

Изобретение относится к магнитному курсоуказанию и навигации, и предназначено для использования на транспортных средствах, оснащенных системами размагничивания. .

Изобретение относится к области магнитного курсоуказания и навигации, может быть использовано для повышения точности курсовых систем подвижных объектов, например летательных аппаратов (ЛА).

Изобретение относится к области навигационного приборостроения и предназначено для измерения магнитного курса и углов наклона подвижных объектов. .
Изобретение относится к области приборостроения и может быть применено при контроле гироскопических стабилизаторов, а также и других типов гироскопических устройств, имеющих датчики коррекции.

Изобретение относится к авиационному приборостроению, а именно к производству индукционных датчиков магнитного курса, и может быть использовано в производстве феррозоидовых магнитометров.

Группа изобретений относится к управлению ориентацией космических (КА) и авиационных летательных аппаратов (ЛА) с помощью чувствительных элементов. Устройство содержит размещённые на основании датчики (Д) ориентации относительно инерциальной системы координат и относительно астрономических объектов. При этом каждый из указанных Д снабжён несколькими Д измерения расстояний между этим Д ориентации и основанием (не менее 6 Д), а также (в варианте) между этим Д и другим (или несколькими) Д ориентации. Шарнирное закрепление концов Д расстояний выполнено с обеспечением непараллельности измеряемых отрезков. Д расстояний включает в себя механический эталон дины и Д смещения. Учёт этих смещений (в блоке обработки данных) имеет целью исключить влияние погрешностей положения Д ориентации в связанных осях КА или ЛА (например, вследствие деформаций конструкции) на измеряемые параметры ориентации аппарата. Техническим результатом группы изобретений является повышение точности определения ориентации КА или ЛА без увеличения жёсткости и термостабильности их конструкции. 3 н. и 12 з.п. ф-лы, 2 ил.

Группа изобретений относится к управлению ориентацией космических (КА) и авиационных летательных аппаратов (ЛА) с помощью чувствительных элементов. Устройство содержит размещённые на основании датчики (Д) ориентации относительно инерциальной системы координат и относительно астрономических объектов. При этом устройство снабжено, для каждого из указанных Д, одномерными или двумерными (или их комбинацией) Д измерения углов. Последние включают источник и приемник излучения, установленные на основании, и отражающий элемент - на одном из Д определения ориентации. Данные элементы установлены так, чтобы плоскости падающего и отраженного пучков излучения не были параллельны. Углы измеряют, например, между рабочими осями Д ориентации и основанием. Учёт этих углов (в блоке обработки данных) имеет целью исключить влияние погрешностей положения Д ориентации в связанных осях (например, вследствие деформаций конструкции) на измеряемые параметры ориентации аппарата. Техническим результатом группы изобретений является повышение точности определения ориентации КА или ЛА без увеличения жёсткости их конструкции. 2 н. и 11 з.п. ф-лы, 4 ил.

Группа изобретений относится к управлению ориентацией космических (КА) и авиационных летательных аппаратов (ЛА) с помощью чувствительных элементов. Устройство содержит размещённые на основании датчики (Д) ориентации относительно инерциальной системы координат и относительно астрономических объектов. Каждый Д ориентации снабжен хотя бы шестью Д измерения расстояний, шарнирно закрепленными концами на Д ориентации и на основании устройства. При этом обеспечена непараллельность измеряемых отрезков. Д расстояний включают в себя механический эталон длины и Д смещения. Д связаны с блоком обработки их данных. Учёт смещений Д ориентации (в блоке обработки данных) имеет целью исключить влияние погрешностей положения этих Д в связанных осях ЛА или КА (напр., вследствие деформаций конструкции) на измеряемые параметры ориентации аппарата. Техническим результатом группы изобретений является повышение точности определения ориентации КА или ЛА без увеличения жёсткости и термостабильности их конструкции. 2 н. и 16 з.п. ф-лы, 4 ил.

Изобретение относится к способу калибровки электронного магнитного компаса (МК). Способ калибровки электронного магнитного компаса содержит этапы, на которых компас устанавливают на плоскость так, чтобы приемники магнитного поля его ортогональных осей 0Х и 0Y лежали в этой плоскости, вращают компас вокруг оси 0Z, перпендикулярной этой плоскости, и фиксируют его в четырех, i=1÷4, ортогональных положениях, в каждом положении компаса измеряют сигналы приемников магнитного поля Mxi и Myi по осям 0Х и 0Y, оценивают статические ошибки компаса mx и my по каждой из осей компаса путем определения средних значений сигналов Mxi и Myi по всем положениям компаса: ; ,определяют k - отношение чувствительностей приемников компаса по осям 0Х и 0Y, при использовании компаса совмещают ось 0Х с направлением движения, измеряют сигналы приемников магнитного поля Bx и By по осям 0Х и 0Y и вычисляют истинное направление на магнитный полюс в плоскости X0Y по формуле: ,при этом k - отношение чувствительностей приемников компаса по осям 0Х и 0Y, вычисляют как отношение модулей вектора магнитного поля , полученных с использованием всех измерений по оси Y и по оси X: .Технический результат – повышение точности калибровки магнитного компаса. 6 ил.
Наверх