Способ нанесения боросиликатного покрытия на частицы гидрида титана

Изобретение относится к нанесению боросиликатного покрытия на частицы порошкообразного гидрида титана, применяемого в ядерной энергетике в качестве нейтронопоглощающего материала. Частицы гидрида титана обрабатывают сначала раствором, содержащим метилсиликанат натрия и воду, затем частицы высушивают и обрабатывают раствором, содержащим борную кислоту и воду, после чего частицы высушивают и проводят их термообработку при температуре 175-200°C с образованием на частицах боросиликатного покрытия. Обеспечивается увеличение температуры термического разложения гидрида титана до 585°С при сохранении удельного содержания водорода. 2 ил., 1 табл., 1 пр.

 

Изобретение относится к порошковой металлургии, в частности к способу нанесения покрытия на частицы порошкообразного гидрида титана, и может быть использовано для повышения термической стабильности порошкообразного гидрида титана, применяемого в ядерной энергетике в качестве нейтронопоглощающего материала.

Известен способ обработки гидрида титана, заключающийся в его прогреве в среде водорода при температуре 250-600°С в течение 1-480 ч и давлении 1,5÷48 атм. В результате такой обработки температура пика, соответствующего максимальной скорости выделения водорода из образца при его нагреве с постоянной скоростью, составляет 505°С /Патент RU №2466929, 24.03.2011/. Недостатком данного способа является невысокая термическая стойкость гидрида титана и повышенная скорость выделения водорода при температуре свыше 500°С, что обусловлено растворимостью кислорода защитной оксидной пленки в титане.

Наиболее близким, принятым за прототип, к предлагаемому решению является способ нанесения медного покрытия на частицы порошкообразного гидрида титана, заключающийся в создании на поверхности порошкообразных частиц диффузионного барьера в виде покрытия, которое наносят из раствора, содержащего, г/л: сульфат меди 15-35, сигнетова соль 60-170, гидроксид натрия 15-50, карбонат натрия 3-35, формалин 6-16, тиосульфат натрия 0,003-0,01, хлорид никеля 2-3. Порошок гидрида титана заливается свежеприготовленным раствором: перемешивается магнитной мешалкой, фильтруется, промывается и сушится. При этом увеличивается температура термического разложения гидрида титана и снижается скорость выделения водорода. Начало и окончание процесса разложения гидрида титана с медным покрытием соответствует температурам 503,3 и 585,9°С, а максимальной скорости разложения отвечает температура 526,9°С /Патент RU №2459685, 14.02.2011/. Недостатком данного способа является недостаточное увеличение температуры термического разложения гидрида титана. Многокомпонентность состава раствора для осуществления способа усложняет технологию его нанесения, а наличие дополнительных примесей ограничивает применение гидрида титана в качестве нейтронопоглощающего материала.

Задачей предлагаемого изобретения является повышение термической стойкости гидрида титана.

Техническим результатом предлагаемого изобретения является увеличение температуры начала выделения водорода и снижение скорости выделения водорода из частиц порошкообразного гидрида титана, при неизменном содержании водорода в гидриде титана.

Для достижения технического результата предложен способ нанесения боросиликатного покрытия на частицы порошкообразного гидрида титана, включающий обработку частиц гидрида титана сначала раствором, содержащим метилсиликанат натрия и воду при следующем содержании (мас. %):

метилсиликанат натрия 5
вода 95

затем частицы высушивают и обрабатывают раствором, содержащим борную кислоту и воду при следующем содержании (мас. %):

борная кислота 5
вода 95

после чего частицы высушивают и проводят их термообработку при температуре 175-200°C с образованием на частицах боросиликатного покрытия.

Обработка порошкообразных частиц гидрида титана раствором метилсиликаната натрия приводит к образованию на их поверхности активных центров в виде силанольных (-OH) и силанолятных (Si-ONa) групп, по которым возможно дальнейшее модифицирование из водного раствора борной кислотой с образованием боросиликатного покрытия за счет хемосорбционных процессов с активированной поверхностью гидрида титана. Последующая термообработка модифицированных частиц гидрида титана при температуре 175-200°C приводит к оплавлению боросиликатного покрытия, его механической фиксации с поверхностью порошкообразных частиц гидрида титана по анкерному типу, созданию сплошности покрытия и образованию диффузионного барьера для выделения водорода. При этом наблюдается снижение скорости выделения водорода и увеличивается температура начала выделения водорода. Таким образом, существенно повышается термическая стойкость порошкообразного гидрида титана.

Пример. Нанесение боросиликатного покрытия на частицы порошкообразного гидрида титана проводилось следующим образом. Навеска порошкообразных частиц гидрида титана в количестве 5 г помещается в стеклянный стакан, заливается 50 мл свежеприготовленного раствора, содержащего (мас. %): метилсиликанат натрия 5; вода 95. С помощью магнитной мешалки производят перемешивание в течение 30 мин. После окончания перемешивания суспензия порошка переносится на стеклянный фильтр и откачивается вместе с осадком с помощью насоса Камовского. Оставшиеся на фильтре частицы гидрида титана затем высушиваются в вакуумном сушильном шкафу в течение 1 часа при температуре 105°C. Далее частицы гидрида титана помещаются в стеклянный стакан, заливаются 50 мл свежеприготовленного раствора, содержащего (% масс.): борная кислота 5; вода 95. С помощью магнитной мешалки производят перемешивание в течение 30 мин. После окончания перемешивания суспензия порошка переносится на стеклянный фильтр и откачивается вместе с осадком с помощью насоса Камовского. Оставшиеся на фильтре частицы гидрида титана затем высушиваются в вакуумном сушильном шкафу в течение 1 часа при температуре 105°C. Далее проводят термообработку модифицированных частиц гидрида титана в течение 2 часов при температуре 175°C. Достижение технического результата поясняется графическими материалами:

Фиг. 1 - термограмма DTG (скорость изменения массы) при скорости нагрева 2°C/мин исходного гидрида титана и гидрида титана с боросиликатным покрытием;

Фиг. 2 - кинетические кривые термического разложения исходного гидрида титана, гидрида титана с боросиликатным покрытием и гидрида титана с медным покрытием согласно прототипу.

Приведенные на фиг. 1 спектры термодесорбции водорода из образцов исходного гидрида титана и гидрида титана с боросиликатным покрытием, снятые в процессе нагрева в интервале температур от 100 до 800°C в среде аргона, свидетельствуют о различной термической устойчивости сравниваемых образцов в интервале температур от 400 до 700°C. Для образцов характерен эндотермический эффект разложения, наблюдаемый на спектрах термодесорбции, при этом:

1) начало и окончание процесса разложения исходного гидрида титана соответствует температурам 433 и 542°C соответственно, а максимальной скорости разложения соответствуют два пика при 462,0°C и 492,0°C;

2) начало и окончание процесса разложения гидрида титана с боросиликатным покрытием соответствует температурам 585 и 699°C, а максимальной скорости разложения отвечает температура 635°C.

С использованием данного способа пик термодесорбции водорода из гидрида титана с боросиликатным покрытием, соответствующий началу выделения водорода, по сравнению с пиком термодесорбции водорода из исходного гидрида титана без боросиликатного покрытия смещен на 152°C в сторону более высоких температур, а по сравнению с прототипом смещен на 81,7°C в сторону более высоких температур.

С использованием данного способа пик термодесорбции водорода из гидрида титана с боросиликатным покрытием, соответствующий максимальной скорости выделения водорода, по сравнению с пиком термодесорбции водорода из исходного гидрида титана без боросиликатного покрытия смещен на 172,7°C в сторону более высоких температур, а по сравнению с прототипом смещен на 107,8°C в сторону более высоких температур.

С использованием данного способа, представленные на фиг. 2 кинетические кривые термического разложения гидрида титана с боросиликатным покрытием на начальном участке расположены ниже соответствующих кривых термического разложения исходного гидрида титана и гидрида титана с медным покрытием (прототип), что свидетельствует о снижении скорости выделения водорода из гидрида титана с боросиликатным покрытием.

С использованием данного способа удельное содержание водорода в гидриде титана с боросиликатным покрытием не изменяется по сравнению с исходным гидридом титана. Как видно из таблицы, в исходном гидриде титана удельное содержание водорода составило 404,4 см3/г, а после нанесения боросиликатного покрытия - 403,1 см3/г.

Способ нанесения боросиликатного покрытия на частицы порошкообразного гидрида титана, характеризующийся тем, что частицы обрабатывают сначала раствором, содержащим метилсиликанат натрия и воду при следующем содержании, мас. %:

метилсиликанат натрия 5
вода 95

затем частицы высушивают и обрабатывают раствором, содержащим борную кислоту и воду при следующем содержании, мас. %:
борная кислота 5
вода 95

после чего частицы высушивают и проводят их термообработку при температуре 175-200°C с образованием на частицах боросиликатного покрытия.



 

Похожие патенты:

Изобретение относится к области химии. .

Изобретение относится к области управления переносом тепловой энергии через материалы, а именно к термобарьерному покрытию и способу его нанесения. Термобарьерное покрытие, нанесенное на подложку, содержит металлические наночастицы с нанесенным на них стекловидным составом, образующие упорядоченную структуру и вплавленные в стекловидную матрицу для удержания в ней.

Изобретение относится к технологии плакирования композиционных порошковых материалов, которые могут быть использованы для напыления покрытий. Порошок зернистостью менее 20 мкм обрабатывают в растворе плакирования, содержащем соль осаждаемого металла, комплексообразователь и восстановитель.

Группа изобретений относится к способу получения органических частиц субстрата, связанных с переключаемыми ферромагнитными наночастицами со средним диаметром частиц в интервале от 10 до 1000 нм, к применению таких частиц для гипертермического лечения организма и к медикаменту для гипертермического лечения.
Изобретение относится к области порошковой металлургии, в частности к получению порошка для нанесения износо- и коррозионно-стойких покрытий с высокой адгезионной и когезионной прочностью методом холодного газодинамического напыления (ХГДН).

Изобретение относится к ферромагнитной порошковой композиции и способу ее получения. Предложена ферромагнитная порошковая композиция, включающая магнитно-мягкие частицы сердцевины на основе железа, имеющие насыпную плотность 3,2-3,7 г/мл, и при этом поверхность частиц сердцевины снабжена неорганическим изоляционным слоем на основе фосфора и по меньшей мере одним металлоорганическим слоем из металлоорганического соединения предложенной структуры, расположенным снаружи первого неорганического изоляционного слоя на основе фосфора.

Изобретение относится к области металлургии, в частности к плазмохимическим способам получения нанодисперсных порошков методом переконденсации в низкотемпературной азотной плазме.
Изобретение относится к области электрохимии, а именно к способу перемешивания в вакууме частиц электрокатализаторов на углеродной основе, заключающемуся в том, что перемешивание производят в вакуумной рабочей камере, снабженной устройством подачи инертного газа и держателем порошка частиц электрокатализаторов.

Изобретение относится к нанотехнологии, в частности к способу получения модифицированных наночастиц железа, которые могут быть использованы при создании магнитоуправляемых материалов.

Изобретение относится к порошковой металлургии, в частности к получению модифицированных наночастиц железа. Может использоваться для изготовления магнитоуправляемых материалов/магнитореологических жидкостей, радиопоглощающих покрытий, уменьшающих радиолокационную заметность объектов.

Изобретение относится к порошковой металлургии, в частности к получению ферромагнитной порошковой композиции. Может использоваться в качестве сердечника в катушках индуктивности, статорах и роторах электрических машин, силовых приводах, датчиках и сердечниках трансформаторов.

Изобретение относится к получению композиционного армированного порошкового материала для нанесения покрытий холодным сверхзвуковым газодинамическим напылением. Смешивают матричный порошок металлов или их сплавов и армирующий нанопорошок с размером частиц от 1 нм до 100 нм, в полученную смесь дополнительно вводят тонкодисперсный порошок оксидов алюминия, или оксидов кремния, или оксидов титана с размером частиц 20-40 мкм в количестве 5-10 мас.%. Проводят механическую обработку порошковой смеси в высокоэнергетической истирательной установке в течение 30 мин при скоростях вращения 1400-2000 об/мин. В качестве армирующего нанопорошка используют карбиды, нитриды и карбонитриды в количестве 50 мас.%. В качестве матричного порошка используют порошки металлов или их сплавов с твердостью не выше 235 HV и с размером частиц, определяемым по заданному соотношению. Обеспечивается повышение твердости и снижение пористости покрытий, получаемых с использованием армированного порошкового материала. 3 ил., 1 табл., 2 пр.

Изобретение может быть использовано при электродуговой сварке для модифицирования металла сварного шва наноразмерными тугоплавкими частицами. Рубленую сварочную проволоку диаметром 1-2 мм и длиной 1-2 мм смешивают с модифицирующей добавкой диоксида титана с помощью высокоэнергетической планетарной мельницы с ускорением частиц не менее 20 g. Компоненты берут в следующем соотношении, мас.%: модифицирующая добавка диоксида титана 0,3-0,8, рубленая сварочная проволока остальное. В процессе обработки происходит дробление гранулята с образованием ювенильных поверхностей, а также измельчение химической добавки до наноразмерного порядка. Образуются химические связи между добавкой и гранулятом, что повышает стабильность состава, а нанодисперсные частицы модифицирующей добавки служат готовыми центрами кристаллизации в процессе модифицирования. Техническим результатом изобретения является повышение стабильности механических свойств и сопротивляемости металла шва хрупкому разрушению сварных соединений. 3 ил., 4 табл., 3 пр.

Изобретение относится к получению наночастиц с ядром из ферромагнитного металла и диэлектрической оболочкой из оксида алюминия. В способе по варианту 1 проводят плазменную переконденсацию в токе инертного газа частиц порошка оксида алюминия с нанесенным на их поверхность покрытием из ферромагнитного металла с массовой долей от 25 до 75 мас.%, при этом обеспечивают послойное испарение упомянутых частиц и последующее образование наночастиц путем первичной конденсации кластеров из ферромагнитного металла и конденсации на них паров оксида алюминия. В способе по варианту 2 проводят плазменную переконденсацию в токе инертного газа смеси порошков, состоящей из порошка оксида алюминия с нанесенным на его поверхность покрытием из ферромагнитного металла и порошка ферромагнитного металла. Обеспечивается равномерность распределения компонентов во всей массе получаемых наночастиц. 2 н. и 1 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к реакторам для осаждения материалов на поверхности при последовательном использовании самоограниченных поверхностных реакций. Способ атомно-слоевого осаждения (АСО) покрытия на поверхность частиц дисперсного материала включает установку картриджа для атомно-слоевого осаждения (картриджа АСО) в приемник реактора АСО посредством осуществления быстроразъемного соединения, причем картридж АСО сконфигурирован с возможностью выполнения функции реакционной камеры АСО, обработку поверхности дисперсного материала в картридже АСО путем обработки дисперсного материала в расположенных одно над другим отделениях картриджа, каждое из которых отделено от смежного отделения пластинчатым фильтром. Реактор АСО покрытия на поверхность частиц дисперсного материала содержит приемник, сконфигурированный для установки в реактор АСО, посредством осуществления быстроразъемного соединения картриджа АСО, сконфигурированного с возможностью выполнения функции реакционной камеры АСО, и линию или линии подачи, сконфигурированную или сконфигурированные с возможностью подачи в картридж АСО паров прекурсоров для осуществления обработки поверхности дисперсного материала в картридже АСО. Картридж АСО представляет собой съемный картридж, который посредством приемника с помощью быстроразъемного соединения прикреплен к корпусу реактора АСО, при этом обеспечивается возможность обработки поверхности дисперсного материала внутри картриджа. Указанный картридж содержит пластинчатые фильтры, установленные друг над другом, с образованием между ними отделений для нанесения покрытия на дисперсный материал. Аппарат для АСО покрытия на поверхность частиц дисперсного материала содержит упомянутые реактор АСО и картридж АСО. Обеспечивается тонкое покрытие на мелких частицах, позволяющее изменить их поверхностные свойства при сохранении их объемных свойств. 4 н. и 13 з.п. ф-лы, 12 ил.

Изобретение относится к порошку сплава, содержащему уран и молибден в метастабильной γ-фазе, композиции порошков, заключающей в себе указанный порошок, а также к вариантам использования упомянутого порошка сплава и упомянутой композиции порошков для изготовления тепловыделяющих элементов, в частности топливных элементов для экспериментальных ядерных реакторов, и мишеней, предназначенных для получения радиоактивных элементов, в частности, для формирования изображений в области медицины. Порошок сплава образован частицами, состоящими из ядра из сплава на основе урана, содержащего молибден в метастабильной γ-фазе, которое покрыто слоем оксида алюминия, находящимся в контакте с ядром. Композиция порошков для изготовления тепловыделяющего элемента или мишени для получения радиоактивного элемента включает порошок сплава на основе урана, содержащий молибден в метастабильной γ-фазе, смешанный с порошком, содержащим алюминий, причем порошок сплава на основе урана, содержащий молибден, составляет 65-90 мас.% от массы композиции порошков, а порошок, содержащий алюминий, имеет массовое содержание алюминия, равное по меньшей мере 80%. Изобретение направлено на повышение стойкости композиции к воздействию нейтронного излучения. 13 н. и 18 з.п. ф-лы, 2 пр., 1 табл., 9 ил.
Наверх