Способ определения величины отклонения образующих стенок резервуара вертикального цилиндрического от вертикали

Изобретение относится к области геодезического контроля резервуаров вертикальных цилиндрических стальных и может быть использовано при поверке стальных и железобетонных резервуаров вертикальных цилиндрических. Технический результат - повышение точности и достоверности определения величины отклонения образующих стенок резервуара вертикального цилиндрического от вертикали. Cпособ определения величины отклонения образующих стенок резервуара вертикального цилиндрического от вертикали геодезическим методом по внешней поверхности вышеупомянутого резервуара заключается в том, что производят сканирование внешней поверхности резервуара при помощи наземного лазерного сканера не менее чем с четырех сканерных станций на расстоянии от 15 до 25 м от резервуара. Определяют пространственные координаты по осям Χ, Υ, Ζ точек отражения лазерного луча от поверхности резервуара в условной системе координат. Выполняют регистрацию сканов между собой, производят обработку данных результатов. Формируют образующие боковой поверхности резервуара с любым интервалом путем сечения цифровой векторной трехмерной (3D) модели внешней боковой поверхности резервуара вертикальной плоскостью, а на самой образующей формируют точки с любым шагом. Получают цифровую векторную трехмерную (3D) модель образующей в местах сечения. Выполняют упомянутые действия по всем образующим. Передают полученную цифровую информацию в компьютерную программу, в этой же программе моделируют проектную цифровую трехмерную модель образующих стенок резервуара, используя их проектные значения. Совмещают ее с полученной фактической цифровой векторной трехмерной (3D) моделью образующих стенок резервуара. В автоматическом режиме определяют расхождения между фактическими и проектными значениями, получают величины отклонения образующих стенок вышеупомянутого резервуара от вертикали. 2 ил.

 

Данный способ относится к области геодезического контроля резервуаров вертикальных цилиндрических стальных и может быть использован при геодезических наблюдениях за деформациями стальных и железобетонных резервуаров вертикальных цилиндрических, предназначенных для хранения и проведения торговых операций с нефтью, нефтепродуктами и прочими жидкостями, а также при их техническом диагностировании и поверке.

Известен способ определения геометрических параметров резервуара геодезическими методами [ГОСТ 8.570-2000 «Резервуары стальные вертикальные цилиндрические. Методика поверки», утвержден Постановлением Государственного комитета РФ по стандартизации и метрологии от 23 апреля 2001 г. №185-ст., введен в действие с 1 января 2002 г.], взятый в качестве прототипа.

Сущность данного способа состоит в том, что определение величины отклонения образующих стенок резервуара вертикального цилиндрического от вертикали определяется при помощи шаблонов, отвесов и геодезическими методами с помощью измерительной каретки с теодолитом.

Недостатком этого способа является низкая точность и высокая трудоемкость, так как измерения необходимо выполнять вдоль каждого вертикального шва. Кроме того, данный способ предполагает контроль геометрических параметров в дискретных точках, что не позволяет достоверно оценить качество поверхности резервуара, а значит его состояние в целом. Также данный способ предполагает наличие человеческого фактора в процессе контроля, что также ведет к снижению достоверности и точности.

Задачей предлагаемого изобретения является повышение точности и достоверности определения величины отклонения образующих стенок резервуара вертикального цилиндрического от вертикали.

Поставленная задача достигается тем, что в способе определения величины отклонения образующих стенок резервуара вертикального цилиндрического от вертикали геодезическим методом по внешней поверхности вышеупомянутого резервуара согласно изобретению производят сканирование внешней поверхности резервуара при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 0,5 до 4 см не менее чем с четырех сканерных станций на расстоянии от 15 до 25 м от резервуара, определяют пространственные координаты по осям Χ, Υ, Ζ точек отражения лазерного луча от поверхности резервуара в условной системе координат. Выполняют регистрацию сканов между собой, производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, далее формируют образующие боковой поверхности резервуара с любым интервалом путем сечения цифровой векторной трехмерной (3D) модели внешней боковой поверхности резервуара вертикальной плоскостью, а на самой образующей формируют точки с любым шагом и получают цифровую векторную трехмерную (3D) модель образующей в местах сечения. Выполняют упомянутые действия по всем образующим. Передают полученную цифровую информацию в компьютерную программу, в этой же программе моделируют проектную цифровую трехмерную модель образующих стенок резервуара, используя их проектные значения. Совмещают ее с полученной фактической цифровой векторной трехмерной (3D) моделью образующих стенок резервуара. В автоматическом режиме определяют расхождения между фактическими и проектными значениями, получают величины отклонения образующих стенок вышеупомянутого резервуара от вертикали.

Способ поясняется чертежами. На фиг. 1 представлена общая схема работы предлагаемого способа. На фиг. 2 представлен пример оформления результатов в форме графиков и таблиц с указанием допустимых величин отклонений образующих от вертикали.

Предлагаемый способ осуществляется следующим образом. Для определения геометрических характеристик резервуара вертикального цилиндрического выбирают шаг сканирования, количество станций и место их расположения. Шаг сканирования должен быть подобран с учетом того, чтобы плотность точек, измеряемых на поверхности резервуара, позволяла с достаточной точностью и достоверностью определять его геометрию, учитывая деформацию стенок резервуара при его заполнении. Также цифровые точечные модели, полученные с разных станций, должны иметь достаточную плотность в зонах перекрытий, для качественного объединения их в единую модель (см. фиг. 1). Снаружи резервуара вертикального цилиндрического устанавливают наземный лазерный сканер и собственной программой обработки данных, принадлежащей данному оборудованию, и в соответствии с эксплуатационной документацией на прибор (ЭД) автоматически определяют координаты точек, принадлежащих внешней поверхности резервуара, выполняют измерение расстояний при помощи встроенного лазерного дальномера, при этом для каждого измерения фиксируют вертикальные и горизонтальные углы, шаг сканирования. Для выполнения сплошной сканерной съемки внешней поверхности резервуара сканирование выполняют с нескольких точек установки прибора (сканерных станций), передают результаты сканирования (сканы) в ПЭВМ, с помощью компьютерной программы регистрируют в ней сканы со всех станций и получают цифровую точечную трехмерную (3D) модель внешней поверхности резервуара. Результатом работ является «облако точек» лазерных отражений или «сканы» внешней поверхности резервуара. Производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнять привязку сканов к заданной системе координат, производят построение точечной трехмерной (3D) модели внешней поверхности резервуара, передают цифровую точечную трехмерную (3D) модель внешней поверхности резервуара в компьютерную программу и получают цифровую векторную трехмерную (3D) модель внешней поверхности резервуара, передают полученную цифровую информацию в компьютерную программу, в этой же программе моделируют проектную цифровую трехмерную модель образующих стенок резервуара, используя их проектные значения, совмещают ее с полученной фактической цифровой векторной трехмерной (3D) моделью образующих стенок резервуара, в автоматическом режиме определяют расхождения между фактическими и проектными значениями, получают величины отклонения образующих стенок вышеупомянутого резервуара от вертикали (см. фиг. 2).

В настоящее время не существует достоверного геометрического способа определения величины отклонения образующих стенок резервуара вертикального цилиндрического от вертикали. Предлагаемый инновационный способ позволит проводить техническое диагностирование и поверку резервуаров вертикальных цилиндрических с относительной погрешностью измерений 0,07%. Кроме того, данный способ, основанный на бесконтактном дистанционном методе, не требует предварительного освобождения его от нефтепродуктов, зачистку, определение объема внутренних элементов конструкций и других затратных мероприятий, связанных с простоем, а значит - с упущенной коммерческой прибылью.

Способ определения величины отклонения образующих стенок резервуара вертикального цилиндрического от вертикали геодезическим методом по внешней поверхности вышеупомянутого резервуара, отличающийся тем, что производят сканирование внешней поверхности резервуара при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 0,5 до 4 см, не менее чем с четырех сканерных станций на расстоянии от 15 до 25 м от резервуара, определяют пространственные координаты по осям X, Y, Z точек отражения лазерного луча от поверхности резервуара в условной системе координат, выполняют регистрацию сканов между собой, производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, формируют образующие боковой поверхности резервуара с любым интервалом путем сечения цифровой векторной трехмерной (3D) модели внешней боковой поверхности резервуара вертикальной плоскостью, а на самой образующей формируют точки с любым шагом и получают цифровую векторную трехмерную (3D) модель образующей в местах сечения, выполняют упомянутые действия по всем образующим, передают полученную цифровую информацию в компьютерную программу, в этой же программе моделируют проектную цифровую трехмерную модель образующих стенок резервуара, используя их проектные значения, совмещают ее с полученной фактической цифровой векторной трехмерной (3D) моделью образующих стенок резервуара, в автоматическом режиме определяют расхождения между фактическими и проектными значениями, получают величины отклонения образующих стенок вышеупомянутого резервуара от вертикали.



 

Похожие патенты:

Изобретение относится к медицине, урологии, гинекологии, проктологии, хирургии. Оценка подвижности тазового дна у женщин включает построение трехмерной модели тазового дна в динамике - в состоянии покоя и напряжения.

Изобретение относится к области машиностроения, а именно к способам определения вместимости емкостей газом. Способ определения объема емкости большой вместимости путем измерения параметров газа в емкости до и после подачи в нее известного весового количества газа и вычисления объема емкости по соответствующей формуле.

Изобретение относится к измерительной технике и может быть использовано для определения вместимости и градуировки резервуаров вертикальных цилиндрических. Способ заключается в том, что производят построение цифровой векторной трехмерной (3D) модели внешней поверхности резервуара при наполнении его поверочной жидкостью отдельными фиксированными дозами путем сканирования внешней поверхности резервуара при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 2 до 5 мм не менее чем с четырех сканерных станций и в соответствии с эксплуатационной документацией на прибор.

Изобретение относится к области машиностроения, а именно к способам определения объема жидкости в емкости при ее расходе. Предложен способ градуировки сигнализаторов уровня, заключающийся в определении части объема емкости, соответствующей плоскости зеркала жидкости, при котором срабатывает сигнализатор, путем суммирования элементарных объемов, измеренных по внешнему контуру сечений, перпендикулярных оси емкости.

Изобретение относится к измерительной технике, в частности к средствам контроля массы и уровня жидкости в резервуарах, например, на автозаправочных станциях, и может быть использовано также в нефтяной, топливной, химической и других отраслях промышленности.

Способ измерения объема сосуда заключается в том, что изменяют объем сосуда на величину ΔV и определяют изменение давления газа в сосуде до и после изменения объема, на основании которых определяют искомый объем сосуда V0.

Изобретение относится к измерительной технике и может быть использовано для определения вместимости и градуировки резервуаров шаровых (сферических). .

Изобретение относится к области охраны почв и может быть использовано для определения потерь почвы при полевом обследовании земель, подверженных эрозии, в научных исследованиях и проектных разработках.
Изобретение относится к измерительной технике, а конкретно к способам градуировки резервуаров для определения вместимости, соответствующей высоте их наполнения. .

Изобретение относится к области машиностроения, а именно к технологическим методам измерения полных объемов топливных баков жидкостных ракет, а также к методам градуировки объемов по уровням. Предложен способ, заключающийся в горизонтальном размещении бака на опорах, обеспечивающих возможность поворота его вокруг оси в пределах ±360°C, сканирования наружной поверхности лазерным радаром с целью измерения наружных размеров изделия с плотностью облака точек, обеспечивающей требуемую точность измерения контура внутренней поверхности, размеры которой получают вычитанием из наружных размеров изделия размера толщины его стенок, и вычисления значений объемов до каждой последовательной плоскости контроля уровня. Для оценки влияния веса заполняющей среды и давления над ее поверхностью предварительно и однократно проводят испытания по измерению объемов контрольной среды под каждой контрольной плоскостью вертикально установленного топливного бака или его полноразмерного макета последовательно при смоделированных реальных условиях его эксплуатации. В результаты градуировки бака с использованием лазерного радара вносятся коррективы в соответствии с соответствующим соотношением. Техническим результатом является повышение точности измерений за счет учета изменений геометрии топливных баков в реальных условиях полета ракеты. 2 ил.

Изобретение относится к области авиации, в частности к топливным системам летательных аппаратов. Бортовая система контроля и измерения топлива содержит установленные в топливных баках средства контроля параметров топлива: датчики уровня, средства измерения температуры и сигнализации нижнего уровня топлива, а также бортовой вычислитель с модулями автоматического управления, пульт управления с задатчиком плотности топлива, модули топливомера и схемы запрета. В качестве средства измерения температуры и сигнализации нижнего уровня топлива применен датчик двойного назначения, выполненный на основе терморезисторного сигнализатора уровня жидкости, содержащий терморезистор, имеющий возможность непосредственного контакта с окружающей средой, и формирователь сигнала с сигнальным выходом, причем данный датчик дополнительно снабжен температурным выходом, подсоединенным к высокопотенциальному выводу терморезистора и подключенным к одному из входов соответствующего модуля топливомера через схему запрета, при этом сигнальный выход каждого датчика двойного назначения дополнительно подключен к запирающему входу схемы запрета. Достигается повышение надежности системы, уменьшение ее массы. 2 ил.

Использование: определение объема крупногабаритных негерметичных емкостей в аэрокосмической, ядерной, нефтехимической, пищевой и горной промышленностях. Способ определения объема негерметичной емкости включает повышение давления в испытуемой емкости, отключение источника давления, регистрацию изменения давления во времени. При этом повышение давления производят подачей газа в емкость с одновременным измерением времени подачи газа через газовый расходомер, измерением изменения температуры посредством датчика температуры. Затем отключают подачу газа и измеряют время восстановления давления и температуры до первоначальных значений, а объем негерметичной емкости определяют по формуле: V 0 = Q з а к ( p 1 R T 1 − p 0 R T 0 ) t 2 t 1 + t 2 , где Qзак - масса закаченного газа через счетчик, t1, t2 - время изменения параметров (давление, температура) в испытуемой емкости, Т0 и Т1 - температура в емкости до и после закачки газа соответственно, р0 и р1 - давление в емкости до и после закачки газа соответственно, R - газовая постоянная (удельная). Техническим результатом является повышение точности определения объема негерметичной емкости. 1 ил.

Изобретение относится к области машиностроения, а именно к технологическим методам градуировки датчиков системы управления расходом топлива жидкостных ракет (СУРТ), т.е. определения объемов топливных баков, соответствующих контрольным уровням срабатывания датчиков, расположенных в системе равномерно по всей длине топливных баков. Предложен способ градуировки СУРТ в топливных баках жидкостных ракет, заключающийся в обмере наружной поверхности баков с помощью лазерных дальномеров и определении значений объемов бака по сечениям, соответствующим расположению датчиков уровня СУРТ, за вычетом объема наружного контура бака и объемов внутрибаковых агрегатов. Перед монтажом конструкции СУРТ ее дополнительно подвергают операции градуировки в снабженной уровнемерной трубкой технологической испытательной камере с внутренним объемом не более 3…5 объема конструкции СУРТ при вертикальном ее положении заливом или сливом контрольной жидкости для установления практических положений уровня контрольной жидкости относительно стыковочной плоскости конструкции СУРТ, соответствующих моменту появления сигнального импульса при срабатывании каждого из датчиков уровня СУРТ., После окончания градуировки в технологической камере и сушки для удаления остатков контрольной жидкости конструкция СУРТ монтируется в объеме топливного бака при совмещении стыковочной плоскости СУРТ с базовой плоскостью топливного бака, координата которой по продольной оси бака в его конструкции предварительно строго определена. Способ обеспечивает достижение показателей точности, сопоставимых и более высоких в сравнении с традиционно применяемым методом градуировки. 1 з.п. ф-лы, 2 ил.

Изобретение относится к методам градуировки объемов по уровням. Предложен способ, заключающийся в определении объема топливного бака под каждым i-м уровнем срабатывания контролирующего датчика Vi, который предварительно определен при испытании каждого из датчиков в вертикально установленной камере при заполнении и сливе ее жидкостью. Расчет объемов производится по соотношению: . Значения Vндн и , а также среднее значение внутреннего диаметра цилиндрической части бака определяются по результатам предварительного измерения газовым методом объемов составляющих элементов топливного бака, в т.ч. полного внутреннего объема окончательно собранного топливного бака, внутренних объемов верхнего и нижнего днищ, внешних объемов внутрибаковых систем. Значение рассчитывается по соотношению: . Изобретение расширяет технологические возможности методики измерений, уменьшает затраты труда и времени на выполнение контрольных работ, повышает качество и корректность результатов контроля. 2 ил.
Наверх