Устройство охлаждения вала свободной турбины газотурбинной установки

Изобретение относится к наземным газотурбинным установкам, выполненным на основе турбокомпрессора от двигателя внутреннего сгорания, и предназначено для охлаждения вала свободной турбины, вращающегося в подшипниках качения. Устройство охлаждения вала свободной турбины газотурбинной установки включает турбину с валом и направляющий аппарат. В корпусе между направляющим аппаратом и первым подшипником выполнены два диаметрально расположенных отверстия с воздуховодами. По одному из воздуховодов подается холодный воздух к валу турбины, а по другому воздуховоду отводится нагретый валом воздух. В районе отверстий с воздуховодами вал имеет не проходящие через центр вращения вала поперечные отверстия, расположенные на разных поперечных сечениях вала и имеющие равное угловое смещение. Поперечные отверстия выполнены с возможностью захватывания при вращении вала холодного воздуха и пропускания его через тело вала, тем самым охлаждая последний. В районе подвода воздуха вал имеет увеличенный диаметр, площадь поперечного сечения которого больше на величину площади продольного сечения поперечного отверстия в этом сечении. Изобретение позволяет упростить устройство охлаждения вала свободной турбины. 2 ил.

 

Изобретение относится к малогабаритным микрогазотурбинным двигателям наземного применения, выполненным на основе турбокомпрессора от ДВС, и позволяет упростить конструкцию охлаждения вала свободной турбины.

Свободная турбина состоит из направляющего аппарата, турбины с лопатками, расположенными на конце вала, установленного на подшипниках в корпусе, подводящим и отводящим воздуховодами.

Известен способ охлаждения вала, где в турбокомпрессоре газотурбинного двигателя с расположенной под камерой сгорания задней опорой согласно изобретению в валу турбокомпрессора и в примыкающих к валу деталях: лабиринтах и фланцах, выполнены перед подшипником отверстия забора, а за подшипником отверстия выпуска охлаждающего воздуха, при этом отверстия забора связаны с отверстиями выпуска через перепускные отверстия (патент RU №2300003 от 27.05.2007 г.). Перед отверстиями выпуска охлаждающего воздуха за подшипником на валу турбокомпрессора выполнен бурт с уменьшенным кольцевым зазором между валами. Отверстия забора воздуха наклонены навстречу потоку, направленному в сторону турбины, а отверстия выпуска - по потоку.

Недостатком известной конструкции является низкая надежность и экономичность двигателя из-за наличия отверстий выпуска воздуха через вал (концентраторы напряжений).

Известен способ охлаждения вала, где турбокомпрессор газотурбинного двигателя, состоящий из компрессора, турбины с расположенной между ними задней опорой с подшипником, установленной под камерой сгорания (патент RU №2369759 от 10.10.2009 г.). Вокруг масляной полости расположена первая полость охлаждения. Над полостью между внутренним и наружным фланцами расположена вторая полость охлаждения. Между первой и второй полостями находится полость сброса. Между второй и полостью сброса обечайками образована третья полость охлаждения, соединенная с полостью каналами охлаждения во внутреннем фланце над внутренним лабиринтом. Снаружи второй полости образована обечайками четвертая полость охлаждения. В наружном фланце над наружным лабиринтом выполнены каналы охлаждения. Вокруг масляных труб организованы полости охлаждения. Путем охлаждения фланцев уменьшаются зазоры в лабиринтных уплотнениях, что повышает надежность и экономичность двигателя.

Недостатком известной конструкции является наличие большого количество деталей, что приводит к усложнению конструкции и снижению ее надежности.

Наиболее близким к заявляемому по технической сущности, является турбокомпрессор, в котором охлаждение валов ротора и внутренних обойм подшипников осуществляется холодным воздухом, проходящим внутри валов турбокомпрессора (патент US 6050079 A от 18.04.2000 г.). Охлаждение фланцев опор и наддув масляных полостей опор турбокомпрессора, расположенных под камерой сгорания, осуществляется воздухом с подводом его через стоики камеры сгорания.

Недостатком известной конструкции, принятой за прототип, является наличие сложной двухсторонней подачи воздуха на охлаждение опор турбокомпрессора, расположенных под камерой сгорания.

Задачей предлагаемого изобретения является понижение температуры вала свободной турбины для обеспечения необходимого температурного режима подшипников качения.

Вышеуказанный технический результат достигается тем, что предлагаемое устройство охлаждения вала свободной турбины газотурбинной установки, включающее турбину с валом, содержит направляющий аппарат, при этом в корпусе между направляющим аппаратом и первым подшипником выполнены два диаметрально расположенных отверстия с воздуховодами, причем по одному из воздуховодов подается холодный воздух к валу турбины, а по другому воздуховоду отводится нагретый валом воздух, при этом в районе отверстий с воздуховодами вал имеет не проходящие через центр вращения вала поперечные отверстия, расположенные на разных поперечных сечениях вала и имеющие равное угловое смещение, поперечные отверстия выполнены с возможностью захватывания при вращении вала холодного воздуха и пропускания его через тело вала, тем самым охлаждая последний, в районе подвода воздуха вал имеет увеличенный диаметр, площадь поперечного сечения которого больше на величину площади продольного сечения поперечного отверстия в этом сечении.

Сущность технического решения заключается в том, что газовая струя с температурой 400-450°C, приводящая во вращение турбину, нагревает направляющий аппарат, турбину и вал, на котором находятся подшипники качения, внутренние обоймы которых нагреваются, что приводит к снижению ресурса работы подшипников. Подшипники находятся в корпусе, который прикреплен к направляющему аппарату через термоизолирующие прокладки. Температура от горячей турбины через вал передается на внутреннюю обойму подшипников. Согласно изобретению в корпусе между направляющим аппаратом и первым подшипником устраиваются два диаметрально расположенных отверстия с подводящим и отводящим воздуховодами, по которым подается холодный воздух к валу турбины, где в районе этих отверстий вал имеет увеличенный диаметр с отверстиями, не проходящими через центр вращения вала и расположенными на разных поперечных сечениях вала, имеющих равное угловое смещение и которые при вращении вала захватывают холодный воздух, пропуская его через тело вала, тем самым охлаждая его.

Сущность предлагаемого изобретения поясняется фиг. 1 и фиг. 2. На фиг. 1 представлена общая схема свободной турбины газотурбинного устройства; на фиг. 2 представлена схема вала свободной турбины с навесным оборудованием.

Свободная турбина газотурбинной установки содержит направляющий аппарат 1, прикрепленный через термоизолирующую прокладку 2 к корпусу 3, в котором через первый подшипник качения 4 и второй подшипник качения 5 установлен вал 6. Вал 6 с турбиной 7, первым подшипником 4 и вторым подшипником 5, между которыми установлена распорная втулка 8, закреплен гайкой 9. Проникновению горячих газов 10 во внутреннюю полость корпуса 11 препятствует защитная пластина 12. В корпусе турбины 3 имеется подводящий холодный воздух воздуховод 13 и отводящий нагретый валом воздух воздуховод 14. В районе подвода воздуха вал имеет увеличенный диаметр на величину компенсации потерь прочности вала из-за просверленных поперечных отверстий 15.

При работе двигателя холодный атмосферный воздух поступает во внутреннюю полость корпуса 11, где, попадая в отверстия 15, расположенные на вращающимся валу 6, охлаждает его и выходит в компрессор газотурбинного двигателя. Отверстия 15 расположены на разных поперечных сечениях вала 6 в непосредственной близости друг от друга, не проходят через центр вращения вала и имеют равное угловое смещение. Количество и диаметр отверстий регулируется необходимым уровнем снижения температуры.

Устройство охлаждения вала свободной турбины газотурбинной установки, включающее турбину с валом, отличающееся тем, что устройство содержит направляющий аппарат, при этом в корпусе, между направляющим аппаратом и первым подшипником выполнены два диаметрально расположенных отверстия с воздуховодами, причем по одному из воздуховодов подается холодный воздух к валу турбины, а по другому воздуховоду отводится нагретый валом воздух, при этом в районе отверстий с воздуховодами вал имеет не проходящие через центр вращения вала поперечные отверстия, расположенные на разных поперечных сечениях вала и имеющие равное угловое смещение, поперечные отверстия выполнены с возможностью захватывания при вращении вала холодного воздуха и пропускания его через тело вала, тем самым охлаждая последний, в районе подвода воздуха вал имеет увеличенный диаметр, площадь поперечного сечения которого больше на величину площади продольного сечения поперечного отверстия в этом сечении.



 

Похожие патенты:

Изобретение относится к энергомашиностроению и может быть использовано в автономных энергоустановках с высокоскоростными генераторами в летательных и космических аппаратах.

Установка с потоком текучей среды, в особенности газовая турбина с аксиально проходящим потоком нагретого газа, выполнена с рядами лопаток ротора со стороны ротора и рядами направляющих лопаток со стороны корпуса, расположенными соответственно аксиально между последовательными рядами лопаток ротора, а также с валом ротора, окруженным теплозащитными элементами и элементами основания лопаток ротора.

Осевая газовая турбина содержит ротор с чередующимися рядами воздухоохлаждаемых рабочих лопаток и теплозащитных экранов ротора, и статор с чередующимися рядами воздухоохлаждаемых направляющих лопаток и теплозащитных экранов статора, установленных в держателе направляющих лопаток.

Изобретение касается конструктивного элемента газовой турбины, например лопатки турбины или диска ротора. Конструктивный элемент газовой турбины снабжен по меньшей мере одним оканчивающимся на неструктурированной поверхности каналом для направления охлаждающего средства.

Осевая газовая турбина содержит ротор с чередующимися рядами воздухоохлаждаемых рабочих лопаток и воздухоохлаждаемых теплозащитных экранов ротора и статор с чередующимися рядами воздухоохлаждаемых направляющих лопаток и воздухоохлаждаемых теплозащитных экранов статора, установленных в держателе направляющих лопаток.

Газовая турбина осевого типа содержит ротор с чередующимися рядами воздухоохлаждаемых рабочих лопаток и теплозащитных экранов ротора и статор с чередующимися рядами воздухоохлаждаемых направляющих лопаток и теплозащитных экранов статора, установленных в держателе направляющих лопаток.

Рабочая лопатка газовой турбины содержит профильную часть, проходящую в продольном направлении, и хвостовик лопатки, служащий для крепления рабочей лопатки на валу ротора газовой турбины.

Осевая газовая турбина содержит ротор и статор. Статор представляет собой корпус, охватывающий ротор снаружи с образованием между ними тракта течения горячего газа, через который протекает горячий газ, полученный в камере сгорания.

Изобретение относится к роторам турбин низкого давления газотурбинных двигателей авиационного и наземного применения. Ротор турбины включает установленный на задней по потоку газа стороне обода диска лабиринт с внутренним радиальным ребром, а также установленный с передней стороны обода диска фланец.

Изобретение относится к роторам высокотемпературных турбин газотурбинных двигателей авиационного и наземного применения. Ротор высокотемпературной турбины включает диски первой и второй ступени, между которыми расположен промежуточный диск с радиальными выступами.

Лопатка для турбомашины, в частности газовой турбины, расположена на турбинном роторе и содержит перо и хвостовую часть, выполненные за одно целое с лопаткой, проход для подачи охлаждающего воздуха в хвостовой части для направления охлаждающего воздуха в охладитель и отвод охлаждающего воздуха, расположенный в хвостовой части и соединенный по текучей среде с проходом для подачи охлаждающего воздуха. Перо имеет охладитель, расположенный внутри пера, а хвостовая часть имеет две узкие стороны и две широкие стороны. Отвод охлаждающего воздуха содержит сопло на одной из узких сторон хвостовой части, и сопло образовано с помощью отверстия. Хвостовая часть лопатки содержит верхнюю платформу лопатки и нижнюю платформу лопатки. Верхняя платформа лопатки и нижняя платформа лопатки выполнены в качестве частей лабиринтного уплотнения в собранном состоянии в турбомашине. Сопло расположено между верхней платформой лопатки и нижней платформой лопатки. Осевое направление отверстия наклонено вверх под углом между 92° и 135° относительно продольного направления лопатки. Изобретение направлено на повышение эффективности охлаждения зон крайних кромок платформы соседних сопловых направляющих лопастей и увеличение срока службы этих частей двигателя. 2 н. и 11 з.п. ф-лы, 2 ил.

Изобретение относится к энергетике. Охлаждающий контур для многоступенчатой паровой турбины, содержащей барабанный ротор с лопатками, установленными в тангенциальных охватывающих пазах пазового замка для по меньшей мере одной ступени, содержащий внешний источник охлаждающего пара, барабанный ротор. Причем в выступах барабанного ротора между ступенями из лопаток с тангенциальным вводом и пазовым замком выполнены осевые охватывающие пазы пазового замка, предназначенные для установки осевых вставок. Осевые вставки могут иметь осевые и радиальные охлаждающие каналы, обеспечивающие возможность прохождения более холодного наружного пара, предназначенного для охлаждения барабанного ротора. Также представлены многоступенчатая паровая турбина с паровым охлаждающим контуром и осевая вставка. Изобретение позволяет обеспечить эффективное охлаждение ступеней барабанного ротора. 3 н. и 17 з.п. ф-лы, 17 ил.

Способ охлаждения лопаток по меньшей мере одного лопаточного венца в роторной машине, содержащей канал осевого потока, который радиально ограничен изнутри роторным узлом и снаружи по меньшей мере одним неподвижным компонентом. Лопатки расположены на роторном узле и предоставляют бандажированную вершину лопатки, радиально обращенную к неподвижному компоненту. Охлаждающий воздух под давлением подают радиально снаружи к вершине каждой из лопаток по меньшей мере в одном лопаточном венце. Охлаждающий воздух под давлением входит в лопатки через по меньшей мере одно отверстие у бандажированной вершины лопатки. При этом охлаждающий воздух под давлением подают через неподвижный компонент, окружающий упомянутый по меньшей мере один лопаточный венец радиально, и он входит в полость, охваченную неподвижным компонентом и бандажированными вершинами лопаток по меньшей мере в одном лопаточном венце. Изобретение направлено на упрощение подачи воздуха во вращающиеся лопатки роторной машины. 3 н. и 8 з.п. ф-лы, 3 ил.

Ротор турбины включает впускной и выпускной вкладыши для формирования охлаждающего контура. Впускной вкладыш расположен в первом осевом замковом пазу ротора и имеет радиальный охлаждающий канал, осевой канал и радиальные каналы. Радиальный охлаждающий канал обеспечивает прием текучей среды из нижнего по потоку местоположения по первичному тракту турбины, осевой канал проходит в нижней части впускного вкладыша от радиального охлаждающего канала, а радиальные каналы проходят от осевого канала и каждый из которых проходит ко дну дугообразного замкового паза впускного вкладыша. Выпускной вкладыш расположен во втором осевом замковом пазу ротора и имеет радиальные каналы, осевой канал и выпускной канал. Каждый из радиальных каналов проходит от дна дугообразного замкового паза выпускного вкладыша. Осевой канал проходит в нижней части выпускного вкладыша от радиальных каналов, а выпускной канал проходит от осевого канала. Другое изобретение группы относится к турбине, содержащей указанный выше ротор и окружающий его статор. Группа изобретений позволяет повысить эффективность охлаждения ротора турбины и упростить конструкцию его охлаждающего контура. 2 н. и 14 з.п. ф-лы, 7 ил.

Газогенератор высокотемпературного газотурбинного двигателя содержит центробежное колесо-крыльчатку, диффузор-выпрямитель, отделенный от последнего полостью радиального кольцевого зазора и имеющий в нижней своей части кольцевой фланец, корпус силовой задний, камеру сгорания и турбину высокого давления. Корпус силовой задний установлен на выходе крыльчатки с необходимым осевым кольцевым зазором между тыльной стороной крыльчатки и обтекателем, образуя полость осевого кольцевого зазора. Полость осевого кольцевого зазора между задней стороной крыльчатки и обтекателем и внутренняя полость корпуса силового заднего сообщены с полостью радиального кольцевого зазора между крыльчаткой и диффузором на входе и объединены общей полостью на выходе. Зона вторичного воздуха камеры сгорания ограничена снизу корпусом силовым задним и соединенным с ним корпусом внутренним, скрепленным с аппаратом спутной закрутки и имеющим кольцевой фланец. Турбина высокого давления включает сопловой аппарат, снизу опирающийся на кольцевой фланец корпуса внутреннего, и рабочее колесо с охлаждаемыми рабочими лопатками и дисками, основным и покрывным, образующими между собой кольцевую полость, сообщенную с внутренними полостями рабочих лопаток. Диск покрывной не имеет отверстий и подкачивающих лопаток на своем полотне и прикреплен к ободной части основного диска с образованием между ними кольцевой полости, сообщенной на выходе с внутренними полостями рабочих лопаток, а на входе формирующими между собой радиальный кольцевой зазор. Вход в радиальный кольцевой зазор сообщен с полостью осевого кольцевого зазора кольцевым каналом, внутренняя поверхность которого ограничена тыльной стороной крыльчатки, а наружная - обтекателем, примыкающим к нижнему фланцу конической оболочки, и нижним фланцем корпуса внутреннего, в стыке между которыми размещен аппарат спутной тангенциальной закрутки. Сопла аппарата спутной тангенциальной закрутки расположены в радиальной плоскости и сообщены с кольцевым каналом на выходе, обеспечивая ввод высокоэнергетического потока воздуха из зоны вторичного воздуха камеры сгорания непосредственно в кольцевой канал. Осевой зазор между нижним фланцем корпуса внутреннего и диском покрывным уплотнен. Изобретение позволяет повысить ресурс крыльчатки за счет снижения температуры ее тыльной стороны и циклическую долговечность диска покрывного турбины за счет исключения отверстий и подкачивающих лопаток на его полотне. 2 ил.

Изобретение относится к авиадвигателестроению, в частности к системам охлаждения турбины газотурбинного двигателя. Охлаждаемая турбина газотурбинного двигателя содержит рабочее колесо с каналами подвода охлаждающего воздуха к рабочим лопаткам и сопловой аппарат закрутки. Между выходом соплового аппарата закрутки и диском рабочего колеса образована кольцевая полость, сообщенная с входом безлопаточного диффузора, выход которого сообщен с каналами подвода охлаждающего воздуха к рабочим лопаткам. Безлопаточный диффузор образован диском рабочего колеса и двумя элементами - подвижным и неподвижным. Подвижный элемент расположен на большем радиусе относительно оси двигателя, а неподвижный элемент - на меньшем. Нижняя часть неподвижного элемента закреплена на корпусе соплового аппарата закрутки, а верхняя часть подвижного элемента закреплена на диске рабочего колеса. Элементы образуют между собой кольцевой зазор, оснащенный подвижным уплотнением. Изобретение позволяет обеспечить возможность регулирования осевой нагрузки, действующей на турбину. 1 ил.

Устройство охлаждения платформы рабочей лопатки турбины содержит платформу, расположенную между аэродинамической частью лопатки и корнем лопатки, и имеет внутренний охлаждающий канал, проходящий в радиальном направлении от места соединения с источником охлаждающей текучей среды в корне лопатки. Вдоль стороны, которая совпадает со стороной высокого давления аэродинамической части лопатки, верхняя сторона на стороне высокого давления платформы проходит от основания аэродинамической части лопатки до стыковочной поверхности стороны высокого давления. Устройство содержит основную камеру, охлаждающие отверстия. Основная камера расположена только с внутренней стороны верхней стороны на стороне высокого давления платформы, проходит через платформу от расположенного выше по потоку конца, имеющего заднее положение, к расположенному ниже по потоку концу, имеющему переднее положение. Рядом с расположенным выше по потоку концом основная камера содержит заднюю петлю, а между задней петлей и расположенным ниже по потоку концом содержит переднюю дугу. Каждое из охлаждающих отверстий проходит от основной камеры к порту, выполненному на стыковочной поверхности стороны высокого давления. Изобретение позволяет эффективно охлаждать область платформы рабочих лопаток турбины, является экономически эффективным в изготовлении, гибким в применении и долговечным. 2 н. и 18 з.п. ф-лы, 8 ил.

Устройство охлаждения платформы предназначено для роторной лопатки турбины, имеющей платформу, расположенную на границе сопряжения между аэродинамическим профилем и хвостовой частью, содержащей средства крепления и хвостовик, проходящий между средствами крепления и платформой. Платформа на своей стороне, соответствующей поверхности пониженного давления аэродинамического профиля, имеет сторону пониженного давления, содержащую верхнюю поверхность, проходящую от основания аэродинамического профиля к наклонной поверхности стороны пониженного давления, и нависает над образованной в хвостовике хвостовой полостью. Устройство содержит выемку, коллекторный канал и каналы охлаждения. Выемка образована в области нижней поверхности платформы и имеет вход, проточно сообщающийся с хвостовой полостью. Коллекторный канал проходит от первого конца вблизи наклонной поверхности стороны пониженного давления ко второму концу вблизи наклонной поверхности стороны повышенного давления платформы и имеет соединение с выемкой у своего первого конца. Каналы охлаждения образованы внутри платформы и проходят от места соединения с выемкой или коллекторным каналом к отверстиям, образованным внутри наклонной поверхности стороны пониженного давления или задней кромки платформы. Изобретение обеспечивает эффективное и рациональное охлаждение области платформы роторных лопаток турбины. 2 н. и 23 з.п. ф-лы, 8 ил.

Устройство охлаждения платформы, выполненное в турбинной рабочей лопатке, содержит платформу, расположенную в области сопряжения аэродинамической части и корневой части. Рабочая лопатка имеет выполненный в ней внутренний охладительный канал, который проходит от соединения с источником охлаждающей среды в корневой части приблизительно до уровня высоты платформы в радиальном направлении и при эксплуатации имеет область с охлаждающей средой под высоким давлением и область с охлаждающей средой под низким давлением. Вдоль стороны, которая совпадает со стороной пониженного давления аэродинамической части, сторона пониженного давления платформы имеет верхнюю сторону, проходящую в окружном направлении от аэродинамической части к стыковочной поверхности со стороны пониженного давления. Сторона пониженного давления платформы имеет заднюю кромку, которая совпадает с хвостовой кромкой аэродинамической части. Устройство охлаждения платформы содержит распределительный элемент, соединители высокого и низкого давления и теплопередающую конструкцию. Распределительный элемент расположен по меньшей мере в одной из передней и задней частей стороны пониженного давления платформы. Соединитель высокого давления соединяет распределительный элемент с областью с охлаждающей средой под высоким давлением, имеющейся во внутреннем охладительном канале. Соединитель низкого давления соединяет распределительный элемент с областью с охлаждающей средой под низким давлением, имеющейся во внутреннем охладительном канале. Теплопередающая конструкция расположена в распределительном элементе с обеспечением взаимодействия с охлаждающей средой, проходящей от соединителя высокого давления к соединителю низкого давления во время работы. Изобретение направлено на повышение эффективности охлаждения платформы рабочих лопаток, повышение эффективности изготовления и эксплуатационной гибкости долговечности. 2 н. и 18 з.п. ф-лы, 8 ил.

Изобретение относится к области газотурбинного двигателестроения, а именно к охлаждаемым турбинам газотурбинных двигателей. Охлаждаемая турбина высокого давления содержит рабочее колесо в виде диска колеса с установленными на нем рабочими лопатками с внутренними охлаждающими полостями, каналы подвода к лопаткам охлаждающего воздуха, сопловой аппарат закрутки, безлопаточный диффузор, замками фиксации лопаток и приставным кольцом с подкачивающими лопатками. На полотне диска рабочего колеса выполнен кольцевой выступ с установленным на нем лабиринтом. Безлопаточный диффузор жестко закреплен на аппарате закрутки, а приставное кольцо с подкачивающими лопатками с помощью байонетного соединения закреплено под ободом диска и снабжено лабиринтом, выполненным по внутренней поверхности кольца. Безлопаточный диффузор посредством выполненных на его стенках сотовых кольцевых уплотнений сообщен с лабиринтом, выполненным на кольцевом выступе рабочего колеса, и с лабиринтом, выполненным по внутренней поверхности приставного кольца. В ободе диска и ножках лопаток выполнены пазы под замки фиксации лопаток. Каналы подвода воздуха в лопатку выполнены в виде паза в диске под замком лопаток, а напротив пазов в диске в замках фиксации лопаток со стороны приставного кольца выполнены отверстия. Охлаждающие полости лопаток последовательно сообщены с каналами подвода воздуха в лопатку, с полостями под приставным кольцом с подкачивающими лопатками и с полостями безлопаточного диффузора и аппарата закрутки. Изобретение позволяет повысить надежность и ресурс диска турбины, снизить его массу, а также повысить технологичность элементов турбины. 2 ил.
Наверх