Композиционный вибропоглощающий материал

Изобретение относится к авиакосмической промышленности и может быть использовано в бортовой звукотеплоизолирующей конструкции пассажирских самолетов и касается композиционного вибропоглощающего материала. Материал содержит: армирующий металлический слой, полимерные вибропоглощающий слой, выполненный из термопластичного полиуретана, и адгезионный - из полисульфидного герметика или клеевых композиций на основе каучуков различной химической природы. Соотношение толщин армирующего, вибропоглощающего и адгезионного слоев в предлагаемом материале составляет (3,0÷7,5):(5,0-25,0):1,0 соответственно. Изобретение обеспечивает повышение демпфирующих свойств вибропоглощающего материала и расширение температурного и частотного интервалов его эксплуатации при снижении массы изделия. 2 з.п. ф-лы, 1 ил., 4 пр., 2 табл.

 

Изобретение относится к слоистым вибропоглощающим материалам и может быть использовано в авиакосмической промышленности, в частности в бортовой звукотеплоизолирующей конструкции пассажирских самолетов.

Известен слоистый демпфирующий материал, включающий армирующий слой на основе стали или алюминия, вязкоупругий слой на основе полимера простого акрилового эфира, его сополимеров или полиуретана, несущий слой на основе эластомера - полиизобутилена и ферритового наполнителя, адгезионный слой на основе силоксановых смол и удаляемый защитный слой (Патент США №8377553, опубл. 19.02.2013).

Недостатками данного изобретения являются минимальная рабочая температура -18°C и низкие демпфирующие свойства, в особенности в области отрицательных температур - коэффициент механических потерь на подложке из алюминия tgδ<0,05.

Также известен демпфирующий материал типа «сэндвич» - Antiphon МРМ RTE, состоящий из двух наружных слоев холоднокатаного металла толщиной от 0,4-3,0 мм и полимерной прослойки на основе триблоксополимера полистирола-бутадиена-стирола, расположенной между ними (спецификация на материал с сайта компании-производителя www.antiphon.se, доступ к сайту от 27.08 2014 г.).

Недостатками указанного материала является то, что он имеет сравнительно узкий интервал рабочих температур от -10 до +70°C (при частоте 200 Гц), согласно информации фирмы-производителя, рекомендован к применению при температуре выше комнатной и имеет высокую поверхностную плотность ≈8 кг/м2.

Известны слоистые и композиционные градиентные структуры с повышенными вибропоглощающими свойствами, представляющие собой полимерные композиционные материалы с интегрированными в их структуру демпфирующими слоями на основе нетканых материалов, например, термопластичных эластомеров (Заявка на патент США №20120164907, опубл. 28.06.2012).

Недостатком данного изобретения являются низкие демпфирующие свойства при отрицательных температурах: = 0,0095÷0,0177 при Т=-50÷0°C соответственно и частоте 100 Гц.

Наиболее близким аналогом по технической сущности и достигаемому результату, принятым за прототип, является слоистый вибропоглощающий материал Smacsonic Classic ST, состоящий из армирующего слоя на основе листового алюминия, полимерного слоя из резины марки Smactane и двухстороннего липкого слоя (спецификация на материал с сайта компании-производителя www.smac.fr, доступ к сайту - от 27.08.2014 г.).

Данный материал имеет низкие демпфирующие свойства tgδ=0,014 (на подложке из алюминиевого сплава Д16АТ толщиной 1,0 мм) при температуре -60°C и частоте 100 Гц. К недостаткам материала-прототипа также относятся минимальная рабочая температура -40°C и высокая поверхностная плотность - 3,0 кг/м2, что нежелательно для применения в авиации.

Технической задачей предлагаемого изобретения является повышение демпфирующих свойств и расширение температурного и частотного интервалов эксплуатации при снижении массы изделия.

Для достижения технического результата предложен композиционный вибропоглощающий материал, содержащий армирующий металлический слой, полимерные вибропоглощающий и адгезионный слои, отличающийся тем, что в качестве полимера для вибропоглощающего слоя используют термопластичный полиуретан на основе простого полиэфира с молекулярной массой свыше 1000, а адгезионный слой состоит из полимерного материала с температурой стеклования от -50°C до -20°C.

На фиг. 1 показана структура предлагаемого композиционного вибропоглощающего материала, включающая армирующий слой (1) и вибропоглощающие слои - базовый (2) и адгезионный (3).

Слой на основе термопластичного полиуретана является базовым полимерным вибропоглощающим слоем в широком диапазоне температур и имеет коэффициент механических потерь tgδ=0,08 на подложке из алюминиевого сплава толщиной 1 мм при температуре 20°C и частоте 100 Гц.

Также отличием предлагаемого композиционного вибропоглощающего материала является то, что для создания адгезионного слоя используют один из материалов, выбранный из группы: полисульфидный герметик для полимерного композиционного материала, клеевая композиция на основе бутадиен-нитрильного каучука для полимерного композиционного материала, клеевая композиция на основе полиуретанового каучука, клеевая композиция на основе кремнийорганического каучука для полимерного композиционного материала.

Адгезионный слой используется не только для соединения с вибрирующей поверхностью, но и обеспечивает повышение коэффициента механических потерь предлагаемого композиционного вибропоглощающего материала при пониженной температуре Т=-60°C. Полимерные материалы в наибольшей степени проявляют демпфирующие свойства в области перехода из стеклообразного состояния в высокоэластическое, т.е. вблизи температуры стеклования. Поскольку интервал температур стеклования предлагаемых полимерных материалов на температурной шкале лежит вблизи Т=-60°C, то это обеспечивает дополнительное повышение коэффициента механических потерь в заданном температурном интервале.

Еще одним отличием является то, что в качестве металла для армирующего слоя используют сплав на основе алюминия.

Наличие армирующего слоя из алюминиевого сплава обеспечивает повышение демпфирующих свойств за счет дополнительных сдвиговых деформаций, возникающих между ним и вибропоглощающим слоем, при сохранении низкой массы конструкции.

Кроме того, отличием является оптимальное соотношение толщин армирующего, вибропоглощающего и адгезионного слоев, что обеспечивает вибропоглощающие свойства, снижение веса конструкции, простоту монтажа и повышение эксплуатационных характеристик (обеспечивается целостность конструкции изделия).

Описание чертежей

На Фиг.1 представлен вид композиционного вибропоглощающего материала в разрезе с последовательно расположенными слоями, начиная от внешнего армирующего слоя. На фиг.1 показана структура предлагаемого композиционного вибропоглощающего материала, включающая металлический армирующий слой (1) и полимерные вибропоглощающие слои - базовый (2) и адгезионный (3).

Примеры осуществления

Пример 1.

Изготовление композиционного вибропоглощающего материала производили путем прессования на гидравлическом прессе при температуре (165±5)°C и давлении 0,3 МПа пакета, включающего следующие слои - базовый вибропоглощающий из листового термопластичного полиуретана на основе простого полиэфира с молекулярной массой свыше 1000 марки Витур Т-0533-90С (ТУ 2255-019-32972176-2010) и армирующий - из алюминиевого сплава Д16АТ (ГОСТ 21631-76). Для соединения с вибрирующей поверхностью на полученный пакет со стороны вибропоглощающего слоя наносится адгезионный вибропоглощающий слой из серийного полисульфидного герметика марки Витэф 1НТ(ТУ 1-595-28-708-2003).

Изготовление композиционного вибропоглощающего материала по Примерам 2-4 производили аналогично Примеру 1, но в качестве базового вибропоглощающего слоя применяли полиуретан на основе простого полиэфира Витур Т-043390С(ТУ 2255-019-32972176-2010) с молекулярной массой 1500. В Примере 3 в качестве армирующего слоя использовали алюминиевый сплав марки 1441 (ТУ 1-804-453-2008), в Примере 4 для изготовления адгезионного вибропоглощающего слоя использовали клеевую композицию для полимерных композиционных материалов на основе бутадиен-нитрильного каучука.

Вибропоглощающие свойства оценивали по коэффициенту механических потерь материалов на подложке из алюминиевого сплава Д16АТ толщиной 1, 0 мм, моделирующего вибрирующую поверхность, на динамическом механическом анализаторе DMA/SDTA861e фирмы Mettler Toledo (в статической воздушной среде) в условиях трехточечного изгиба в диапазоне температур от -60 до +100°C и при частоте 100 Гц по методике ММ 1.595-11-428-2011.

Поверхностную плотность материалов определяли по методике ГОСТ 17037.

Составы материалов по примерам 1-4 приведены в таблице 1, свойства - в таблице 2.

Предложенный композиционный вибропоглощающий материал обладает высокими демпфирующими свойствами в широком диапазоне температур, в частности при Т=-60°C, и низкой поверхностной плотностью, что позволяет использовать его для снижения вибрации и структурного шума, передающегося в том числе по «холодным» силовым элементам конструкции планера и обшивки для обеспечения высокого уровня акустической комфортности внутри салона самолета.

Сочетание указанных свойств достигается за счет предлагаемой слоистой структуры материала с определенным соотношением толщин его слоев и подбора вибропоглощающих слоев в зависимости от их температур стеклования.

1. Композиционный вибропоглощающий материал, содержащий армирующий металлический слой, полимерные вибропоглощающий и адгезионный слои, отличающийся тем, что армирующий металлический слой выполнен из алюминиевого сплава, вибропоглощающий слой выполнен из термопластичного полиуретана на основе простого полиэфира с молекулярной массой свыше 1000, а адгезионный слой выполнен из полимерного материала с температурой стеклования, лежащей в области от -50°C до -20°C.

2. Композиционный вибропоглощающий материал по п. 1, отличающийся тем, что полимерный адгезионный слой состоит из материала, выбранного из группы: полисульфидный герметик, клеевая композиция на основе бутадиен-нитрильного каучука, клеевая композиция на основе полиуретанового каучука, клеевая композиция на основе кремнийорганического каучука.

3. Композиционный вибропоглощающий материал по п. 1, отличающийся тем, что соотношение толщин армирующего, вибропоглощающего и адгезионного слоев составляет (3,0÷7,5):(5,0-25,0):1,0.



 

Похожие патенты:

Изобретение относится к композитным материалам и касается отверждаемого ламинатного компонента оболочки корпуса летательного аппарата. Включает термореактивную смолу, по меньшей мере три волокнистых конструкционных слоя и по меньшей мере один демпфирующий слой, где отношение числа конструкционных слоев к числу демпфирующих слоев составляет по меньшей мере 3:1, и после отверждения воздействием повышенных температур компонент становится жесткой оболочкой корпуса.

Изобретение относится к конструкции с сотовым заполнителем для использования в несущей панели гондолы турбореактивного двигателя самолета, являющейся акустической панелью.

Изобретение относится к конструкционным материалам и касается способа изготовления структуры с ячеистыми сердцевинами для гондолы турбореактивного двигателя. Содержит по меньшей мере один блок (А, В) с ячеистыми сердцевинами, имеющий центральную часть с серединными луночными ячейками (7а, 7b) и по меньшей мере две боковые части, каждая из которых имеет боковые луночные ячейки (11a, 11b).

Изобретения относятся к вариантам выполнения фюзеляжа воздушного судна и к воздушному судну. Фюзеляж по первому варианту содержит пространство с полом, который содержит одну или несколько панелей для пола.

Изобретение относится к сегменту фюзеляжа самолета. .

Изобретение относится к области авиации, более конкретно к акустической структуре для воздухозаборника гондолы летательного аппарата. .

Изобретение относится к конструкционным слоистым изолирующим материалам, которые могут быть использованы как вибро-, звуко-, теплоизолирующие материалы в различных областях техники.

Изобретение относится к упаковочным изделиям, например контейнерам для пищевых продуктов и напитков, включающим состав термоотверждаемого покрытия, нанесенного на металлическую подложку.

Изобретение относится к области изготовления синтетических алмазов с использованием многопуансонных устройств высокого давления и касается запирающей прокладки для многопуансонных устройств высокого давления и высоких температур.

Изобретение относится к радиоэлектронной технике и может быть использовано для изготовления корпусов малогабаритных фазовращателей из медной или титановой фольги.

Изобретение относится к электротехнической листовой стали, имеющей изоляционное покрытие, характеризующееся превосходными штампуемостью, адгезионной способностью покрытия, свойством пленки покрытия после отжига, свариваемостью при проведении газовольфрамовой сварки, коррозионной стойкостью и сопротивлением прижимным полозьям даже без содержания в изоляционном покрытии какого-либо соединения хрома.

Заявленное изобретение относится к конструктивным элементам для использования при разведке нефти, газа, при переработке нефти и в нефтехимии. Техническим результатом заявленного изобретения является улучшение коррозионной и теплостойкости конструктивных элементов из композиционных материалов.

Изобретение относится к области изготовления синтетических алмазов с использованием многопуансонных аппаратов высокого давления. Запирающая прокладка, размещаемая между пуансонами многопуансонного устройства высокого давления и температуры, имеет форму трапеции и состоит из трех слоев, один из которых выполнен из стеклотекстолита, а два других слоя - из металлического материала, при этом слой из стеклотекстолита расположен между слоями из металлического материала.
Изобретение относится к получению фторопластового покрытия на металлических поверхностях. .

Изобретение относится к области защиты от коррозии металлической основы путем нанесения на нее коррозионно-защитной системы. .

Изобретение относится к вакуумной технологии нанесения теплозащитных покрытий на изделия из меди и может быть использовано в авиа- и машиностроении и других областях.

Изобретение относится к конструкции (10) соединения керамического слоя (1), содержащего термоизоляционный материал, с металлическим слоем (2) и способу ее получения. Конструкция (10) содержит переходный слой (11), изготовленный из металлического материала, который располагают между керамическим слоем (1) и металлическим слоем (2). Переходный слой (11) содержит множество элементов (20) зацепления на одной из его сторон, обращенной к керамическому слою (1). Керамический слой (1) содержит множество полостей (30), предназначенных для соединения с соответствующими элементами (20) зацепления переходного слоя (11). Конструкция (10) также содержит слой (40) припоя, посредством которого переходный слой (11) соединен с металлическим слоем (2). Множество элементов (20) зацепления получают процессом лазерного формирования металла. В результате получают соединение с высокими прочностными свойствами и стойкостью при работе при высоких температурах. 2 н. и 12 з.п. ф-лы, 7 ил.
Наверх