Способ окисления алкилароматических соединений

Настоящее изобретение относится к способу окисления алкилароматического соединения, который приводит к получению продуктов, используемых, например, в производстве полимеров. Способ включает следующие стадии: окисление алкилароматического соединения для получения первого продукта окисления; контактирование по меньшей мере части первого продукта окисления, растворителя, содержащего ионную жидкость, источника брома, катализатора и окислителя для получения второго продукта, содержащего маточный раствор и по меньшей мере одно из соединений: ароматический спирт, ароматический альдегид, ароматический кетон и ароматическая карбоновая кислота; добавление по меньшей мере части маточного раствора на стадии контактирования; контактирование по меньшей мере части второго продукта, второго растворителя, содержащего вторую ионную жидкость, второго источника брома, второго катализатора и второго окислителя для получения третьего продукта, содержащего второй маточный раствор; и добавление по меньшей мере части второго маточного раствора на одной или обеих стадиях контактирования. Предлагаемый способ позволяет получить чистые целевые продукты. 8 з.п. ф-лы, 2 ил., 1 пр.

 

Приоритет по настоящей заявке испрашивается по дате подачи заявки США U.S. No. 13/340,232, поданной 29 декабря 2011 г.

Область техники, к которой относится изобретение

Настоящее изобретение относится к способам и смесям, применимым для окисления алкилароматических соединений. Более конкретно, изобретение относится к окислению алкилароматических соединений, в котором рециркулируют маточный раствор.

Уровень техники

Окисление окисления алкилароматических соединений, например толуола и ксилолов, являются важными промышленными процессами. Может быть получено множество продуктов окисления, в том числе ароматические карбоновые кислоты, такие как терефталевая кислота (1,4-бензолдикарбоновая кислота) и изофталевая кислота (1,3-бензолдикарбоновая кислота), которые используют, например, в производстве полимеров.

Известно, что продукты окисления, такие как ароматические спирты, ароматические альдегиды, ароматические кетоны и ароматические карбоновые кислоты, могут затвердевать или кристаллизоваться в условиях окисления и/или по мере остывания реакционной смеси. Соответственно могут получаться смеси продуктов окисления, которые требуют дальнейшей обработки для повышения чистоты целевого продукта. Например, в производстве терефталевой кислоты продукт окисления часто называют сырой терефталевой кислотой, так как он содержит примеси, включающие вещества, обусловливающие цветность, и промежуточные продукты окисления, главным образом 4-карбоксибензальдегид (4-CBA). Для получения терефталевой кислоты полимерной чистоты или очищенной терефталевой кислоты в данной области техники известны различные стадии очистки, включающие: промывание сырой терефталевой кислоты водой и/или растворителем, дополнительные стадии окисления или кристаллизации и контактирование раствора растворенной сырой терефталевой кислоты с водородом в условиях гидрирования, обычно включающих катализатор, содержащий палладий и уголь. Часто используют несколько стадий очистки.

В патенте США US 2,833,816 раскрываются способы окисления ароматических соединений в соответствующие ароматические карбоновые кислоты. В способе жидкофазного окисления алкилароматических соединений используют молекулярный кислород, металл или ионы металлов и бром или бромид-ионы в присутствии кислоты. Металлы могут включать кобальт и/или марганец. Типичными примерами кислот являются низшие алифатические монокарбоновые кислоты, содержащие 1-8 атомов углерода, главным образом уксусная кислота.

Патент США US 6,355,835 раскрывает способ получения бензолдикарбоновых кислот жидкофазным окислением изомеров ксилола, в котором в качестве окислителя используются кислород или воздух в присутствии уксусной кислоты в качестве растворителя, соли кобальта в качестве катализатора и инициатора. После стадии окисления следует быстрое вскипание реакционной смеси для удаления летучих веществ, охлаждение и фильтрование вещества для получения сырой бензолдикарбоновой кислоты в виде твердого продукта и фильтрата. Описаны также перекристаллизация сырой бензолдикарбоновой кислоты для ее получения с чистотой по меньшей мере 99% и рециркуляция фильтрата.

В патенте США US 7,094,925 раскрывается способ получения алкилароматического соединения. Способ включает смешивание окислителя или соединения серы в присутствии ионной жидкости. В качестве окислителя могут быть использованы воздух, молекулярный кислород, пероксид, супероксид или любая другая форма активного кислорода, нитрит, нитрат, или азотная кислота, или другие оксиды или оксигалогениды азота (безводные или в виде гидратов). Способ обычно осуществляют в условиях, где присутствует кислота Бренстеда. Окисление предпочтительно проводят в ионной жидкости, содержащей кислотный промотер, такой как метансульфокислота. Продукт представляет собой предпочтительно карбоновую кислоту, или кетон, или промежуточное соединение, образующееся при окислении, такое как альдегид или спирт.

В патенте США US 7,985,875 описан способ получения ароматической поликарбоновой кислоты жидкофазным окислением ди- или тризамещенных производных бензола или нафталина. Способ включает контактирование ароматического соединения с окислителем в присутствии растворителя карбоновой кислоты, металлического катализатора и промотера в реакционной зоне. Промотер представляет собой ионную жидкость, содержащую органический катион и бромид- или йодид-анион. Промотер используют в интервале концентраций от 10 до 50000 ppm (в расчете на растворитель), причем предпочтительным интервалом является 10-1000 ppm. Нет необходимости использовать в способе другие промотеры, такие как бромсодержащие соединения. Способом получают сырую терефталевую кислоту (СТА), содержащую 1,4-2,2% 4-CBA. Чтобы получить очищенную терефталевую кислоту (РТА), необходимо провести очистку сырой СТА.

Заявка США US 2010/0174111 описывает способ очистки арилкарбоновых кислот, таких как терефталевая кислота. Неочищенную кислоту растворяют или диспергируют в ионной жидкости. Чтобы осадить очищенную кислоту, к раствору прибавляют осадитель (определяемый как молекулярный растворитель, в котором ионный растворитель имеет высокую растворимость, а арилкарбоновая кислота не растворяется или плохо растворяется).

В документах США US 7,692,036, US 2007/0155985, US 2007/0208193 и US 2010/0200804 раскрываются способ и устройство для проведения жидкофазного окисления способного окисляться соединения. Жидкофазное окисление проводят в барботажном колоночном реакторе, который обеспечивает высокоэффективную реакцию при относительно низких температурах. Когда окисляемое соединение представляет собой пара-ксилол, продукт из реакции окисления представляет собой СТА, которая должна быть очищена. Считается, что очистка является более легкой, чем в случае обычно применяемых высокотемпературных способов.

Раскрытие изобретения

Один объект изобретения представляет собой способ окисления алкилароматического соединения. В одном варианте осуществления изобретения способ включает окисление алкилароматического соединения для получения первого продукта окисления; контактирование по меньшей мере части первого продукта окисления, растворителя, содержащего ионную жидкость, источника брома, катализатора и окислителя для получения второго продукта, содержащего маточный раствор и по меньшей мере одно из соединений: ароматический спирт, ароматический альдегид, ароматический кетон и ароматическая карбоновая кислота; и добавление по меньшей мере части маточного раствора на стадии контактирования.

Краткое описание чертежей

Фигура 1 представляет собой технологическую схему общего способа для одного варианта осуществления способа производства очищенных окисленных алкилароматических соединений.

Фигура 2 представляет собой технологическую схему общего способа для еще одного варианта осуществления способа производства очищенных окисленных алкилароматических соединений.

Осуществление изобретения

Способ включает окисление алкилароматического соединения для получения первого продукта окисления. Первоначальное окисление можно проводить по любому способу, известному для окисления алкилароматических соединений, в том числе по способам, описанным в вышеуказанных патентах и заявках, или по способам, описанным в данном документе, но не ограничиваясь ими.

Вторая стадия включает контактирование по меньшей мере части первого продукта окисления, растворителя, содержащего ионную жидкость, источника брома, катализатора и окислителя для получения второго продукта, содержащего маточный раствор и по меньшей мере одно из соединений: ароматический спирт, ароматический альдегид, ароматический кетон и ароматическая карбоновая кислота. По меньшей мере часть маточного раствора добавляют на стадии контактирования.

В одном варианте осуществления изобретения имеется дополнительная стадия контактирования по меньшей мере части второго продукта, второго растворителя, содержащего вторую ионную жидкость, второго источника брома, второго катализатора и второго окислителя для получения третьего продукта, содержащего второй маточный раствор. По меньшей мере часть второго маточного раствора может быть добавлена на одной или на обеих стадиях контактирования.

Маточный раствор может быть добавлен в емкость для смешивания, расположенную перед реакционной зоной, в линию подачи в реакционную зону или непосредственно в реакционную зону в зависимости от конструктивного оформления способа.

Так как давление насыщенных паров ионных жидкостей низкое, потери летучих веществ, вероятно, будут низкими, и ионная жидкость будет оставаться в маточном растворе для рециркуляции. Кроме того, ионные жидкости могут иметь низкие степени разложения, поэтому разложение ионных жидкостей во время использования маловероятно. Таким образом, может достигаться высокая степень рециркуляции.

При необходимости способ может включать последующие одну или несколько необязательных дополнительных стадий окисления. Способы по изобретению могут включать дополнительные стадии контактирования в соответствии с изобретением, как описано в данной заявке, и/или изобретение может быть объединено с другими стадиями окисления, например обычно применяемыми стадиями окисления, известными в данной области техники. Многочисленные стадии контактирования или окисления можно проводить последовательно и/или параллельно и их можно комбинировать с другими стадиями способа, такими как стадии очистки, описанные в данном документе.

Если дополнительные стадии окисления включают стадии контактирования по изобретению, по меньшей мере часть маточного раствора из дополнительных стадий окисления может быть добавлена на одной или нескольких предшествующих стадиях контактирования.

Стадию(и) контактирования можно осуществлять в масштабах от экспериментов лабораторного масштаба до полномасштабных промышленных способов. Способ может эксплуатироваться в периодическом, непрерывном или полунепрерывном режиме. Стадия контактирования может происходить различными путями. Порядок добавления компонентов (например, алкилароматического соединения, растворителя, источника брома, катализатора и окислителя) не является существенно важным. Например, компоненты можно добавлять по отдельности или можно объединить или смешать два или несколько компонентов перед объединением или смешиванием их с другими компонентами.

На фигуре 1 представлена технологическая схема общего способа для одного варианта осуществления способа производства очищенных окисленных алкилароматических соединений.

Сырье 200 вводят в зону 210 окисления вместе с окислителем 215. Головной конденсатор 225 удаляет тепло из потока флегмы для регулирования температуры реакционной зоны, зона 230 абсорбции и зона 235 дегидратации удаляют отходящий газ и воду из реакционной зоны.

Выходящая из зоны окисления 210 жидкость 240 направляется в зону 300 кристаллизации для осуществления процесса кристаллизации. Зона 300 кристаллизации может включать одну или несколько постреакционных зон и/или один или несколько кристаллизаторов. Если постреакционная зона необходима для дополнительного увеличения конверсии, требуется дополнительный окислитель. Постреакционная зона может функционировать при более низком давлении и более низкой температуре для того, чтобы способствовать кристаллизации. Используют один или несколько кристаллизаторов для осуществления кристаллизации продукта, такого как терефталевая кислота, при низких температурах. Требуется особая внимательность, чтобы не допустить совместной кристаллизации примесей. Растворитель, содержащий ионные жидкости, обеспечивает среду, где примеси и/или промежуточные соединения остаются в растворителе или далее окисляются в терефталевую кислоту, тем самым существенно уменьшая количество совместно кристаллизующихся примесей.

Кристаллизованный продукт отделяют от растворителя в зоне 305 сепарации. Зона 305 сепарации может включать один или несколько фильтров, центрифуг и сушилок, как известно в данной области техники.

Растворитель 310 используют для промывания кристаллов продукта в зоне 305 сепарации. Очищенный продукт 315 сушат и хранят в бункере для продукта. Может потребоваться дополнительное устройство для сепарации, чтобы обеспечить получение продукта, который отвечает спецификации продукта, перед хранением.

Вымываемый маточный раствор 320 подается в зону 325 сепарации растворителя. Ионную жидкость 260 рециркулируют в зону 210 окисления. Добавочную ионную жидкость 265 добавляют по мере надобности.

Катализатор 330 направляют на регенерацию.

Растворитель 335 карбоновой кислоты подвергают дегидратации в зоне 340 дегидратации. Растворитель 205 карбоновой кислоты может быть рециркулирован в зону 210 окисления. Добавочный растворитель 220 карбоновой кислоты можно добавлять по мере надобности. Отработанную воду 345 удаляют.

Фигура 2 представляет собой технологическую схему общего способа для еще одного варианта осуществления изобретения, который включает две реакционные зоны.

В некоторых вариантах осуществления изобретения в первой реакционной зоне может быть использован любой тип способа. Например, если требуется, можно использовать любой из промышленно доступных способов, обсуждаемых в патентах, цитированных выше, или в любых других документах.

Сырье 200, включающее окислитель 215, если имеется, поступает в первую реакционную зону 210. Головной конденсатор 225 удаляет тепло из потока флегмы, регулируя температуру реакционной зоны, зона 230 абсорбции и зона 235 дегидратации удаляют отходящий газ и воду из реакционной зоны.

Продукт из первой реакционной зоны используется как сырье 240 для второй реакционной зоны 245 окисления. Во вторую реакционную зону 245 окисления также подают окислитель 250 и поток 260 рециркулированной ионной жидкости. Поток 260 растворителя ионной жидкости может включать добавочную ионную жидкость 265, а также регенерированную ионную жидкость.

Растворитель во второй реакционной зоне 245 окисления может включать растворитель карбоновой кислоты и ионную жидкость. По сравнению с обычно применяемыми способами количество растворителя карбоновой кислоты уменьшают при использовании ионных жидкостей, чтобы не допустить избыточных объемов растворителей.

Головной конденсатор 270 отводит тепло из потока флегмы второй реакционной зоны 245 окисления для регулирования температуры реактора, и зона 275 абсорбции и зона 280 дегидратации удаляют отходящий газ и воду из реакционной зоны.

Вторая реакционная зона 245 окисления может включать поток 285, поступающий в теплообменник 290, который затем возвращают во вторую реакционную зону 245 окисления. В зависимости от конструкции реакционной зоны более холодный рециркулируемый поток может возвращаться в паровое пространство, верхнюю часть реакционной зоны или в соответствующий участок в реакционной зоне идеального вытеснения.

Жидкость 295, выходящая из второй реакционной зоны 245 окисления, направляется в зону 300 кристаллизации для завершения процесса кристаллизации. Зона 300 кристаллизации может включать одну или несколько постреакционных зон и/или один или несколько кристаллизаторов. Если постреакционная зона необходима для дальнейшего увеличения конверсии, требуется дополнительный окислитель. Постреакционная зона может работать при более низком давлении и более низкой температуре, чтобы способствовать кристаллизации. Используют один или несколько кристаллизаторов для завершения кристаллизации терефталевой кислоты при низких температурах.

Кристаллизованный продукт отделяют от растворителя в зоне 305 сепарации. Зона 305 сепарации может включать один или несколько фильтров, центрифуг и сушилок, как известно в данной области техники.

Растворитель 310 используют для промывания кристаллов продукта в зоне 305 сепарации. Очищенный продукт 315 сушат и хранят бункере для продукта. Может потребоваться дополнительное устройство для сепарации, чтобы обеспечить получение продукта, который соответствует спецификации, перед хранением.

Вымываемый маточный раствор 320 подается в зону 325 сепарации растворителя. Ионную жидкость 260 рециркулируют во вторую реакционную зону 245 окисления и при необходимости в первую реакционную зону окисления в зависимости от способа, используемого в первом реакторе. Добавочную ионную жидкость 265 можно добавлять по мере необходимости.

Катализатор 330 направляют на регенерацию.

Растворитель 335 карбоновой кислоты дегидратируют в зоне 340 дегидратации. Растворитель 205 карбоновой кислоты может быть рециркулирован в первую реакционную зону 210 окисления. Добавочный растворитель 220 карбоновой кислоты можно добавлять по мере надобности. Сточную воду 345 удаляют.

Первая и вторая реакционные зоны могут быть расположены в различных реакторах, если необходимо.

Подходящие алкилароматические соединения или сырье, подлежащее окислению, включают ароматические соединения, содержащие по меньшей мере одно бензольное кольцо, имеющее по меньшей мере одну алкильную группу. Предпочтительными алкильными группами являются метильная, этильная и изопропильная группы, хотя можно использовать и другие алкильные группы, если требуется. В одном варианте осуществления изобретения алкилароматическое соединение выбирают из толуола, пара-ксилола, орото-ксилола и мета-ксилола. Сырье может содержать больше одного алкилароматического соединения. Так как реакция окисления обычно происходит через последовательные степени окисления, подходящие соединения сырья включают частично окисленные промежуточные соединения по отношению к целевому окисленному продукту. Например, в производстве терефталевой кислоты алкилароматическое сырье может содержать пара-толуиловую кислоту и/или 4-карбоксибензальдегид (4-CBA).

Растворитель содержит по меньшей мере одну ионную жидкость. Если требуется, можно использовать две или более ионных жидкостей.

Ионные жидкости обычно представляют собой неводные органические соли, составленные из ионов, в которых заряд положительного иона уравновешен отрицательным ионом. Эти вещества имеют низкие температуры плавления, часто ниже 100°C, неопределяемое давление паров и хорошую химическую и термическую стабильность. Заряд катиона соли локализован на гетероатомах, а анионы могут представлять собой неорганические, органические или металлоорганические частицы.

Большинство ионных жидкостей образуется из катионов, которые не содержат кислотных протонов. Синтез ионных жидкостей может, как правило, быть разделен на две части: образование нужного катиона и обмен аниона для образования требуемого продукта. Кватернизация амина или фосфина, например, является начальной стадией в синтезе катиона ионной жидкости. Если невозможно образовать нужный анион непосредственно реакцией кватернизации, требуется дополнительная стадия.

Подсчитано, что имеется сотни тысяч комбинаций простых ионов для получения ионных жидкостей и почти бесконечное (1018) число потенциальных смесей ионных жидкостей. Это значит, что возможна разработка ионной жидкости с нужными свойствами, которая подходит для конкретного применения, путем подбора анионов, катионов и концентраций смесей. Ионные жидкости можно отрегулировать или «настроить» таким образом, чтобы обеспечить конкретную температуру плавления, вязкость, плотность, гидрофобность, смешиваемость и т.п. для конкретных применений. Термодинамика и кинетика процессов, осуществляемых в ионных жидкостях, отличаются от их термодинамики и кинетики в традиционных средах. Это создает новые возможности для каталитических реакций, сепарации, комбинированных способов реакция/сепарация, теплоносителей, гидравлических жидкостей, красящих добавок, электрохимических применений, а также для многих других. Ионные жидкости не выделяют летучих органических соединений (VOCs), обеспечивая основу для чистого производства, например "зеленая химия".

R1 = метил, винил, аллил;

R2 = этил, пропил, бутил, изобутил, пропаргил, аллил, кротил, металлил;

X = Cl, Br.

Органический катион может содержать линейный, разветвленный или циклический гетероалкильный фрагмент. Термин "гетероалкил" относится к катиону, содержащему один или несколько гетероатомов, выбранных из азота, кислорода, серы, бора, мышьяка, сурьмы, алюминия или фосфора, способных образовывать катион. Гетероатом может быть частью кольца, образованного с одним или несколькими гетероатомами, например пиридинильного, имидазолинильного колец, которые могут содержать замещенные или незамещенные, линейные или разветвленные алкильные группы, присоединенные к ним. Кроме того, катион может представлять собой одиночный гетероатом, к которому достаточное число замещенных или незамещенных, линейных или разветвленных алкильных групп присоединено таким образом, что образуется катион.

Не имеющие ограничительного характера примеры гетероциклических и гетероарильных звеньев, которые могут быть алкилированы с образованием катионных звеньев, включают имидазол, пиразолы, тиазолы, изотиазолы, азатиозолы, оксотиазолы, оксазины, оксазолины, оксазаборолы, дитиозолы, триазолы, селенозолы, оксафосфолы, пирролы, боролы, фураны, тиофены, фосфолы, пентазолы, индолы, индолины, оксазолы, изотиразолы, тетразолы, бензофуран, дибензофураны, бензотиофены, дибензотиофены, тиадиазолы, пиридины, пиримидины, пиразины, пиридазины, пиперазины, пиперидины, морфолины, пираны, аннолины, фталазины, хиназолины и хиноксалины.

Анионная часть ионной жидкости может содержать неорганический, органический или металлоорганический остаток. Не являющиеся ограничительными примеры анионов включают неорганические анионы: галогены, (например, F, Cl, Br и I); бориды, BX4, где X представляет собой галоген (например, BF4, BCl4), и т.п.; фосфаты (V), PX6; PF6 и т.п.; арсенаты (V), AsX6; AsF6 и т.п.; стильбат (V) (сурьма), SbX6; SbF6 и т.п.; C O 3 2 ; N O 2 1 , N O 3 1 , S O 4 2 , P O 4 3 , ( C F 3 ) S O 3 1 .

Другие не имеющие ограничительного характера примеры анионов ионных жидкостей включают замещенные азолаты, то есть пятичленные гетероциклические ароматические кольца, которые содержат атомы азота в любом положении 1 и 3 (имидазолаты); 1, 2 и 3 (1,2,3-триазолаты); или 1, 2, 4 (1,2,4-триазолат). Замещение в кольце происходит в тех положениях кольца, где находится углерод (а не азот), и включает замещение на CN (циано-), NO2 (нитро-), и NH2 (амино) группу, присоединенную к гетероциклическому азолатному каркасу.

Дополнительные не имеющие ограничительного характера примеры анионов включают замещенные или незамещенные бориды: B(R)4; замещенные или незамещенные сульфаты: (RO)S(=O)2O; замещенные или незамещенные ацильные группы RCO2, например ацетат СН3СО2, пропионат, СН3СН2СО2, бутират СН3СН2СН2СО2, бензилат, С6Н5СО2; замещенные или незамещенные фосфаты: (RO)2Р(=O)O; замещенные или незамещенные карбоксилаты: (RO)С(=O)O; замещенные или незамещенные азолаты, причем азолаты могут быть замещены на атоме углерода группой, выбранной из циано, нитро и амино. R может представлять собой органическую, неорганическую или металлоорганическую группу. Не имеющие ограничительного характера примеры R включают водород; замещенный или незамещенный линейный разветвленный и циклический алкил; замещенную или незамещенную линейную разветвленную и циклическую алкоксигруппу; замещенный или незамещенный арил; замещенную или незамещенную арилоксигруппу; замещенный или незамещенный гетероциклил; замещенный или незамещенный гетероарил, ацил, силил, борил, фосфино, амино, тио и селено.

В одном варианте осуществления изобретения ионные жидкости, подходящие для использования, включают одну или несколько имидазолиниевых ионных жидкостей, пиридиниевых ионных жидкостей, тетраалкиламмониевых ионных жидкостей и фосфониевых ионных жидкостей, но не ограничиваются перечисленными. Можно использовать не одну, а больше ионных жидкостей. Имидазолиниевые, пиридиниевые и аммониевые ионные жидкости содержат катион, включающий по меньшей мере один атом азота. Фосфониевые ионные жидкости содержат катион, включающий по меньшей мере один атом фосфора. В одном варианте осуществления изобретения ионная жидкость содержит катион, выбранный из алкилимидазолиния, диалкилимидазолиния и их комбинаций. В еще одном варианте осуществления изобретения ионная жидкость содержит анион, выбранный из галогенидов, ацетата, карбоксилатов и их комбинаций. Ионная жидкость может содержать по меньшей мере одно вещество из следующих: 1-бутил-3-метилимидазолинийацетат (BMImOAc), 1-бутил-3-метилимидазолинийбромид (BMImBr), 1-гексил-3-метилимидазолинийацетат и 1-гексил-3-метилимидазолинийбромид.

Ионные жидкости могут быть предоставлены готовыми, или могут быть генерированы in situ из соответствующих предшественников, или используются оба варианта. Если ионную жидкость генерируют in situ, растворитель содержит предшественник(и) одной или нескольких ионных жидкостей. Предшественники ионных жидкостей содержат предшественник катиона, такой как алкилимидазол, алкилпиридин, алкиламин, алкилфосфин и т.п., и предшественник аниона, такой как алкил- или арилгалогениды или ацетаты. В одном варианте осуществления изобретения предшественниками являются метилимидазол и бутилбромид.

Вариант введения предшественников ионных жидкостей может варьироваться в зависимости от природы алкилароматического соединения, подвергаемого окислению, и от природы и чистоты целевого продукта. В одном варианте добавления предшественники катионов и предшественники анионов (обычно жидкости при комнатной температуре и давлении) смешивают с карбоновой кислотой (например, уксусной кислотой) и вводят в реактор(ы) окисления. В еще одном варианте добавления предшественники ионных жидкостей смешивают с алкилароматическим сырьем и вводят в реакторы окисления. В еще одном варианте компоненты как предшественников катионов, так и предшественников анионов ионных жидкостей можно вводить в нижнюю часть реактора без предварительного смешивания с любым другим компонентом в реакторе окисления, таким как сырье, растворитель карбоновой кислоты и пакет катализатора.

Растворитель может также содержать карбоновую кислоту. Когда карбоновую кислоту используют в растворителе, количество карбоновой кислоты уменьшают по сравнению с обычно применяемыми способами для того, чтобы не допустить избыточных объемов растворителя. Желательно использовать карбоновую кислоту, содержащую от 1 до 7 атомов углерода. В одном варианте осуществления изобретения карбоновая кислота содержит уксусную кислоту. Растворитель может содержать больше одной карбоновой кислоты. Например, растворитель может дополнительно содержать бензойную кислоту. В еще одном варианте осуществления изобретения карбоновая кислота растворителя представляет собой уксусную кислоту.

В одном варианте осуществления изобретения массовое соотношение «карбоновая кислота:ионная жидкость» в растворителе составляет от 1:16 до 16:1, или от 1:9 до 9:1, или от 3:17 до 17:3, или от 1:4 до 4:1, или от 1:3 до 3:1, или от 3:7 до 7:3, или от 7:13 до 13:7, или от 2:3 до 3:2, или от 9:11 до 11:9, или 1:1. Количество ионной жидкости включает количество предшественников ионной жидкости, если они имеются. В количество ионной жидкости включают количество необязательно добавляемого ионного твердого вещества или вещества, способного образовывать ионную соль в растворе, которые обсуждаются ниже, если они имеются.

Необязательно к смеси может быть добавлено ионное твердое вещество, такое как ацетат аммония (NH4OAc) и/или бромид аммония (NH4Br). В качестве альтернативы может быть добавлено вещество, способное образовывать ионную соль в растворе. Вещество может образовывать ионную соль в растворе путем комбинирования с ионами, присутствующими в растворе. Например, в растворе, содержащем бромид-ионы (например, в виде HBr) или ацетат-ионы (например, в виде уксусной кислоты), аммоний может объединяться с бромид- или ацетат-ионами, образуя бромид аммония или ацетат аммония. Использование одного или нескольких ионных твердых веществ или веществ, способных образовывать ионную соль в растворе, обеспечивает дополнительное уменьшение содержания загрязняющих веществ.

В одном варианте осуществления изобретения количество ионного твердого вещества и вещества, способного образовывать ионную соль в растворе, составляет от 5 до 45 мас.% от массы растворителя или от 10 до 45 мас.% от массы растворителя. Растворитель включает карбоновую кислоту, ионную жидкость и/или предшественники ионной жидкости, необязательно ионное твердое вещество или вещество, способное образовывать ионную соль в растворе, необязательно воду.

Необязательно растворитель может дополнительно содержать воду. Вода может быть добавлена к смеси или может образовываться в смеси во время процесса окисления. В одном варианте осуществления изобретения количество воды составляет от 0,01 до 5 мас.% от массы карбоновой кислоты. Количество воды составляет от 0,1 до 2% (мас.) от массы карбоновой кислоты.

В одном варианте осуществления изобретения массовое соотношение растворителя и алкилароматического соединения в смеси составляет от 1:1 до 10:1, или от 1,5:1 до 6:1, или от 2:1 до 4:1. Растворитель включает карбоновую кислоту, ионную жидкость и/или предшественник ионной жидкости, необязательно ионное твердое вещество или вещество, способное образовывать ионную соль в растворе, необязательно воду.

Катализатор содержит по меньшей мере один из металлов: кобальт, марганец, титан, хром, медь, никель, ванадий, железо, молибден, олово, церий и цирконий. В одном варианте осуществления изобретения катализатор содержит кобальт и марганец. Металл может находиться в форме неорганической или органической соли. Например, металлический катализатор может быть в виде соли карбоновой кислоты, такой как ацетат металла и его гидраты. Типичные катализаторы включают тетрагидрат ацетата кобальта(II) и ацетат марганца(II), отдельно взятые или в комбинации. В одном варианте осуществления изобретения количество (масса) ацетата марганца(II) меньше количества (массы) тетрагидрата ацетата кобальта(II).

Количество катализатора, используемого в изобретении, может широко варьироваться. Например, количество кобальта может изменяться в интервале от 0,001-2% (мас.) от массы растворителя. В одном варианте осуществления изобретения количество кобальта варьируется в пределах от 0,05 до 2% (мас.) от массы растворителя. Количество марганца может изменяться в пределах от 0,001 до 2% (мас.) от массы растворителя. В еще одном варианте осуществления изобретения отношение кобальт:марганец варьируется от 3:1 до 1:2 (мас.) в расчете на атомарный металл.

Источники брома обычно определяют в данной области техники как промотеры катализатора и включают бром, бромид-ион, например HBr, NaBr, KBr, NH4Br; и/или органические бромиды, которые, как известно, дают бромид-ионы в условиях окисления, такие как бензилбромид, моно- и дибромуксусная кислота, бромацетилбромид, тетрабромэтан, дибромэтилен. В одном варианте осуществления изобретения источник брома содержит бромид водорода, по существу, состоит из бромида водорода или состоит из бромида водорода. Количество бромида водорода может варьироваться в пределах от 0,01 до 5% (мас.) от массы растворителя. В еще одном варианте осуществления изобретения количество бромида водорода может варьироваться в пределах от 0,05 до 2% (мас.) от массы растворителя. Растворитель содержит карбоновую кислоту, ионные жидкости, предшественники ионных жидкостей, необязательно ионное твердое вещество или вещество, способное образовывать ионную соль в растворе, необязательно воду.

Окислители, подходящие для способа, обеспечивают источник атомов кислорода для окисления пара-ксилола, и/или пара-толуиловой кислоты, и/или другого промежуточного продукта окисления в используемых условиях окисления. Примеры окислителей включают пероксиды, супероксиды и соединения азота, содержащие кислород, такие как азотные кислоты. В одном варианте осуществления изобретения окислитель представляет собой газ, содержащий кислород, например воздух, диоксид углерода и молекулярный кислород. Газ может представлять собой смесь газов. Количество кислорода, используемого в способе, предпочтительно больше, чем его стехиометрическое количество, необходимое для желательного процесса окисления. В одном варианте осуществления изобретения количество кислорода, контактирующего со смесью, составляет от 1,2-кратного стехиометрического количества до 100-кратного стехиометрического количества. В некоторых случаях количество кислорода, контактирующего со смесью, может составлять от 2-кратного стехиометрического количества до 30-кратного.

По меньшей мере часть компонентов образует жидкую фазу, хотя растворение одного или нескольких компонентов смеси может быть неполным в любой или некоторый момент времени во время осуществления способа. Жидкая фаза может образовываться путем смешивания компонентов в условиях окружающей среды. В еще одном варианте осуществления изобретения жидкая фаза образуется по мере того как температура смеси возрастает до температуры окисления. Смесь компонентов может быть образована до стадии окисления или в том же реакционном сосуде, который используется на стадии окисления, или в другом. В еще одном варианте осуществления изобретения смесь компонентов образуется в реакторе окисления, например, при добавлении различных потоков компонентов по отдельности и/или в комбинации в реактор окисления непрерывного или полунепрерывного действия. Объединенные компоненты и/или различные потоки компонентов можно нагревать перед их смешиванием.

Хотя многие обычно используемые способы окисления алкилароматических соединений обычно проводят в смешанной фазе и часто они включают три фазы (например, твердое вещество, газ и жидкость), в данной области техники их часто называют способами «жидкофазного» окисления, так как условия окисления поддерживаются таким образом, чтобы по меньшей мере часть смеси была в жидкой фазе. В данной области техники известно также, что число имеющихся фаз может изменяться со временем в ходе осуществления способа. Способы по настоящему изобретению можно также проводить в жидкой фазе или смешанной фазе аналогично способам, известным в данной области техники.

Обычно используемые реакторы для жидкофазного окисления, известные в данной области техники, можно использовать для осуществления изобретения на практике. Примеры включают реакторы, которые могут иметь одну или несколько механических мешалок, и различные барботажные колоночные реакторы, такие как реакторы, описанные в патенте США US 7,692,036. Известно также, что можно конструировать, эксплуатировать и регулировать такие реакторы для реакции окисления, когда это применимо, для используемых условий окисления, включающих, например, температуру, давление, объемы жидкостей и газов, коррозионные свойства жидкой и газовой фаз. См., например, патенты США US 7,692,036 и US 6,137,001.

Стадии контактирования могут происходить в условиях окисления при необходимости. Подходящие условия окисления обычно включают температуру от 125°C до 275°C, давление от атмосферного, т.е. от 0 МПа (изб.) до 6 МПа (изб.), и время пребывания в реакторе от 5 с до 2 недель. То есть смесь имеет температуру и давление в указанных интервалах, которые можно поддерживать в этих интервалах в течение некоторого периода времени в интервале времени пребывания. В еще одном варианте осуществления изобретения температура изменяется в интервале от 175°C до 225°C и может изменяться в интервале от 190°C до 235°C. В одном варианте осуществления изобретения давление изменяется в интервале от 1,2 МПа (изб.) до 6,0 МПа (изб.) и давление может изменяться в интервале от 1,5 МПа (изб.) до 6,0 МПа (изб.). В следующем варианте осуществления изобретения время пребывания изменяется от 10 мин до 12 ч. Температуру окисления, давление и время пребывания в реакторе можно варьировать с учетом множества факторов, включающих, например, конфигурацию и размер реактора, тип процесса (периодический или полунепрерывный). Условия окисления можно также варьировать с учетом других условий окисления. Например, использование конкретного интервала температур может сделать возможным использование другого интервала времени пребывания.

В одном варианте осуществления изобретения терефталевая кислота, полученная по данному изобретению, может осаждаться, кристаллизоваться или затвердевать в жидкофазной смеси в условиях окисления и/или по мере остывания смеси. Таким образом, смесь по изобретению может дополнительно содержать твердую терефталевую кислоту. Другие соединения, в том числе вещества, обусловливающие цветность, и другие продукты окисления могут затвердевать вместе с продуктом окисления или удерживаться в твердом продукте окисления, уменьшая таким образом чистоту целевого продукта. В одном варианте осуществления изобретения смесь содержит жидкую фазу. Смесь может содержать газовую фазу, например, в случае, когда окислитель добавляют в виде газа. Смесь может содержать твердую фазу, например, когда компонент смеси, продукт окисления или побочный продукт не растворяется в смеси или затвердевает в смеси. В одном варианте осуществления изобретения смесь содержит жидкую фазу, твердую фазу и необязательно газовую фазу. В еще одном варианте осуществления изобретения смесь содержит жидкую фазу и газовую фазу.

Как отмечалось выше и обсуждается ниже, было обнаружено, что изобретение можно использовать для производства продукта окисления, содержащего такие количества загрязнений, которые отличаются от наблюдаемых в продукте окисления, получаемого традиционными способами. Кроме того, изобретение предоставляет новые способы для регулирования содержания различных загрязнений в продукте окисления. В одном варианте осуществления изобретения способ по изобретению дополнительно включает образование продукта окисления в виде твердого вещества, необязательно в условиях окисления, и дает твердый продукт окисления и маточный раствор. Твердый продукт окисления может быть отделен от маточного раствора, т.е. от жидкой фазы, и маточный раствор может быть рециркулирован и повторно использован на стадии контактирования или на других стадиях способа, описанных ниже.

Способы по изобретению могут включать одну или несколько дополнительных стадий окисления. В одном варианте осуществления изобретения вторую стадию окисления проводят при второй температуре окисления, которая ниже температуры на первой стадии окисления. Способы по изобретению могут включать дополнительные стадии контактирования в соответствии с изобретением, как описано здесь, и/или изобретение можно комбинировать с другими стадиями окисления, такими как обычно используемые стадии, известные в данной области техники. Несколько стадий окисления и/или контактирования можно проводить последовательно и/или параллельно и можно комбинировать с другими стадиями способов, такими как стадии очистки, описанные в данной заявке.

В еще одном варианте осуществления изобретения способ по изобретению дополнительно включает очистку продукта окисления. Очистка может включать одну или несколько дополнительных стадий для выделения и очистки продукта окисления. Примеры стадий очистки включают: стадию сепарации, на которой продукт окисления отделяют от маточного раствора или другой жидкой фазы, например, фильтрованием и/или центрифугированием; стадию промывания, на которой продукт окисления промывают, например, водой и/или другим растворителем; сушку продукта окисления и гидрирование. Хотя способы гидрирования можно использовать для очистки продукта, они менее желательны, чем другие способы очистки, из-за их стоимости. Такие дополнительные стадии обработки описаны в общей литературе и хорошо известны специалистам в данной области техники для использования в различных комбинациях для очистки продуктов окисления по изобретению. См., например, ссылки, цитируемые в настоящей заявке, и в источниках, цитированных в них.

Стадия очистки по настоящему изобретению может дополнительно включать одну или несколько стадий контактирования с одним или несколькими растворителями. Стадия контактирования с растворителем включает контактирование продукта окисления, включающего также промытые или высушенные твердые продукты окисления, с третьим растворителем, содержащим по меньшей мере один из таких компонентов, как вода, карбоновая кислота, ионные жидкости и/или предшественник ионных жидкостей, и маточный раствор для получения очищенного продукта окисления. В одном варианте осуществления изобретения растворитель на стадии контактирования с растворителем содержит ионную жидкость, карбоновую кислоту и необязательно маточный раствор. Состав растворителя на стадии контактирования с растворителем может быть таким, какой был описан выше для стадии контактирования.

Контактирование с растворителем может вымывать примеси из твердого продукта окисления и/или продукт окисления может частично или полностью раствориться в растворителе. Условия контактирования с растворителем включают температуру контактирования. Температура контактирования с растворителем может быть ниже температуры окисления. В одном варианте осуществления изобретения температура контактирования с растворителем по меньшей мере на 20°C ниже, чем температура окисления. Контактирование с растворителем можно осуществить, например, в одном или нескольких кристаллизаторах, расположенных после реактора окисления в некоторых обычно применяемых способах. Продукт окисления может затвердевать, осаждаться или кристаллизоваться в растворителе на стадии контактирования с растворителем.

Продукт, полученный заявляемым способом первоначально или после одной или нескольких дополнительных стадий окисления и/или очистки, может содержать менее 2500 ppm 4-CBA, или менее 2000 ppm 4-CBA, или менее 1500 ppm 4-CBA, или менее 1000 ppm 4-CBA, или менее 750 ppm 4-CBA, или менее 500 ppm 4-CBA, или менее 250 ppm 4-CBA, или менее 100 ppm 4-CBA, или менее 50 ppm 4-CBA, или менее 25 ppm 4-CBA.

Следует отметить, что термины "первый", "второй", "третий" и т.п. используются для того, чтобы провести различия одного компонента, или одной композиции, или стадии, или зоны, или реактора и т.п. от другого или другой. Дело необязательно обстоит так, что "вторая" стадия или зона, например, физически или по времени следует за "первой" стадией или зоной. В зависимости от контекста это может быть до или после, что очевидно специалисту в данной области.

Хотя по меньшей мере один иллюстративный вариант имеется в предшествующем подробном описании изобретения, следует учесть, что существует огромное количество вариаций. Следует также учесть, что иллюстративный вариант или иллюстративные варианты осуществления изобретения представляют собой только примеры и не предназначены для того, чтобы каким-либо образом ограничивать объем притязаний, применимость или конфигурацию изобретения. Конечно, предшествующее подробное описание обеспечивает специалистов в данной области удобной принципиальной схемой для реализации иллюстративного варианта осуществления изобретения. Понятно, что можно сделать различные изменения в функции и расположении элементов, описанных в иллюстративном варианте изобретения, не выходя за пределы объема изобретения, изложенного в прилагаемой формуле изобретения.

1. Способ окисления алкилароматического соединения, включающий:
окисление алкилароматического соединения для получения первого продукта окисления;
контактирование по меньшей мере части первого продукта окисления, растворителя, содержащего ионную жидкость, источника брома, катализатора и окислителя для получения второго продукта, содержащего маточный раствор и по меньшей мере одно из соединений: ароматический спирт, ароматический альдегид, ароматический кетон и ароматическая карбоновая кислота;
добавление по меньшей мере части маточного раствора на стадии контактирования;
контактирование по меньшей мере части второго продукта, второго растворителя, содержащего вторую ионную жидкость, второго источника брома, второго катализатора и второго окислителя для получения третьего продукта, содержащего второй маточный раствор; и
добавление по меньшей мере части второго маточного раствора на одной или обеих стадиях контактирования.

2. Способ по п.1, в котором стадии контактирования осуществляют в реакционной зоне.

3. Способ по п.1, в котором контактирование первого продукта окисления осуществляют в первой реакционной зоне, а контактирование второго продукта осуществляют во второй реакционной зоне.

4. Способ по п.3, в котором первая реакционная зона и вторая реакционная зона находятся в различных реакторах.

5. Способ по п.1, в котором температура контактирования для контактирования второго продукта ниже температуры контактирования первого продукта окисления.

6. Способ по п.1, дополнительно включающий очистку по меньшей мере одного из соединений: ароматического спирта, ароматического альдегида, ароматического кетона и ароматической карбоновой кислоты.

7. Способ по п.1, в котором ионная жидкость образуется in situ из по меньшей мере одного предшественника ионной жидкости.

8. Способ по п.1, в котором указанное алкилароматическое сырье содержит п-ксилол и второй продукт окисления содержит менее 2500 ppm 4-карбоксибензальдегида.

9. Способ по п.1, в котором стадия контактирования дополнительно включает добавление ионного твердого вещества или вещества, способного образовывать ионную соль.



 

Похожие патенты:

Изобретение относится к способу получения производных 3-карбокси-4-гидроксибензилальдегидов из фенольных соединений, несущих формильную и/или гидроксиметильную группы в положении 2 и 4; описывается также получение 4-гидроксибензальдегида из 3-карбокси-4-гидроксибензальдегида и получение 3-метокси-4-гидроксибензальдегида и 3-этокси-4-гидроксибензальдегида, называемых соответственно "ванилин" и "этилванилин".

Изобретение относится к способу получения ароматических углеводородов из сырья на основе талового масла. Способ характеризуется тем, что газообразный водород и биоасло, которое состоит на 2-90% из жирных кислот талового масла, на 2-98% из смоляных кислот талового масла и необязательно других растительных масел, направляют в неподвижный слой катализатора, образованный из твердого материала; биомасло подвергают каталитической деоксигенации и крекингу в слое под действием водорода с использованием катализатора деоксигенации и катализатора крекинга, которые отличаются друг от друга и расположены последовательно на расстоянии друг от друга в слое катализатора.

Изобретение относится к способу получения дуриловой кислоты, применяемой в синтезе полиэфирных смол, пластификаторов, а также в производстве высокопрочных волокон для тканей аэростатов.

Изобретение относится к способу регулируемой регенерации энергии реакции окисления, при которой образуется газовый поток, каковую реакцию осуществляют в реакторе окисления непрерывного действия, в который подают газообразный окислитель.

Изобретение относится к усовершенствованному способу получения ароматической дикарбоновой кислоты, причем указанный способ включает стадии: (a) окисления ароматического соединения по меньшей мере в одном окислительном устройстве с получением, тем самым, отходящих газов окислительного устройства и суспензии окислительного устройства, включающей ароматическую дикарбоновую кислоту, причем указанные отходящие газы окислительного устройства содержат по меньшей мере 12,4 килограмма пара на килограмм указанного ароматического соединения, подводимого в указанное окислительное устройство; (b) извлечения углеводородных соединений из указанных отходящих газов окислительного устройства в системе регенерации растворителя с получением, тем самым, обедненных углеводородами отходящих газов, содержащих по меньшей мере 3 килограмма водяного пара на килограмм указанного ароматического соединения, подводимого в указанное окислительное устройство; и (c) пропускания по меньшей мере части указанных обедненных углеводородами отходящих газов по меньшей мере через один турбодетандер для генерирования, тем самым, работы, причем указанные обедненные углеводородами отходящие газы, подаваемые в указанный турбодетандер, включают по меньшей мере 3 килограмма водяного пара на килограмм указанного ароматического соединения, подаваемого в указанное окислительное устройство.
Изобретение относится к способу получения терефталевой кислоты из пара-ксилола, включающему формирование смеси, содержащей пара-ксилол, растворитель, источник брома, катализатор и ацетат аммония; и окисление пара-ксилола контактированием смеси с окислителем в условиях окисления для получения твердого продукта окисления, содержащего терефталевую кислоту, 4-карбоксибензальдегид и пара-толуиловую кислоту; в котором растворитель включает карбоновую кислоту, имеющую 1-7 атомов углерода, и необязательно воду, и катализатор, по существу, состоит из по меньшей мере одного металла, выбранного из кобальта, титана, марганца, хрома, меди, никеля, ванадия, железа, молибдена, олова, церия и циркония, присутствующего в форме ацетатов или их гидратов.

Изобретение относится к способам получения чистой терефталевой кислоты. Способ включает (a) удаление маточного раствора из очищенной терефталевой кислоты через фильтр с помощью газа, где газ включает пар; (b) очистку газа и (c) рециркуляцию газа, очищенного на стадии (b), назад на стадию (a), в котором концентрация пара находится в интервале от 50 вес.% до 99,9 вес.% от полного количества газа; стадию (b) очистки проводят в контактном устройстве газ-жидкость.
Изобретение относится к способу и смеси для окисления алкилароматического соединения. Смесь включает: алкилароматическое соединение, растворитель, источник брома, катализатор и ацетат аммония; причем растворитель включает карбоновую кислоту, имеющую 1-7 атомов углерода, и необязательно воду, и катализатор по существу состоит из, по меньшей мере, одного металла, выбранного из кобальта, титана, марганца, хрома, меди, никеля, ванадия, железа, молибдена, олова, церия и циркония, присутствующего в форме ацетатов или их гидратов.

Изобретение относится к способам уничтожения отравляющих веществ, а именно к утилизации отравляющего хлорсодержащего вещества 2-(2-хлорбензилиден)малонодинитрила (CS) с получением 2-хлорбензойной кислоты, являющейся товарным продуктом для синтеза различных органических соединений: пестицидов, красителе, лекарственных препаратов.

Изобретение относится к усовершенствованному реактору окисления параксилола для получения терефталевой кислоты, который содержит корпус реактора, при этом устройство ввода воздуха распределительного типа и устройство ввода воздуха циклонного типа расположены в нижней части корпуса реактора, устройство ввода воздуха распределительного типа содержит ряд трубок распределения воздуха и устройство циклонного ввода воздуха состоит из нескольких трубок циклонного ввода воздуха, расположенных ниже трубок распределения воздуха, при этом сегмент вывода воздуха указанных трубок циклонного ввода воздуха наклонен на 45-60° относительно радиуса корпуса резервуара.

Изобретение относится к усовершенствованному способу конверсии потока сырья, содержащего по меньшей мере одно C8-ароматическое соединение, орто-ксилол, мета-ксилол, пара-ксилол и этилбензол, по меньшей мере в один поток продуктов, содержащий изофталевую кислоту и терефталевую кислоту (IPA/TA), который включает стадии: a) удаление этилбензола из указанного потока сырья с образованием потока сырья, обедненного этилбензолом; b) удаление opmo-ксилола из указанного обедненного этилбензолом потока сырья с образованием потока сырья, обедненного opmo-ксилолом, содержащего мета-ксилол и пара-ксилол; c) окисление указанного обедненного opmo-ксилолом потока сырья с образованием потока продуктов, содержащего IPA/TA в соотношении от 0,5% до 99,5% IPA и от 0,5 до 99,5% TA; d) сушка указанного потока продукта в сушилке для удаления остаточных растворителя и воды; e) удаление по существу очищенного потока продуктов IPA/TA; f) растворение указанного потока продуктов; и g) отделение указанного IPA и указанного TA от указанного растворенного потока продуктов.

Изобретение относится к способу получения карбонильных соединений, а именно кетонов и альдегидов С2-С4, которые находят разнообразное применение как ценные полупродукты тонкого и основного органического синтеза, а также широко используются в качестве растворителей.
Изобретение относится к способу получения ванилина, который используют в кондитерской, фармацевтической и парфюмерно-косметической отраслях промышленности. Способ заключается в окислении кислородом воздуха лигнина, полученного ферментативным гидролизом древесины хвойных пород или древесины, пораженной бурыми или пестрыми гнилями, с содержанием лигнина 40-90 мас.% в водно-щелочной среде при повышенных температурах и давлении.
Изобретение относится к способу прямой конверсии низших парафинов С1-С4 в оксигенаты, такие как спирты и альдегиды, которые являются ценными промежуточными продуктами органического синтеза и могут применяться в качестве компонентов моторного топлива и/либо исходного сырья для получения синтетического бензина и других моторных топлив.

Изобретение относится к способу осуществления непрерывного производственного процесса получения акролеина, акриловой кислоты или их смеси из пропана в стабильном рабочем режиме, в соответствии с которым: А) в первой реакционной зоне А пропан подвергают гетерогенно-катализируемому дегидрированию в присутствии молекулярного кислорода, получая содержащую пропан и пропилен газовую смесь продуктов А, В) газовую смесь продуктов А, при необходимости, направляют в первую зону разделения А, в которой из нее отделяют часть или более отличающихся от пропана и пропилена компонентов и получают остающуюся после отделения газовую смесь продуктов А', содержащую пропан и пропилен, С) газовую смесь продуктов А или газовую смесь продуктов А' направляют, по меньшей мере, в один реактор окисления второй реакционной зоны В, в котором содержащийся в них пропилен подвергают частичному селективному гетерогенно-катализируемому газофазному окислению молекулярным кислородом, получая газовую смесь продуктов В, которая содержит акролеин, акриловую кислоту или их смесь в качестве целевого продукта, непревращенный пропан, избыточный молекулярный кислород и, при необходимости, непревращенный пропилен, D) во второй зоне разделения В из газовой смеси продуктов В отделяют содержащийся в ней целевой продукт и по меньшей мере часть остающегося после этого газа, содержащего пропан, молекулярный кислород и, при необходимости, непревращенный пропилен, возвращают в реакционную зону А в качестве содержащего молекулярный кислород циркуляционного газа 1, Е) по меньшей мере, в одну зону непрерывного производственного процесса, выбранную из группы, включающей реакционную зону А, зону разделения А, реакционную зону В и зону разделения В, вводят свежий пропан, скорость подачи которого при осуществлении производственного процесса в стабильном рабочем режиме характеризуется заданным стационарным значением, и F) непрерывно определяют содержание молекулярного кислорода в газовой смеси продуктов В и сравнивают его с заданным стационарным целевым значением, необходимым для осуществления производственного процесса в стабильном рабочем режиме, отличающийся тем, что в случае если в определенный момент времени содержание молекулярного кислорода в газовой смеси продуктов В превышает заданное стационарное целевое значение, в производственный процесс сразу же вводят свежий пропан со скоростью подачи выше ее стационарного значения, и в случае если в определенный момент времени содержание молекулярного кислорода в газовой смеси продуктов В ниже соответствующего заданного стационарного целевого значения, в производственный процесс сразу же вводят свежий пропан со скоростью подачи ниже ее стационарного значения.

Изобретение относится к способу получения акролеина, акриловой кислоты или их смеси из пропана, в соответствии с которым А) на вход в первую реакционную зону А подают входящий поток реакционной газовой смеси А, полученный объединением, по меньшей мере, четырех отличающихся друг от друга газообразных исходных потоков 1, 2, 3 и 4, причем газообразные исходные потоки 1 и 2 содержат пропан, газообразный исходный поток 4 является молекулярным водородом и газообразный исходный поток 3 является свежим пропаном, входящий поток реакционной газовой смеси А пропускают, по меньшей мере, через один слой катализатора первой реакционной зоны А, на котором, при необходимости, при подаче других газовых потоков, в результате гетерогенно катализируемого частичного дегидрирования пропана, образуется поток продуктов газовой смеси А, содержащий пропан и пропилен, поток продуктов газовой смеси А выводят из первой реакционной зоны А через соответствующий выпуск, при этом разделяя его на два частичных потока 1 и 2 продуктов газовой смеси А идентичного состава, и частичный поток 1 продуктов газовой смеси А возвращают в первую реакционную зону А в качестве газообразного исходного потока 1, частичный поток 2 продуктов газовой смеси А, при необходимости, направляют в первую зону разделения А, в которой отделяют часть или более содержащихся в нем компонентов, отличающихся от пропана и пропилена, в результате чего получают поток продуктов газовой смеси А', содержащий пропан и пропилен.

Изобретение относится к способу получения 1-ацетил-4-пропионилбензола, который является исходным сырьем для получения медицинских препаратов и дипирролилбензолов, на основе которых получают проводящие сопряженные полимерные системы, которые находят применение в качестве электродных материалов для накопителей энергии, биосенсоров, материалов для фотолюминесценции, электролюминесценции, электромагнитных экранов.

Изобретение относится к способу получения 1-гидроксиадамантан-4-она (кемантана), который может применяться в качестве иммуностимулирующего средства, эффективного при лечении заболеваний сосудистой системы, конечностей аутоиммунного генеза, хронического бронхита, туберкулеза, инфекционно-аллергической бронхиальной астмы, хронического афтозного стоматита, герпеса, а также в качестве антикаталептического средства и полупродукта для синтеза 1,4-бифункциональных замещенных адамантана.
Наверх