Способ термической обработки отливок из жаропрочных никелевых сплавов

Изобретение относится к области металлургии, а именно к термической обработке отливок из жаропрочных никелевых сплавов, предназначенных для производства деталей газотурбинных двигателей и газотурбинных установок, и может быть использовано в авиационной и энергетической промышленности. Способ термической обработки отливки из жаропрочного никелевого сплава включает нанесение на поверхность отливки защитного покрытия, состоящего из по меньшей мере одного слоя керамики, нагрев и выдержку при температуре выше температуры солидуса сплава отливки, а также охлаждение отливки с последующим удалением защитного покрытия. Нагрев, выдержку и охлаждение проводят при давлении 80-220 МПа, причем нагрев и выдержку проводят при температуре выше температуры солидуса сплава отливки на 15-80°C. Устраняется микропористость, растворяется первичная эвтектическая (γ-γ')-фаза при отсутствии поверхностного вакуумного растрава отливок и сокращается время термообработки отливок в 2-2,5 раза. 1 з.п. ф-лы, 4 ил., 5 пр.

 

Изобретение относится к области металлургии, а именно к термической обработке отливок из жаропрочных никелевых сплавов монокристаллической или однонаправленной структурой, предназначенных для производства деталей газотурбинных двигателей (ГТД) и газотурбинных установок (ГТУ), преимущественно турбинных лопаток, и может быть использовано в авиационной и энергетической промышленности.

Высокотемпературная термическая обработка сплавов с монокристаллической структурой должна обеспечивать растворение первичной эвтектической (γ-γ′)-фазы, полную перекристаллизацию упрочняющей γ′-фазы и максимально устранить дендритную ликвацию. В современных жаропрочных сплавах возможна ситуация, когда температура плавления эвтектических фазовых составляющих ниже температуры растворения упрочняющей γ′-фазы, а растворение упрочняющей γ′-фазы не всегда сопровождается устранением дендритной химической неоднородности (ликвации).

Разница температур плавления различных фаз жаропрочных никелевых сплавов приводит в процессе термообработки к возникновению оплавлений в отливках деталей ГТД и ГТУ, выполненных из данных сплавов. Такие оплавления недопустимы, так как приводят к разупрочнению сплавов и потере пластичности. Неустраненная дендритная ликвация при последующих эксплуатационных нагревах может приводить к появлению выделений топологически плотно упакованных фаз и дополнительному разупрочнению сплавов.

Известен ряд способов термической обработки многокомпонентных жаропрочных сплавов, предназначенных для получения лопаток ГТД, включающих многоступенчатые нагревы с продолжительными изотермическими выдержками при каждой ступени нагрева.

Так, известен способ термической обработки монокристаллических изделий из жаропрочных сплавов, включающий нагрев отливок до температуры примерно на 10-15°C ниже температуры начального плавления (Тсолидус) и выдержку при этой температуре в течение времени, достаточного для гомогенизации, повышение температуры нагрева до температуры по крайней мере на 3°C выше температуры начального плавления и выдержку при данной температуре, а также охлаждение изделия со скоростью более 50°C/мин (US 4583608, 22.04.1986). Недостатком данного способа является то, что в процессе термической обработки происходит частичное плавление сплава, что может приводить к изменению формы отливки. Кроме того, интенсивное поверхностное испарение легирующих элементов из зоны оплавления в процессе выдержки приводит к поверхностному изменению химического состава и, соответственно, к растраву поверхности отливок, то есть к резкому ухудшению чистоты их поверхности.

Известен способ получения изделий из монокристаллических жаропрочных никелевых сплавов, включающий горячее изостатическое прессование отливок изделий и термическую обработку, включающую гомогенизирующий отжиг, состоящий из ступенчатых нагревов с изотермическими выдержками, в котором перед горячим изостатическим прессованием проводят предварительный отжиг отливок в интервале температур от неравновесного солидуса до температуры, на 5-20°C превышающей температуру полного растворения упрочняющей γ′-фазы (RU 2353701, 27.04.2009). Недостатком данного способа является большая длительность процесса термической обработки, необходимость строгого контроля выполнения заданного режима нагрева и высокая энергоемкость процесса, что удорожает стоимость отливок изделий, полученных данным способом, а также не устраняет возникающую при литье микропористость.

Наиболее близким аналогом предлагаемого изобретения, принятым за прототип, является способ термической обработки отливки из жаропрочного монокристаллического никелевого сплава, в котором перед нагревом на отливку изделия наносят плотно прилегающий слой керамики и проводят предварительный нагрев и выдержку при температуре на 5-15°C выше температуры солидуса сплава отливки с последующим охлаждением, после чего удаляют слой керамики и проводят повторный нагрев при температуре ниже температуры солидуса сплава отливки, обеспечивающей полное растворение упрочняющей γ′-фазы. После выдержки отливку охлаждают от температуры нагрева со скоростью не менее 50°C в минуту (RU 2230821, 20.06.2004). Недостатком данного способа является то, что наличие плотного керамического покрытия на поверхности отливки не полностью предохраняет отливку от оплавления эвтектических фаз при термообработке на верхнем пределе интервала превышения температуры (на 12-15°C). Наличие таких оплавлений ведет к браку отливок из-за ухудшения их механических свойств. Другим недостатком является большая продолжительность процесса термообработки.

Техническим результатом настоящего изобретения является разработка способа термической обработки отливок из жаропрочного никелевого сплава, позволяющего практически полностью устранить микропористость, растворить первичную эвтектическую (γ-γ′)-фазу при отсутствии поверхностного вакуумного растрава отливок и сократить время термообработки отливок в 2-2,5 раза.

Для достижения указанного технического результата предложен способ термической обработки отливки из жаропрочного никелевого сплава, включающий нанесение на поверхность отливки защитного покрытия, состоящего из по меньшей мере одного слоя керамики, нагрев и выдержку при температуре выше температуры солидуса сплава отливки, а также охлаждение отливки с последующим удалением защитного покрытия, в котором нагрев, выдержку и охлаждение проводят при давлении 80-220 МПа, а нагрев проводят до температуры на 15-80°C выше температуры солидуса сплава отливки с последующей выдержкой при этой температуре. В способе охлаждение отливки могут проводить путем равномерного снижения температуры до уровня на 10-20°C ниже температуры солидуса сплава отливки.

При нагреве выше температуры солидуса и одновременном воздействии давления происходит оплавление эвтектических фаз в междендритной области. Однако при проведении термообработки под давлением структура оплавления, представляющая собой крупные поры, окруженные эвтектическими фазами, не образуется. При отсутствии внешнего давления такие поры усадочного характера размером до 40-80 мкм образуются из-за отсутствия питания в замкнутых объемах расплавленных областей. При кристаллизации этих областей под давлением в процессе равномерного охлаждения отливок по предлагаемому режиму происходит компенсация усадки за счет некоторой объемной деформации материала, в результате чего поры практически не образуются. Если они и образуются, то их размер составляет 0,5-1,0 мкм при объемной доле на уровне 0,001 объемн.%.

Было показано экспериментально, что проведение процесса термообработки с давлением и температурой ниже заявленного уровня не позволяет снизить микропористость и уменьшить время гомогенизирующего отжига в 2-2,5 раза. Повышение давления выше указанного предела не дает существенного эффекта в снижении пористости, а повышение температуры ведет к потере отливкой монокристаллической структуры. Последнее связано с тем, что при повышении объемной доли жидкой фазы теряется связь между отдельными дендритными ветвями и в результате резко возрастает разориентация структуры. При дальнейшем повышении температуры отливка, естественно, может расплавиться.

Таким образом, предлагаемое изобретение позволяет достигнуть поставленный технический результат, а именно сократить время термообработки и повысить выход годных отливок при практически полном устранении микропористости и сохранении качества поверхности и микроструктуры отливок.

Равномерное охлаждение отливки под давлением до температуры на 10-20°C ниже температуры солидуса сплава отливки позволяет улучшить достигнутый технический результат, так как практически полностью гарантирует от образования в сплаве отливки структур оплавления.

Примеры осуществления изобретения

Пример №1

На партии цилиндрических монокристаллических образцов диаметром 16 мм и длиной 75 мм (3 шт.) и отливок рабочих турбинных лопаток с кристаллографической ориентацией [001] из безуглеродистого жаропрочного сплава ВЖМ5 (3 шт.) была проведена термообработка в газостате «Квинтус-40» в атмосфере аргона при температуре T=1360°C и давлении 180 МПа в течение 3 часов, с последующим равномерным снижением температуры до 1260°C. Далее следовали закалка и двухступенчатое старение, которые проводились в вакуумных печах (то есть, вне газостата). На образцы и отливки предварительно было нанесено защитное технологическое покрытие - два слоя из керамики на основе электрокорунда, нанесенные методом покраски по технологии изготовления литейных форм для направленной кристаллизации, с последующей сушкой. Время термообработки отливок составило 5 часов.

Пример №2

На партии цилиндрических монокристаллических образцов диаметром 16 мм и длиной 75 мм (3 шт.) и отливок рабочих турбинных лопаток с кристаллографической ориентацией [001] из безуглеродистого жаропрочного сплава ВЖМ5 (3 шт.) была проведена термообработка в газостате «Квинтус-40» в атмосфере аргона при температуре T=1340°C и давлении 220 МПа в течение 4 часов, с последующим равномерным снижением температуры до 1270°C. Далее следовали закалка и двухступенчатое старение, которые проводились в вакуумных печах. На образцы и отливки предварительно был нанесен один слой защитного технологического покрытия, состоящего из керамики на основе электрокорунда. Нанесение проводилось методом покраски по технологии изготовления литейных форм для направленной кристаллизации, с последующей сушкой. Время термообработки отливок составило 6 часов.

Пример №3

На партии цилиндрических монокристаллических образцов диаметром 16 мм и длиной 75 мм (3 шт.) и отливок рабочих турбинных лопаток с кристаллографической ориентацией [001] из безуглеродистого жаропрочного сплава ВЖМ5 (3 шт.) была проведена термообработка в газостате «Квинтус-40» в атмосфере аргона при температуре T=1310°C и давлении 80 МПа в течение 5 часов, с последующим равномерным снижением температуры до 1270°C. Далее следовали закалка и двухступенчатое старение, которые проводились в вакуумных печах. На образцы и отливки предварительно было нанесено два слоя защитного технологического покрытия, состоящего из керамики на основе электрокорунда. Покрытие наносилось методом покраски по технологии изготовления литейных форм для направленной кристаллизации, с последующей сушкой. Время термообработки отливок составило 7 часов.

Пример №4

На партии цилиндрических монокристаллических образцов диаметром 16 мм и длиной 75 мм (3 шт.) и отливок рабочих турбинных лопаток с кристаллографической ориентацией [001] из углеродсодержащего жаропрочного сплава ЖС32 (3 шт.) была проведена термообработка в газостате «Квинтус-40» в атмосфере аргона при температуре T=1330°C и давлении 180 МПа в течение 1 часа, с последующим снижением температуры до 1285°C. На образцы и отливки предварительно было нанесено двухслойное защитное технологическое покрытие. Покрытие состояло из керамики на основе электрокорунда, нанесенной методом покраски по технологии изготовления литейных форм для направленной кристаллизации, с последующей сушкой. Время термообработки отливок составило 2 часа.

Пример №5

Одновременно были изготовлены отливки рабочих турбинных лопаток с кристаллографической ориентацией [001] из сплава ВЖМ5 с использованием технологии, известной из прототипа. Время термообработки отливок составило 20 часов.

Результаты исследования микроструктуры отливок из сплава ВЖМ5 показали полное растворение эвтектических выделений (γ+γ′), отсутствие следов оплавления в структуре, нормальную морфологию упрочняющей γ′-фазы. В приповерхностном слое образцов и отливок не было отмечено какого-либо изменения фазового состава и зоны, обедненной легирующими элементами. На рис. 1а представлен приповерхностный слой отливки, на рис. 1б - морфология упрочняющей γ′-фазы (пример №1).

При проведении термообработки образцов с керамическим покрытием по вышеуказанному режиму в вакуумной печи (то есть без давления) наблюдается сильное оплавление в междендритной области. На рис. 2а и 2б представлен вид структуры оплавления отливок при различном увеличении. При проведении термообработки под давлением, но без покрытия наблюдается ухудшение чистоты поверхности отливки и образование измененного слоя на ее поверхности (рис. 3а и 3б).

Результаты исследования микроструктуры отливок из сплава ЖС32 показали отсутствие следов оплавления в структуре, нормальную морфологию упрочняющей γ′-фазы (рис. 4а и 4б). На рис. 4а представлена карбидная эвтектика сплава отливки, на рис. 4б - выделение эвтектической (γ-γ′)-фазы. В приповерхностном слое образцов не было отмечено какого-либо изменения фазового состава и зоны, обедненной легирующими элементами.

1. Способ термической обработки отливки из жаропрочного никелевого сплава, включающий нанесение на поверхность отливки защитного покрытия, состоящего из по меньшей мере одного слоя керамики, нагрев и выдержку при температуре выше температуры солидуса сплава отливки, а также охлаждение отливки с последующим удалением защитного покрытия, отличающийся тем, что нагрев, выдержку и охлаждение отливки проводят при давлении 80-220 МПа, причем нагрев проводят до температуры на 15-80°C выше температуры солидуса сплава отливки и выдержку при этой температуре.

2. Способ по п. 1, отличающийся тем, что охлаждение отливки проводят путем равномерного снижения температуры до уровня на 10-20°C ниже температуры солидуса сплава отливки.



 

Похожие патенты:

Изобретение относится к области изготовления ротора турбины газотурбинного двигателя, состоящего из двух и более деталей, изготовленных преимущественно из никелевого жаропрочного сплава с применением электронно-лучевой сварки.

Изобретение относится к области металлургии, а именно к способу изготовления никелевого суперсплава типа INCONEL 718. При изготовлении никелевого суперсплава типа INCONEL 718 последний этап ковки осуществляют при температуре Т ниже, чем температура δ-растворимости, с обеспечением во всех точках М в никелевом суперсплаве локальной степени D деформации, которая не меньше, чем минимальная величина Dm, обеспечивающая рекристаллизацию разорванных зерен в мелкие зерна.

Изобретение относится к металлургии, а именно к получению пористых металлических материалов методом самораспространяющегося высокотемпературного синтеза, и может использоваться в медицинской имплантологии.

Изобретение относится к области металлургии и может быть использовано в энергетическом машиностроении и приборостроении, в медицине, при низкотемпературном формировании исходной формы изделий из материалов с термоупругими мартенситными превращениями.

Изобретение относится к металлургии, а именно к пружинам из никелида титана, и может быть использовано для управления деформационными свойствами обратимого формоизменения, такими как угловое (поворотное) и осевое (поступательное) перемещение витой пружины.

Изобретение относится к области металлургии, а именно к способу получения никелевой полосы из нескольких, по меньшей мере, по существу цельных катодных листов. Способ получения никелевой полосы из катодных листов характеризуется тем, что полосу получают горячей прокаткой по отдельности листов, которые соединяют в полосу, или горячей прокаткой полосы после соединения отдельных листов.
Изобретение относится к приборостроению и может использоваться для изготовления упругих подвесов чувствительных элементов динамически настраиваемых гироскопов (ДНГ).

Изобретение относится к приборостроению и может использоваться для изготовления упругих подвесов чувствительных элементов динамически настраиваемых гироскопов (ДНГ).
Способ фиксации и лечения короно-радикулярных переломов многокорневых зубов относится к медицине, в частности к стоматологии, и может быть использовано для постоянной фиксации и лечения короно-радикулярных переломов многокорневых зубов.

Изобретение относится к области металлургии, в частности, к дисперсионно-упрочненным жаропрочным сплавам на основе никеля и может быть использовано в качестве материала для трубчатой оболочки тепловыделяющего элемента реакторов на быстрых нейтронах.

Изобретение относится к области металлургии, а именно к получению высокопрочных углеродсодержащих инварных сплавов. Способ обработки углеродсодержащего инварного сплава включает закалку и деформационно-термическую упрочняющую обработку. Нагрев под закалку ведут до 1200÷1350°С, после закалки проводят холодную деформацию со степенью 20÷70%, а термическую обработку осуществляют, по меньшей мере, в две стадии. На первой стадии сплав нагревают до 700÷800°С и выдерживают 0,5÷10 часов, на второй - сплав выдерживают при температуре 450÷650°С 1,0÷10 часов, а далее охлаждают на воздухе. Способ термической и деформационной обработки обеспечивает получение углеродсодержащих инварных сплавов с температурным коэффициентом линейного расширения от 0,5 до 7·10-6 К-1 и с высоким уровнем прочности до 1600÷2000 МПа. 2 з.п. ф-лы, 2 табл., 19 пр.

Изобретение относится к металлургии, в частности к литейным коррозионно-стойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах природного газа при температурах 600-900°C. Жаропрочный сплав на основе никеля для изготовления лопаток газотурбинных установок содержит, мас.%: углерод 0,06-0,12; хром 15,6-16,1; кобальт 10,0-10,4; вольфрам 5,3-5,7; молибден 1,5-1,8; титан 4,3-4,6; алюминий 2,8-3,1; бор 0,01-0,02; цирконий 0,016-0,05; кремний 0,001-0,2; железо ≤0,1; медь ≤0,05; сера ≤0,005; азот ≤20 ppm; кислород ≤15 ppm, ниобий 0,1-0,3; иттрий ≤0,03; марганец 0,001-0,2; фосфор ≤0,005 и никель - остальное. Способ термической обработки лопаток включает отжиг с нагревом в инертной атмосфере, выдержкой и охлаждением и старение. Сплав характеризуется повышенными характеристиками прочности, пластичности и коррозионной стойкости жаропрочного сплава лопаток с направленной, монокристаллической и равноосной структурами в сочетании с повышенной пластичностью и структурной стабильностью на ресурс, расширение области применения сплава. 4 н. и 1 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии, а именно к деформационно-термомеханической обработке монокристаллов ферромагнитных сплавов Ni-Fe-Ga-Co. Способ получения нанокомпозита с двойным эффектом памяти формы на основе монокристаллов ферромагнитного сплава Ni49Fe18Ga27Co6 включает отжиг монокристалла в атмосфере инертного газа с последующей закалкой в воду и старение под нагрузкой при 673 K в вакууме. Отжиг монокристалла проводят при температуре 1373 K в течение 25 мин, старение проводят под нагрузкой, приложенной вдоль направления [ 3 ¯ 12 ], в течение 4 часов. После старения проводят термомеханическое циклирование путем циклического изменения температуры в интервале мартенситных превращений от 220 K до 420 K под действием постоянной сжимающей нагрузки 30-80 МПа, приложенной вдоль направления [001]. Повышаются механические и функциональные свойства материала. 1 табл., 1 пр.

Изобретение относится к обработке металлов давлением и может быть использовано в металлургической и машиностроительной отраслях промышленности при изготовлении заготовок и деталей из гранулированных жаропрочных сплавов, например дисков роторов газотурбинных двигателей со смешанной наномикрокристаллической структурой. Способ получения поковок из жаропрочных гранулированных сплавов включает компактирование заготовки из гранул, горячее изостатическое прессование и поэтапную термомеханическую обработку. Перед проведением горячего изостатического прессования гранулы помещают в капсулу, полость которой вакуумируют для дегазации помещенных в нее гранул. Горячее изостатическое прессование гранул осуществляют вместе с капсулой, а термомеханическую обработку компактированной заготовки осуществляют в два этапа: на первом осуществляют предварительную горячую деформацию заготовки с относительной деформацией ε не менее 0,7 и при температуре на 10-50°C ниже температуры ликвидуса сплава, а на втором осуществляют окончательную горячую деформацию с относительной деформацией 0,9< ε <1,0 при температуре на 10-100°C выше температуры сольвуса сплава. Поковки с нанокристаллической структурой характеризуются высокими характеристиками прочности и пластичности. 1 табл.

Изобретение относится к области металлургии, а именно к хромоникелевоалюминиевому сплаву. Сплав содержит в мас.%: более 25 до 33 хрома, от 1,8 до менее 3,0 алюминия, от 0,10 до менее 2,5 железа, 0,001-0,50 кремния, 0,005-2,0 марганца, 0,00-0,60 титана, по 0,0002-0,05 каждого из магния и/или кальция, 0,005-0,12 углерода, 0,001-0,050 азота, 0,0001-0,020 кислорода, 0,001-0,030 фосфора, не более 0,010 серы, не более 2,0 молибдена, не более 2,0 вольфрама, остальное - никель и обычные, технологически обусловленные примеси. Для сплава соблюдаются следующие условия: Cr+Аl≥28 и Fp≤39,9, где Fp=Cr+0,272×Fe+2,36×Аl+2,22×Si+2,48×Ti+0,374×Мо+0,538×W-11,8×С, а Cr, Fe, Al, Si, Ti, Mo, W, С означают концентрацию соответствующих элементов в % по массе. Обеспечивается высокая высокотемпературная коррозионная стойкость, высокий предел ползучести и обрабатываемость. 5 н. и 19 з.п. ф-лы, 4 ил., 5 табл., 1 пр.

Изобретение может быть использовано при обработке и горячем формовании слитков из сплавов. На слиток наносят слой металлического материала в виде наплавленного покрытия толщиной от 0,64 до 1,27 см, металлургически связанного с по меньшей мере участком боковой поверхности цилиндрического слитка из сплава и с по меньшей мере одним торцом цилиндрического слитка из сплава. Наплавленный металлический материал более пластичен, чем сплав слитка. Изобретение обеспечивает снижение частоты возникновения трещин на поверхности слитка из сплава при его последующей горячей обработке давлением. 5 н. и 32 з.п. ф-лы, 11 ил.

Изобретение относится к области металлургии, а именно к хромоникелевому сплаву, и может быть использовано при строительстве печей, а также в химической и нефтехимической отраслях промышленности. Хромоникелевый сплав содержит, в мас. %: 29 - 37 хрома, 0,001 - 1,8 алюминия, 0,10 - 7,0 железа, 0,001 - 0,50 кремния, 0,005 - 2,0 марганца, до 1,00 титана, до 1,10 ниобия, 0,0002 - 0,05 магния, 0,0002 - 0,05 кальция, 0,005 - 0,12 углерода, 0,001 - 0,050 азота, 0,001 - 0,030 фосфора, 0,0001 - 0,020 кислорода, не более 0,010 серы, не более 2,0 молибдена, не более 2,0 вольфрама, при необходимости, от 0,0001 до 0,008 бора, остальное - никель и примеси. Выполнены следующие соотношения: Cr + Al >30, Fp ≤ 39,9, где Fp= Cr + 0,272·Fe + 2,36·Al + 2,22·Si + 2,48·Ti +1,26·Nb + 0,374·Mo + 0,538·W - 11,8·C. Сплав характеризуется высокими показателями высокотемпературной коррозионной стойкости в науглероживающей атмосфере, жаропрочности и предела ползучести. 5 н. и 21 з.п. ф-лы, 4 ил., 6 табл.

Изобретение относится к области металлургии, а именно к термомеханической обработке сплавов на основе никеля. Способ термомеханической обработки заготовки из сплава на основе никеля включает первый этап нагревания заготовки до температуры 1093-1163°С, первый этап ротационной ковки нагретой до 1093-1163°С заготовки с уменьшением площади поперечного сечения на 30-70%, второй этап нагревания заготовки до температуры 954-1052°С, причем между окончанием первого этапа ковки и началом второго этапа нагревания заготовку поддерживают при температуре ниже температуры растворения карбидов М23С6 и не позволяют ей охлаждаться до температуры окружающей среды, и второй этап ротационной ковки нагретой до 954-1052°С заготовки с уменьшением площади поперечного сечения на 20-70%. Обработанные сплавы характеризуются стабильностью и высокой прочностью в широком диапазоне высоких температур. 6 н. и 39 з.п. ф-лы, 3 ил., 1 пр.

Изобретение относится к металлургии, а именно к восстановительной обработке деталей из жаропрочных сплавов на никелевой основе, и может быть использовано в авиационной и энергетической промышленности для продления ресурса работы деталей газотурбинных двигателей и установок. Способ восстановительной обработки деталей из жаропрочных никелевых сплавов включает поверхностную пластическую деформацию и термическую обработку путем нагрева, выдержки и последующего охлаждения. Поверхностную пластическую деформацию проводят со степенью упрочнения поверхностей деталей не менее 20%. Термическую обработку осуществляют в вакууме путем нагрева деталей до температуры на 30-300°С ниже температуры полного растворения γ'-фазы со скоростью не более 5°С/мин, выдержки в течение 0,25-1,0 ч и охлаждения со скоростью не менее 15°С/мин. Повышаются прочностные и пластические характеристики восстанавливаемых деталей, а также их эксплуатационный ресурс. 1 табл.
Способ относится к формированию в изделии износостойкого приповерхностного слоя, содержащего соединения кобальта с водородом и кислородом в виде гидроксида кобальта Со(ОН)2 и гетерогенитов 3R - Со+3[O(ОН)] и 2Н-СоО(ОН), и заключается в том, что изделие из кобальтсодержащего материала нагревают во влажном воздухе при температуре от 100°С до менее 200°С в течение от 0,5 до 2,0 час. Достигается существенное увеличение связи приповерхностного слоя с основой материала.
Наверх