Способ термической обработки конструкционных сталей


C21D1/18 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2572943:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") (RU)

Изобретение относится к области металлургии, а более конкретно к термической обработке. Для повышения производительности обработки, а также твердости с пониженными закалочными напряжениями и деформациями сталь подвергают закалке на мартенсит в пульсирующем воздушном потоке, имеющем частоту до 2300 Гц и звуковое давление до 145 дБ, обеспечивающем скорость охлаждения выше критической скорости закалки, с последующим воздействием на нее пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ при комнатной температуре, за одну операцию без перемещения обрабатываемого изделия. 1 з.п. ф-лы.

 

Заявляемое изобретение относится к области металлургии, а более конкретно к термической обработке, в частности к термической обработке конструкционных сталей.

При закалке сталей закалочная среда должна, прежде всего, обеспечивать высокую твердость. С другой стороны, режим охлаждения должен быть таким, чтобы исключить возникновение значительных закалочных напряжений, приводящих к деформации изделия и образованию закалочных трещин.

Существующие закалочные среды лишь в большей или меньшей степени соответствуют вышеприведенным требованиям, также не все они являются экономичными и экологичными.

Актуальной является задача по разработке экономичных и экологически чистых способов закалки, способных обеспечить сочетание высокой закалочной твердости с меньшими, чем при стандартной закалке закалочными напряжениями и деформациями.

Известен способ термической обработки, которому подвергают изделия или заготовки из двухфазных титановых сплавов (см. патент RU 2255137 C1, 27.06.2005 г. Бюл. №18). Образцы из сплава ВТ 14 в исходном состоянии, предварительно подвергнутые отжигу, закалке с температуры 850-880°С в воде или закалке и старению при температуре 480-500°С в течение 12 часов, нагревают до температуры 0,5-0,8 от температуры старения и после выдержки помещают в камеру газоструйного генератора звука, где они охлаждаются под действием нестационарного воздушного потока и акустического поля звукового диапазона частот с уровнем звукового давления 140-160 дБ в течение 4-5 минут. В результате данного способа обеспечивается повышение прочности до 1,3 раза без снижения пластичности.

Основным недостатком способа является закалка в таком интенсивном охладителе, как вода, создающем значительный градиент температур по объему изделия, что приводит к поводке, а также необходимость дополнительной технологической операции нагрева, делающей термическую обработку сложной и дорогостоящей.

Наиболее близким по технической сущности к заявляемому изобретению является способ термической обработки конструкционных сталей на высокопрочное состояние (см. патент RU 2506320 C1, 10.02.2014 г. Бюл. №4), принятый в качестве ближайшего аналога.

Конструкционные стали подвергают стандартной для сталей данных марок закалке на мартенсит с последующим воздействием на них пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ при комнатной температуре.

Основным недостатком данного известного способа является разделение операций закалки и обработки пульсирующим воздушным потоком, снижающее производительность, а также использование стандартных закалочных сред, не обеспечивающих получение высокой твердости без сопутствующих закалочных напряжений и деформаций.

Перед заявляемым изобретением поставлена задача повысить производительность путем объединения закалки и обработки пульсирующим воздушным потоком, при сочетании высокой закалочной твердости с меньшими, чем при стандартной закалке, закалочными напряжениями и деформациями.

Решение поставленной задачи достигается тем, что конструкционные стали подвергают закалке на мартенсит в пульсирующем воздушном потоке, имеющем частоту до 2300 Гц и звуковое давление до 145 дБ, обеспечивающем скорость охлаждения выше критической скорости закалки с последующим воздействием на них пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ при комнатной температуре, за одну операцию без перемещения обрабатываемого изделия.

Таким образом, изобретение позволило получить технический результат, а именно повысить производительность путем объединения закалки и обработки пульсирующим воздушным потоком, при сочетании высокой закалочной твердости с меньшими, чем при стандартной закалке, закалочными напряжениями и деформациями.

Заявляемое изобретение реализуется следующим образом: конструкционные стали подвергают закалке на мартенсит в пульсирующем воздушном потоке, имеющем частоту до 2300 Гц и звуковое давление до 145 дБ, обеспечивающем скорость охлаждения выше критической скорости закалки и сглаживание за счет пульсаций пиков закалочных напряжений, уменьшая, тем самым, деформацию при закалке, а также с последующим воздействием на них в течение 10-15 минут пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ, при комнатной температуре, оказывающего комплексное влияние на метастабильную структуру мартенсита закаленной стали и способствующее протеканию в ней процессов, аналогичных превращениям при низком отпуске, вызывая при этом более значительное, чем при низком отпуске, снижение остаточных напряжений. При этом закалка и последующее воздействие на закаленную сталь пульсирующего воздушного потока осуществляется за одну операцию без перемещения обрабатываемого изделия.

Импульсное воздействие воздушного потока в процессе мартенситного превращения аустенита увеличивает количество центров образования новой фазы, повышая дисперсность мартенсита.

Увеличение дисперсности мартенсита в результате закалки в пульсирующем воздушном потоке обеспечивает стали более высокую твердость в сравнении с закалкой в стандартных средах при той же скорости закалочного охлаждения. Повышение дисперсности мартенсита способствует увеличению дисперсности продуктов его распада, инициированного последующим воздействием пульсирующего дозвукового воздушного потока, результатом которого также является рост подвижности дислокаций в сталях, а также релаксация остаточных микронапряжений, что обеспечивает рост ударной вязкости и пластичности без снижения прочности.

Таким образом, изобретение позволило получить технический результат, а именно повысить производительность путем объединения закалки и обработки пульсирующим воздушным потоком, при сочетании высокой закалочной твердости с меньшими, чем при стандартной закалке, закалочными напряжениями и деформациями.

1. Способ термической обработки конструкционных сталей, включающий закалку стали на мартенсит, последующее воздействие на неё пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ при комнатной температуре, отличающийся тем, что закалку на мартенсит осуществляют в пульсирующем воздушном потоке, имеющем частоту до 2300 Гц и звуковое давление до 145 дБ со скоростью охлаждения выше критической скорости закалки.

2. Способ по п. 1, отличающийся тем, что закалку с последующим воздействием пульсирующего дозвукового воздушного потока осуществляют без перемещения обрабатываемого изделия.



 

Похожие патенты:

Изобретение относится к области металлургии. Техническим результатом изобретения является обеспечение в листе текстурированной электротехнической стали сниженных потерь в железе и пониженных шумов.

Изобретение относится к технологии машиностроения, в частности к обработке наводороживанием поверхности стальных изделий, и может быть использовано для подготовки изделий из сталей низкой твердости к эксплуатации после финишной механической обработки.

Изобретение относится к упрочняющей обработке детали из стали с использованием концентрированных потоков энергии. Для повышения ресурса работы деталей машин и механизмов, работающих в условиях многоциклового усталостного разрушения, способ включает получение поверхностных слоев с градиентной многофазной структурой путем импульсно-периодического воздействия на поверхность детали из стали 20X13 сильноточным электронным пучком с энергией электронов 10-30 кэВ в среде аргона с остаточным давлением 0,02-0,03 Па, поглощаемой плотностью энергии 10-30 Дж/см, длительностью импульсов 50-100 мкс и количеством импульсов 1-3.

Изобретение относится к области металлургии, в частности к способам защиты стальных заготовок от окисления при нагреве перед обработкой давлением. Способ включает нанесение на поверхности стальных заготовок двухслойного покрытия.
Изобретение относится к области металлургии, в частности к термической обработке изделий конструкционных сталей. Для повышения ударной вязкости стали при сохранении высоких значений показателей твердости и прочности стальное изделие закаливают на мартенсит, после чего при комнатной температуре подвергают в течение 10-15 минут воздействию пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ, которое дополняют воздействием колеблющихся в пульсирующем воздушном потоке металлических пустотелых шариков, размещенных вдоль поверхности обрабатываемого изделия в виде параллельных рядов цепочек, в виде сетки из пересекающихся цепочек шариков или установленных в ячейки проволочной сетки.

Изобретение относится к области машиностроения. Способ стволов автоматического стрелкового оружия с гальваническим хромовым покрытием включает засыпку во внутренние полости стволов сухого кварцевого песка и установку их в шахтную печь сопротивления, снабженную термоизоляционной перегородкой с двумя тепловыми зонами при температуре в нижней тепловой зоне 150-200°C, выполненной в виде диска с отверстиями для установки стволов при помощи втулок высотой 10-123 мм.

Изобретение относится к способам термообработки пенька стволов автоматического стрелкового оружия, изготовленного методом холодного радиального обжатия, например 6П6М, 6П7К, 6П41 и др.

Изобретение относится к области термической обработки, в частности к закалке деталей машин и механизмов подшипников качения. Для эффективности охлаждения и повышения производительности процесса деталь в виде тела вращения охлаждают путем подачи охлаждающей жидкости струями на наружную поверхность с обеспечением вращательного и поступательного её движения посредством спрейера.

Изобретение относится к сварной стальной детали и способу ее изготовления. Заготовка детали получена сваркой встык, по меньшей мере, одного первого и одного второго листа.

Изобретение относится к текстурированной электротехнической листовой стали. Для обеспечения низких потерь в железе без ухудшения коррозионной стойкости листовая сталь толщиной t (мм) с пленкой на поверхности не имеет ржавчины на поверхности после испытания во влажной камере в течение 48 часов при температуре 50°С в атмосфере 98% влажности, при этом потери в железе W17/50 после облучения электронным пучком снижаются, по меньшей мере, на (-500t2+200t - 6,5)% потерь в железе W17/50 до облучения электронным пучком и составляют (5t2-2t+1,065) Вт/кг или менее.

Изобретение относится к области металлографии и может быть использовано в описании процессов диффузии, превращений, образования зародышей и роста новой фазы в металлах. Способ определения энергии активации фазовых превращений при распаде мартенсита в стали, в котором для определения энергии активации фазовых превращений определяют энергию активации образования зародышей новых ферритной и цементитной фаз и энергию активации роста упомянутых зародышей. Проводят закалку стальных образцов, отпуск упомянутых образцов при различных температурах, определяют количество микроструктурных объектов (N), образующихся при распаде мартенсита, и среднюю площадь зерна (Scp), с помощью которой определяют температурный коэффициент (αr) приращения среднего диаметра зерна по формуле: α r = Δ с р Т , где Δ с р = S с р , Т - температура отпуска, °С. Затем строят график зависимости натурального логарифма количества микроструктурных объектов (N) как функцию обратной величины произведения постоянной Больцмана и температуры (RT) в виде прямой и по тангенсу угла наклона прямой определяют энергию активации образования зародышей ферритной и цементитной фаз. Затем строят график зависимости натурального логарифма температурного коэффициента (αr) приращения среднего диаметра зерна как функцию обратного произведения постоянной Больцмана и температуры (RT) в виде прямой и по тангенсу угла наклона прямой определяют энергию активации роста упомянутых зародышей. Энергию активации фазовых превращений при распаде мартенсита в стали определяют как сумму энергий активации образования зародышей ферритной и цементитной фаз и энергии активации роста упомянутых зародышей. Обеспечивается повышение точности определения энергии активации при распаде мартенсита закаленной стали и возможность оценки доли энергии активации, отдельно приходящейся на энергию активации зародышеобразования и энергию активации роста новой фазы. 7 ил., 1 табл.

Изобретение относится к области металлургии. Для уменьшения отрывной силы крышки жестяной банки при постоянной толщине её стенки по ослабленной линии крышку для жестяной банки получают из нелегированной или низколегированной листовой стали с содержанием углерода менее 0,1 мас. %, при этом листовую сталь подвергают рекристаллизационному отжигу со скоростью нагрева, превышающей 75 К/с, и после рекристаллизационного отжига охлаждают со скоростью охлаждения, равной по меньшей мере 100 К/с, а затем покрывают защитным слоем. 2 н. и 9 з.п. ф-лы, 5 ил.

Изобретение относится к области технологии машиностроения и может быть использовано при упрочняющей термообработке зубчатых колес. Для обеспечения высокого качества термообработки и расширения технологических возможностей способ включает последовательный нагрев индуктором локального нагрева зубьев вращающегося зубчатого колеса до заданной температуры и их охлаждение жидкостью, при этом используют индуктор с магнитопроводом, ширину рабочей части индуктора выполняют не менее шага зацепления зубчатого колеса по его делительной окружности, а ее длину выполняют равной 1,2-1,5 длины зуба зубчатого колеса. Рабочую часть индуктора размещают ее серединой на расстоянии 0,3-0,5 мм от поверхности вершины зуба, а продольную ось рабочей части индуктора размещают под углом 15-30° относительно направления зуба. 2 з.п. ф-лы, 4 ил.

Настоящее изобретение предлагает текстурированный лист электротехнической стали, обеспечивающий возможность производства энергетически высокоэффективного трансформатора с сердечником из данного листа, обладающего крайне низкими потерями в железе и крайне низким уровнем шума, который может использоваться в различных окружающих условиях. Текстурированный лист электротехнической стали имеет распределение деформаций в областях, где сформированы замыкающие домены, в поперечном сечении листа в направлении прокатки, при этом максимальная деформация растяжения в направлении толщины листа составляет 0,45% или менее, а максимальная деформация растяжения t (%) и максимальная деформация сжатия c (%) в направлении прокатки удовлетворяют следующему уравнению (1): t + 0,06≤ t + c≤0,35. 2 н.п. ф-лы, 1 табл., 8 ил.

Изобретение относится к области машиностроения и может быть использовано при создании кулачково-эксцентриковых механизмов упаковочных автоматов. Дисковый кулачок кулачкового механизма имеет кулачок, изготовленный из среднеуглеродистой марки стали, содержание углерода в которой 0,42-0,63 мас.% и роликовый паз, наружные и внутренние рабочие поверхности которого закалены токами высокой частоты на глубину не менее 1,5 мм и имеют уровень твердости не менее HRA 74-76, причем высота закаленного слоя составляет не менее 3/4 глубины паза. Способ закалки дискового кулачка кулачкового механизма, имеющего роликовый паз, включает размещение кулачка с технологическим зазором в индукторе для нагрева и охлаждения поочередно наружной и внутренней рабочих поверхностей паза. Кулачок устанавливают на столик закалочного бака, обеспечивающего его вертикальное перемещение. На дно паза укладывают экран. Вводят в паз индуктор с магнитопроводом путем подъема столика. Фиксируют положение столика и регулируют равномерность технологического зазора путем горизонтального перемещения кулачка. Нагревают без вращения наружную поверхность паза до температуры 880-910°C, которую охлаждают в воде с перемещением столик вниз. Сбивают паровую рубашку, производят смену индуктора и повторяют закалку для внутренней поверхности паза. Технический результат заключается в снижении трудоемкости изготовления кулачкового механизма. 2 н.п. ф-лы, 3 ил.

Изобретение относится к способу получения упаковочной стали из холоднокатаной листовой стали, изготовленной из нелегированной или низколегированной стали с содержанием углерода менее 0,1%. Для получения высокопрочной упаковочной стали с хорошей формуемостью и высокой коррозионной стойкостью, которую можно произвести наиболее экономически эффективным способом, на листовую сталь по настоящему изобретению вначале наносят металлическое покрытие, после чего подвергают ее рекристаллизационному отжигу со скоростью нагрева, превышающей 75 К/с и предпочтительно превышающей 100 К/с, до температур, превышающих 700°С, так что металлическое покрытие оплавляется. Затем отожженную листовую сталь с покрытием быстро охлаждают до нормальной температуры со скоростью охлаждения, равной по меньшей мере 100 К/с. 3 н. и 17 з.п. ф-лы, 2 ил.

Изобретение относится к области металлургии. Для уменьшения потерь в железе текстурированный лист электротехнической стали подвергают обработке по измельчению магнитных доменов путем создания деформации, причем лист содержит изолирующее покрытие с превосходными изолирующими свойствами и устойчивостью к коррозии. В текстурированном листе электротехнической стали линейная деформация создана путем облучения лучом с высокой энергией, причем линейная деформация продолжается в направлении, которое пересекает направление прокатки стального листа, при этом доля зоны меток облучения в пределах области облучения лучом высокой энергии составляет 2% или больше и 20% или меньше, доля зоны выступов с диаметром 1,5 мкм или больше в пределах окружающего участка метки облучения составляет 60% или меньше, и доля зоны открытых участков стальной основы в метке облучения составляет 90% или меньше. 6 н. и 3 з.п. ф-лы, 3 табл., 8 ил., 3 пр.

Изобретение относится к обработке листов из электротехнической стали. Для измельчения магнитных доменов посредством облучения подвергнутого окончательному отжигу листа высокоэнергетичным пучком с использованием лазерного пучка, электронного пучка или другого подобного пучка в условиях изменения скорости перемещения устройство содержит механизм облучения для сканирования высокоэнергетичным пучком в направлении, ортогональном направлению подачи стального листа, при этом механизм облучения имеет функцию устанавливать диагональное направление сканирования высокоэнергетичным пучком относительно ортогонального направления, ориентированное под углом к направлению подачи, который определяют на основе скорости перемещения листа в направлении его подачи. 4 з.п. ф-лы, 5 ил., 3 пр.

Изобретение может быть использовано, в частности, в автомобильной промышленности и касается изготовления холоднокатаного и отожженного стального листа с «ТРИП-эффектом». Стальной лист имеет следующий состав, мас.%: 0,17≤C≤0,25, 1,5≤Mn≤2, 0,50≤Si≤1, 0,50≤Al≤1,2, при этом Si+Al≥1,30, остальное - железо и неизбежные примеси, образующиеся в результате обработки. Микроструктура листа в процентах площади состоит из от 65 до 85% феррита и от 15 до 35% островков мартенсита и остаточного аустенита. Средний размер указанных островков мартенсита и остаточного аустенита составляет менее 1,3 мкм, а их средний форм-фактор составляет менее 3. Механическая прочность Rm листа составляет между 780 и 900 МПа включительно, а удлинение при разрыве A% больше или равно 19%. Обеспечивается сочетание высокой прочности и высокой формуемости. 4 н. и 13 з.п. ф-лы, 3 ил., 5 табл.

Изобретение относится к области металлургии. Для повышения стойкости труб к коррозии и увеличения срока эксплуатации тепловоспринимающих элементов при применении таких труб в теплоэнергетике способ повышения коррозионной стойкости труб из малоуглеродистой стали марки ст.20 включает загрузку трубы-заготовки с исходной температурой 20-40°C в печь, нагретую до температуры 910-930°C, выдержку в течение 120 сек на каждый мм толщины стенки трубы, охлаждение на воздухе до исходной температуры 20-40°C, повторную загрузку в печь, нагретую до температуры 910-930°C, и выдержку в течение 120 сек на каждый мм толщины стенки трубы и окончательное охлаждение на воздухе до конечной температуры 20-40°C. 4 табл., 2 ил.
Наверх